
INVESTIGATIONS ON SETS AND TYPES

A DissertationPresented to the Fa
ulty of the Graduate S
hoolof Cornell Universityin Partial Ful�llment of the Requirements for the Degree ofDo
tor of Philosophy

byWoj
ie
h Mo
zydªowskiAugust 2007




© 2007 Woj
ie
h Mo
zydªowskiALL RIGHTS RESERVED



INVESTIGATIONS ON SETS AND TYPESWoj
ie
h Mo
zydªowski, Ph.D.Cornell University 2007There are two major foundational frameworks used in mathemati
s and 
omputers
ien
e � set theory and type theory. The former is widely a

epted as the foun-dation of 
lassi
al mathemati
s, the latter is being su

essfully applied in 
omputers
ien
e, for the purpose of program veri�
ation, programming languages semanti
s,software engineering and modeling physi
al systems. We investigate 
onne
tionsbetween these worlds. More spe
i�
ally, we prove a normalization theorem for a
onstru
tive impredi
ative set theory IZF. This result makes it possible to exhibit
omputational 
ontent hidden in set theories. We show how to use normalizationto provide program extra
tion 
apability from IZF proofs.Furthermore, we investigate two extensions of our framework. We �rst extendIZF to in
orporate ina

essible sets, providing a framework powerful enough toprovide 
onstru
tive semanti
s for popular type theories. As we demonstrate thatthe normalization property holds for the extension, the program extra
tion 
a-pability stays inta
t. Se
ond, we extend the logi
 of IZF to in
orporate featurestypi
al for dependent type theories. We show that unless su
h extension is donevery 
arefully, the theory will be
ome in
onsistent. However, we present a 
on-sistent, normalizing extension � a �dependent� set theory IZFD. We show thatthe proof-theoreti
 power of IZFD equals that of Zermelo-Fraenkel set theory withChoi
e, ZFC, the standard foundation of mathemati
s.Finally, we apply our results to a 
onstru
tive version of Higher-Order Logi
(HOL). Namely, we show how to re�ne the standard set-theoreti
 semanti
s for



HOL so that it maps a 
onstru
tive 
ore of HOL to IZF. Using our normaliza-tion result for IZF, we utilize this semanti
s to provide the program extra
tion
apability from 
onstru
tive HOL proofs.



BIOGRAPHICAL SKETCHThe author of the thesis was born in Warsaw, Poland, where he also graduatedfrom Warsaw University, majoring in Computer S
ien
e and Mathemati
s. Aftergraduation, he moved to Cornell and spent four wonderful years working on hisPh. D. degree.

iii



ACKNOWLEDGEMENTSI was very lu
ky to have a Ph. D. 
ommittee whose members were experts in bothfa
ets of my resear
h � 
omputer s
ien
e and mathemati
s. My advisor, BobConstable, has taught me a lot about type theory and 
omputer s
ien
e. Withouthis will to work with me on topi
s that I found ex
iting, without his 
onstantsupport and many fruitful dis
ussions, this thesis 
ould not have been 
ompleted.I learned an amazing amount of mathemati
al logi
 from Ri
hard A. Shore, myminor advisor. His 
lasses and unwavering willingness to talk about my resear
hwere a 
onstant sour
e of inspiration. It was always very helpful to talk withAndrew Myers about the programming languages side of my resear
h.The dis
ussions and 
omments of the members of the Nuprl group, in parti
ularStuart Allen, Mark Bi
kford, Ri
h Eaton, Christoph Kreitz and Evan Moran,played an important role in my resear
h. My understanding of type theory wouldbe mu
h worse without their presen
e at Cornell.I also want to extend my thanks to people whose presen
e made my life bet-ter during my Ph. D. studies: Siggi Cherem, Yejin Choi, Filip Dreger, DorotaGªa»ewska, Maya Haridasan, Tomasz Kamil Mi
halski, Krzysztof Ostrowski, AndyS
ukane
, Jonathan Winter, Anna Wªudarska, Mi
haª Wiktor �mijewski and allothers whom I forgot to mention.Last, but de�nitely not least, I want to thank my family, for their 
onstantsupport and for helping me be
oming who I am. My wife Zo�a Stankiewi
z hasbeen in
redibly supportive and en
ouraging; her helpful editorial 
omments onvarious parts of this thesis made it mu
h better. I 
an hardly express my thanksto her.
iv



TABLE OF CONTENTS1 Introdu
tion 11.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Thesis map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Towards 
omputational understanding of set theory I : Proposi-tions and Numbers 72.1 Propositional 
al
ulus . . . . . . . . . . . . . . . . . . . . . . . . . 92.1.1 λ→ 
al
ulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.1.2 Properties of λ→ . . . . . . . . . . . . . . . . . . . . . . . . 172.1.3 Realizability for IPC . . . . . . . . . . . . . . . . . . . . . . 232.1.4 Normalization of λ→ . . . . . . . . . . . . . . . . . . . . . . 282.2 First-order arithmeti
 . . . . . . . . . . . . . . . . . . . . . . . . . . 312.2.1 λH 
al
ulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.2.2 Properties of λH . . . . . . . . . . . . . . . . . . . . . . . . 412.2.3 Realizability for HA . . . . . . . . . . . . . . . . . . . . . . 482.2.4 Normalization of λH . . . . . . . . . . . . . . . . . . . . . . 502.2.5 Computation in HA . . . . . . . . . . . . . . . . . . . . . . 543 Towards 
omputational understanding of set theory II : Sets 573.1 Se
ond-order arithmeti
 . . . . . . . . . . . . . . . . . . . . . . . . 573.1.1 λS 
al
ulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 613.1.2 Properties of λS . . . . . . . . . . . . . . . . . . . . . . . . 633.1.3 Realizability for HAS . . . . . . . . . . . . . . . . . . . . . . 653.1.4 Normalization of λS . . . . . . . . . . . . . . . . . . . . . . 703.2 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733.2.1 The axioms of IZFR . . . . . . . . . . . . . . . . . . . . . . . 743.2.2 λZ 
al
ulus . . . . . . . . . . . . . . . . . . . . . . . . . . . 813.2.3 Properties of λZ . . . . . . . . . . . . . . . . . . . . . . . . 853.2.4 Realizability for IZFR . . . . . . . . . . . . . . . . . . . . . . 873.2.5 Normalization of λZ . . . . . . . . . . . . . . . . . . . . . . 993.3 Program extra
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083.4 Histori
al 
ontext . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1144 Beyond IZF 1164.1 Ina

essible sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1164.2 Dependent set theory . . . . . . . . . . . . . . . . . . . . . . . . . . 1274.2.1 IZFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1304.2.2 The terms of λD . . . . . . . . . . . . . . . . . . . . . . . . 1314.2.3 Realizability . . . . . . . . . . . . . . . . . . . . . . . . . . . 1394.2.4 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 1434.2.5 The properties of λD . . . . . . . . . . . . . . . . . . . . . . 146v



4.2.6 Program extra
tion . . . . . . . . . . . . . . . . . . . . . . . 1484.2.7 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1504.3 Histori
al 
ontext . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1505 Program-extra
ting semanti
s 1525.1 Higher-order logi
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1545.2 Semanti
s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1565.2.1 Set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1565.2.2 The de�nition of the semanti
s . . . . . . . . . . . . . . . . 1585.2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1605.2.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1615.3 Extra
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1665.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1686 Con
lusion 170Bibliography 172

vi



LIST OF FIGURES2.1 Heyting Arithmeti
 . . . . . . . . . . . . . . . . . . . . . . . . . . 353.1 Se
ond-order Heyting Arithmeti
 (HAS) . . . . . . . . . . . . . . . 594.1 The axioms of IZFD . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vii



CHAPTER 1INTRODUCTION1.1 SetsThe 
on
ept of a set is likely the most su

essful mathemati
al abstra
tion in thehistory of humankind. It is very simple: high s
hool students 
an easily grasp theidea and experiment on �nite sets. It 
an be des
ribed 
on
isely: the number ofaxioms and axiom s
hemas in modern set theories is usually smaller than 10. Yet,at the same time, the 
on
ept of a set is powerful enough to en
ompass almostall of modern mathemati
s. And indeed, the Zermelo-Fraenkel set theory withChoi
e, ZFC, is widely a

epted as the foundation of mathemati
s.The origins of ZFC 
an be tra
ed to Georg Cantor, a German mathemati
ian.His work on 
onvergen
e of Fourier series led him to investigate, starting in 1879,the nature of numbers and in�nity [Can55℄. At the time, mathemati
ians thoughtthat the in�nity was uniform and that there was no di�eren
e between the quantityof natural and real numbers. Cantor's results destroyed this view forever, when heinvented the �diagonal method� argument to show that in fa
t there are more realsthan natural numbers. As sets were an important tool in his studies, he startedinvestigating them for their own sake. Soon, formal axiomatizations of set theoryby Zermelo [Zer08℄ and Fraenkel [Fra22℄ followed. Later, Kuratowski invented asimple en
oding of ordered pairs as unordered pairs, von Neumann showed how touniformly en
ode natural numbers and ordinals as sets and Bourbaki gave a uni�edtreatment of a large part of 
ontemporary mathemati
s based on sets [Bou49,Bou68b, Bou68a℄. These developments 
onvin
ed most mathemati
ians that settheory was a valid foundation of mathemati
s.This view has 
hanged litle sin
e then. In 2007, set theory is as relevant for1



mathemati
s as it was 60 years ago. As no widely a

epted substitutes to ZFChave arised, it is still 
onsidered as the foundation of pure 
lassi
al mathemati
s.1.2 TypesIn the meantime, quietly, a new world of 
omputation was 
oming into existen
e.In 1936, Alan Turing des
ribed [Tur36℄ a seminal theoreti
al model of 
omputa-tion. The �rst digital 
omputers were built during the Se
ond World War. As
omputers evolved, so did programming languages, indispensible tools to 
ontrolthe 
omplexity of tasks assigned to ma
hines. The ARPANET was born in 1969and evolved into the Internet through 1970s and 1980s. Sear
h engines arrivedin mid 1990s. Sin
e then, there was no way ba
k; nowadays, 
omputers are anessential and indispensible part of human so
iety and programming languages arethe medium we use to 
ommuni
ate with ma
hines.Throughout the evolution of programming languages, the 
on
ept of a typeproved to be in
reasingly useful. Its advantages were noti
ed very early; the �rstprogramming language with very ri
h user-de�ned types was ALGOL68, designedin the 1960s. Types made the task of writing 
orre
t programs mu
h easier. Theyprovided means to 
lassify data and helped the 
ompiler �nd 
ommon mistakesand notify the programmer.The full importan
e of types 
ame to be realized a few years later. The es-sential role in this dis
overy was intuitionism, also 
alled 
onstru
tivism, a philo-sophi
al approa
h to mathemati
s advan
ed by the Dut
h mathemati
ian L. E. J.Brouwer [Bro07, vS90, van99℄. Brie�y, 
onstru
tivism is o

upied with e�e
tivemethods in mathemati
s. The law of ex
luded middle is reje
ted, as inherentlynon-
onstru
tive. A detailed des
ription of intuitionism 
an be found for examplein [Hey66℄. Brouwer's ideas were essential to the following three mostly indepen-2



dent lines of resear
h, whi
h in the end made the type theory an integral part of
omputer s
ien
e.On the 
omputer s
ien
e side, resear
hers were trying to develop new toolsfor software 
orre
tness. Most approa
hes were based on axiomati
 logi
s, su
has Hoare's logi
 [Hoa69℄ or Floyd's method [Flo67℄. An important ex
eption wasRobert Constable's group at Cornell, trying to apply 
onstru
tive mathemati
sfor the purpose of program synthesis [Con71℄. A synthesized program 
ould be
orre
t-by-
onstru
tion, with no need for further testing and veri�
ation.On the mathemati
al side, logi
ians su
h as Haskell B. Curry [CFC58℄, DagPrawitz [Pra65℄, William Howard [How80℄, Hans Lau
hli [Lau70℄ and Jean-YvesGirard [Gir72℄ were investigating the properties of proofs in 
onstru
tive logi
s.The Dut
h mathemati
ian N. G. de Bruijn built a system Automath [dB70℄ toformalize and verify mathemati
al proofs. In retrospe
t, Automath introdu
edand utilized important features of type theory. Dana S
ott [S
o70℄ des
ribed asetting very 
lose to modern type theories; had it not been for his posts
ript tothe paper, e�e
tively denoun
ing the framework, he might very well be termed asthe originator of modern type theory.The �nal pie
e of the puzzle 
ame from the philosophi
al side. In 1973, aSwedish mathemati
ian Per Martin-Löf noti
ed an amazing thing. He showedthat the 
on
ept of a type, extended to the extreme, is a valid foundation for
onstru
tive mathemati
s [ML73℄. His type theory was a new foundational basis,an important dis
overy for 
onstru
tive mathemati
ians and philosophers. Soonafter, Constable's group realized that as 
omputation is an integral part of typetheory, the theory 
an and should be applied for the purpose of assuring soft-ware 
orre
tness. They plunged forward and built a proof assistant PRL basedon Martin-Löf's predi
ative type theory [CAB+86, Con98℄. An important feature3



of PRL and type theory was that it enabled program extra
tion from formalizedproofs; the pro
ess of software development was redu
ed to the a
tivity of theo-rem proving. The resear
h program of Constable's group, now almost 30 yearsold, bore numerous fruits. See [ABC+06℄ for a partial a

ount. Other 
omputers
ien
e resear
hers noti
ed type theory as well; it is now being su

essfully appliedon a large s
ale for the purpose of program veri�
ation, programming languagessemanti
s and software engineering.Type theory is not without its limitations, however. It la
ks the power of settheory: the strongest type theories are mu
h weaker than ZFC. It is more di�
ultto understand � the 
on
ept of a type, although familiar to programmers, is notnearly as intuitive as the 
on
ept of a set. Moreover, its me
hanisms for abstra
tionare di�erent than those that have been developed for years by mathemati
ians; itis therefore a remarkable 
hallenge to 
ode all mathemati
al knowledge in typetheories.On the other hand, set theory turned out to be a very in
onvenient setting toreason formally about 
omputation. As it is inherently stati
 (sets are thought of asstati
 obje
ts, existing Platoni
ally), 
omputation needs to be somehow modelledinside. Although various embeddings of 
omputation in the world of sets exist,from Turing ma
hines, via Post systems and lambda 
al
uli, to denotational andoperational semanti
s, most turned out to be impra
ti
al. Indeed, we are aware ofonly one tool based on set theory [Abr96℄, 
ompared with more than 20 based ondi�erent foundational basis.1.3 Thesis mapIn this thesis, we investigate whether it is possible to bring these two worlds 
loser.We �rst show in Chapter 2 that the world of sets is not as stati
 as it seems. We4



investigate a 
onstru
tive set theory IZF and exhibit 
omputation hidden inside thelayers of sets and logi
. For this purpose, we develop a typed lambda 
al
ulus λZ,
orresponding to proofs in IZF via the so-
alled Curry-Howard isomorphism. Usingrealizability inspired by M
Carty's thesis [M
C84℄, we show the normalizationproperty of the 
al
ulus and explain how to use it for the purpose of providingsoftware 
orre
t-by-
onstru
tion. As the normalization proof is quite intri
ate, weapproa
h IZF and λZ in stages, applying our te
hniques �rst for simpler, well-known 
onstru
tive systems: propositional logi
, Heyting Arithmeti
 and se
ond-order Heyting Arithmeti
. We then show how to apply normalization to extra
tprograms from IZF proofs.In Chapter 4, we dis
uss some possible extensions of these ideas. We �rst showin Se
tion 4.1 how to enhan
e IZF to in
orporate ina

essible sets while still sup-porting program extra
tion 
apability. This extension makes the set theory morepowerful than all type theories used in pra
ti
e. Furthermore, in Se
tion 4.2 weshow that features 
hara
teristi
 of the world of types 
an play an important rolein the world of sets and we expose the danger resulting from its mixture. Morespe
i�
ally, we investigate a dependent set theory IZFD, resulting from extendingthe �rst-order logi
 underlying IZF with typi
al type-theoreti
 features su
h as
Σ-types. We show that unless Σ-types are restri
ted, the resulting theory is in-
onsistent; however, with restri
ted Σ-types, it has the proof-theoreti
 power ofZFC.In Chapter 5 we show that our 
onstru
tive set theories 
an be used to pro-vide program extra
tion 
apability for existing theories. We 
onsider the pop-ular Higher-Order Logi
 (HOL), a basis for popular proof assistants su
h as Is-abelle/HOL and PVS. We provide a 
onstru
tive semanti
s in IZF for the 
on-stru
tive 
ore of HOL and show that the semanti
s itself 
an serve as a tool for5



program extra
tion.We believe our results bring better understanding of the nature of sets andtypes. Our hope is that the dis
overy of underlying 
omputation 
an make setsmore relevant in the XXI-
entury, whi
h is very likely to be
ome more dominatedby 
omputation. At the same time, further integration of sets and types, su
has the one we present in Se
tion 4.2, 
an bring the unfamiliar world of types
loser to mathemati
ians, in turn making it easier for 
omputer s
ien
e to utilizemathemati
s in formal as well as informal ways. We are hopeful that su
h a uni�edsetting 
an be 
onstru
ted.

6



CHAPTER 2TOWARDS COMPUTATIONAL UNDERSTANDING OF SETTHEORY I : PROPOSITIONS AND NUMBERSIn the previous 
hapter, we brie�y presented the history of set theory, widelya

epted as the foundation of mathemati
s. It is known how to model everymathemati
al obje
t of interest as a set with little di�
ulty. The abstra
tion of aset is easy to understand and the pi
ture of the universe built of sets is simple and
ompelling.An important 
hara
teristi
 of the set-theoreti
 universe is that it is an inher-ently stati
 entity. Sets are Platoni
 obje
ts and the axioms of set theory 
apturesome truths about them. Sin
e the proof rules of the underlying �rst-order logi
are intuitively true, mathemati
s is viewed as dis
overing the truth about the uni-verse. Logi
 and mathemati
al proofs therefore serve as witnesses to externallytrue fa
ts. However, in some sense they are super�ous; if mathemati
ians 
ouldsomehow tap into the fabri
 of the universe and �see� the sets dire
tly, no proofswould be ne
essary, as the truth they are trying to dis
over would be
ome self-evident. One prominent example of this view is the still un�nished sear
h for anintuitively appealing axiom whi
h 
ould de
ide Continuum Hypothesis.In 1958, an inno
ous remark by an Ameri
an logi
ian Haskell B. Curry starteda revolution against this view of the world: �Note the similarity of the postulatesfor F and those for P . If in any of the former postulates we 
hange F to P anddrop the 
ombinator we have the 
orresponding postulate for P � [CFC58℄. Withthis remark, a new, ground-breaking idea was born. Although it took a signi�
antnumber of years for this idea to ripen, in our opinion the view of the world ofmathemati
s has been 
hanged forever. This idea is usually 
alled the Curry-Howard isomorphism, although see page viii of [SU06℄ for a name more faithful to7



the 
ontributing resear
hers.The ground-breaking 
hange brought about by this isomorphism 
an be sum-marized brie�y as follows. There is more to proofs than meets the eye. Morespe
i�
ally, proofs are a link between the stati
, 2000 years old world of mathe-mati
s and the young, dynami
ally expanding world of 
omputation. They providea

ess to the 
omputation hidden deeply among formulas, numbers, spe
ies andsets. In fa
t, proofs are the 
omputation. A statement �p is a proof of formula φ�
an be viewed at the same time as �p is a program satisfying the spe
i�
ation φ�.The former is of fundamental importan
e to mathemati
s; the latter to 
omputers
ien
e. The isomorphism brings these two worlds together.It is surprisingly easy to overlook the 
onsequen
es of the isomorphism on theview of the world of mathemati
s. The language of mathemati
s is no longersimply a mere, imperfe
t tool used to dis
over distant, stati
 Platoni
 truths. Itis an essential and lively part of mathemati
s. It provides a 
onne
tion to theworld of 
omputation and in fa
t embodies 
omputation within. The isomorphismhas therefore signi�
antly expanded our knowledge in the �elds of linguisti
s (asmathemati
al developments are usually written using informal language, 
lose tothe natural one), 
omputer s
ien
e (whi
h is a �eld 
on
erned in large part with
omputation), mathemati
s (as it greatly deepened our understanding of the foun-dations of mathemati
s) and philosophy.We now embark with the reader on a quest of de�ning, understanding andapplying the isomorphism to set theory. We will start from one of the simplestinstan
es of the isomorphism, propositional logi
, and 
ulminate in a full-blownset theory. We hope that our presentation will shed light on the te
hni
al issuesinvolved and make the relevant proofs easier to understand. Most importantly, wewish to make the reader grasp the sour
e of 
omputation in the world of mathe-8



mati
s.The isomorphism is usually used for 
onstru
tive theories, without the ex-
luded middle rule. This is not surprising, as the ex
luded middle is �agrantlyanti-
omputational. For example, using the rule one may prove that �every Turingma
hine either terminates or not�, while it is well-known that there is no 
omputa-tion whi
h 
ould de
ide whi
h is the 
ase. From our point of view, 
onstru
tivism isa tool whi
h serves to understand the 
omputational nature of formal systems. Weview the standard 
lassi
al systems as 
onsisting of a 
onstru
tive 
ore, essentialfor understanding the 
omputational 
ontent and the rest of the system, resultingfrom the ex
luded middle rule. In other words, we fa
tor 
lassi
al systems into a
onstru
tive 
ore and the ex
luded middle rule. Whether the 
onstru
tive 
ore isin some sense a better theory than the whole system, is a question we prefer toleave to philosophers. Instead, we now plunge with the reader into the 
onstru
tive
ores of well-known and established formal systems, often taught in undergraduatelogi
 
ourses: propositional logi
 and arithmeti
.2.1 Propositional 
al
ulusWe will start with one of the weakest logi
s in existen
e whi
h at the same isan indispensible 
ore of almost all formal systems designed to 
apture humanreasoning. Before we start the formal presentation, we en
ourage the reader toread the previous senten
e again. That nowadays we 
an de�ne and dis
uss �logi
s�is a result of an important paradigm shift, whi
h was an essential step on the roadto the Curry-Howard isomorphism.Indeed, logi
 be
ame a valid subje
t of dis
ourse remarkably late. Althoughalready Aristotle dis
overed some laws of logi
, 
alled syllogisms, it was not untilGeorge Boole in the 19th 
entury that logi
 in the modern sense started to beformalized. Boole, however, was o

upied mainly with propositional equivalen
es9



between formulas, su
h as �a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)�.The three essential steps were undertaken by Gottlob Frege, David Hilbertand Gerhard Gentzen. Frege [Fre67℄ gave the �rst formal de�nition of formulasof �rst-order logi
, in parti
ular inventing the modern notion of a quanti�er. Hethus showed that the language of mathemati
s is amenable to formal treatment.Hilbert [HA28℄ provided the �rst proof system for �rst-order logi
. He wanted touse the system for the purpose of his formalist program, to show 
onsisten
y ofmathemati
s. Although this task was doomed to failure [Göd31℄, his system is stillused for the purpose of studying logi
.The main fault of Hilbert's system is that it is extremely in
onvenient to useto formalize real mathemati
al arguments. A German mathemati
ian GerhardGentzen thus 
ame up with di�erent, yet equivalent systems, 
alled natural de-du
tion and the sequent 
al
ulus [Gen69℄. His systems allowed reasoning underassumptions, formalized the idea of logi
al 
onsequen
e and were mu
h 
loser tomathemati
al pra
ti
e. He also found a way to simplify formal proofs in his sys-tems and investigated the properties of su
h simpli�
ations. This was the lastne
essary step on the side of proof systems to �nd 
omputation in mathemati
s.Natural dedu
tion is very 
lose to type systems of real programming languages andproof simpli�
ation 
orresponds to program 
omputation. Indeed, all the systemsin this se
tion will be based on Gentzen's natural dedu
tion, presented in a sequent
al
ulus style.Our starting point is one of the simplest logi
s in existen
e: Intuitionisti
Propositional Cal
ulus (IPC). It is a 
ore of almost every reasonable logi
 in exis-ten
e and indeed, it will be a part of all logi
s we investigate. IPC 
onsists of thesyntax and the proof rules. The syntax spe
i�es the language of the logi
. Theproof rules spe
ify the derivable statements. These are deemed to be true and the10



logi
 is supposed to 
apture some truths about the world.The propositional 
al
ulus is parameterized by a 
ountable set of propositionalvariables whi
h we denote by PV ar. We will use the letters p, q, r for propositionalvariables. The formulas of IPC are generated by the following abstra
t grammar:
φ ::= p | ⊥ | φ ∧ φ | φ ∨ φ | φ→ φThus, IPC 
an be used to reason about only relatively simple formulas. Thepropositional variables intuitively denote statements whose pre
ise formulationdoes not 
on
ern us.The proof system for IPC allows to derive judgments of the form Γ ⊢ φ, read as�in the 
ontext Γ, the formula φ is derivable�. A 
ontext is a �nite set of formulas.The notation Γ, φ stands for the 
ontext Γ ∪ φ. The proof system is generatedindu
tively by the following proof rules:

Γ, φ ⊢ φ
Γ ⊢ ⊥
Γ ⊢ φ

Γ, φ ⊢ ψ
Γ ⊢ φ→ ψ

Γ ⊢ φ→ ψ Γ ⊢ φ
Γ ⊢ ψ

Γ ⊢ φ
Γ ⊢ φ ∨ ψ

Γ ⊢ ψ
Γ ⊢ φ ∨ ψ

Γ ⊢ φ ∨ ψ Γ, φ ⊢ ϑ Γ, ψ ⊢ ϑ
Γ ⊢ ϑ

Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ

Γ ⊢ φ ∧ ψ
Γ ⊢ φ

Γ ⊢ φ ∧ ψ
Γ ⊢ ψWe shall now present the 
omputational 
ontent of IPC proofs. To show thereader just a glimpse of its sour
e, 
onsider the proof: �If φ ∧ ψ, then φ.� Given aproof of φ∧ψ, we 
an produ
e a proof of φ, just as given a pair of natural numbers,we 
an produ
e the �rst 
omponent of a pair. For the general, formal a

ount of
omputation in IPC, we are going to introdu
e a lambda 
al
ulus, whi
h we 
all

λ→.2.1.1 λ→ 
al
ulusThe last missing ingredient to de�ne the Curry-Howard isomorphism and dis
over
omputation in proofs was invented by Alonzo Chur
h in 1930s. This ingredi-11



ent was the famous lambda 
al
ulus, a system of notation for fun
tions. Chur
hthought it 
ould be used to serve as a foundation for mathemati
s. Although thisappli
ation did not work in the end, a 
ouple of years later the logi
ians HaskellB. Curry and William Howard noti
ed an amazing similarity between Chur
h'slambda 
al
ulus and natural dedu
tion proofs. We are now ready to present thelambda 
al
ulus and the similarity, nowadays 
alled isomorphism, whi
h we willexpress formally in Lemma 2.1.5.A lambda 
al
ulus, similarly to a logi
, is a purely synta
ti
 system. We areinterested in typed lambda 
al
uli, whi
h are essentially programming languageswith types. The reason for our interest is that some lambda 
al
uli 
orrespondexa
tly to logi
al systems and 
apture their 
omputational nature. The 
al
uli we
onsider are also 
alled monomorphi
 intensional type theories.Simpler 
al
uli 
an be introdu
ed in several well-separated stages. First, thetypes and terms of the system are de�ned. Along with the terms 
ome the redu
tionrules, whi
h make the 
al
ulus a 
omputational system. Finally, the typing systemis des
ribed. We will present now present our �rst lambda 
al
ulus λ→. This
al
ulus 
orresponds to IPC; the 
orresponden
e is 
aptured formally by Lemma2.1.5.We �rst �x a 
ountable set of variables V ar. These are 
ompletely unrelatedto PV ar. Variables from V ar will be denoted by letters x, y, z. We will usually
all them proof variables.The types of λ→ are IPC formulas. We will therefore use Greek letters φ, ψ, ϑto stand for λ→ types.The terms of λ→, denoted by M,N,O, are generated by the following abstra
t
12



grammar:
M ::= x | M N | λx : φ. M | | inl(M) | inr(M) |

case(M,x : φ. N, x : ψ. O) | 〈M,N〉 | fst(M) | snd(M) | magic(M)Intuitively, these terms are notations for proofs and, at the same time, theyare programs. For example, M N is an appli
ation term; if M is a notation for aproof of φ→ ψ and N is a notation for a proof of φ, then M N is a notation for aproof of ψ. This 
orresponds to the situation when we have a Lemma L showing
φ→ ψ and a proof p of φ; then we 
an obviously apply Lemma L to p to show ψ.The inl(M), inr(M), case(M,x : φ. N, x : ψ. O) terms 
orrespond to the proof rulesfor disjun
tion. Similarly, 〈M,N〉, fst(M), snd(M) 
orrespond to the proof ruleshandling 
onju
tion. The magic(M) term is used for absurdity elimination andlambda abstra
tions and appli
ations are used to handle impli
ation. Formally,the 
orresponden
e will be 
aptured by the typing system for λ→ and Lemma2.1.5 below.The variable x in λx : φ. M and case(M,x : φ. N, x : ψ. O) terms bindsits o

uren
es in M,N,O, respe
tively. We 
onsider terms di�ering only in theirbound variables (also 
alled α-equivalent) the same. The free variables of a term
M , denoted by FV (M) and 
apture-avoiding substitution are de�ned as usual. Aterm M su
h that FV (M) = ∅ is 
alled 
losed. The notation M [x := N ] standsfor the term M with N substituted for x. To the reader unfamiliar with thesenotions we re
ommend the �rst 
hapter of [SU06℄.The 
omputational nature of λ→ is exhibited by the deterministi
 redu
tionrelation →. We �rst de�ne the base redu
tions:

(λx : φ. M) N → M [x := N ]

case(inl(M), x : φ. N, x : ψ. O) → N [x := M ]13



case(inr(M), x : φ. N, x : ψ. O) → O[x := M ]

fst(〈M,N〉) → M snd(〈M,N〉) → NIn an arbitrary termM there 
an be many subterms amenable to the base redu
tionrules. For example, if Ip ≡ λx : p. x, then there are three ways in whi
h we 
oulda priori redu
e fst(〈Ip Ip, Ip Ip〉):
fst(〈Ip Ip, Ip Ip〉) → Ip Ip

fst(〈Ip Ip, Ip Ip〉) → fst(〈Ip, Ip Ip〉)

fst(〈Ip Ip, Ip Ip〉) → fst(〈Ip Ip, Ip〉)As we want our redu
tion system to be deterministi
, we need to �x a strategyfor applying the base redu
tions in an arbitrary term. A 
onvenient method isto split the set of terms into values (also 
alled 
anoni
al forms) and non-values.Intuitively, a value is the result of the 
omputation pro
ess and does not allow anyfurther redu
tions. Formally, we de�ne the values of λ→ as the terms generatedby the following abstra
t grammar, where M is an arbitrary lambda term:
V ::= λx : φ. M | inl(M) | inr(M) | 〈M,N〉In terms whi
h are not values, we shall designate a prin
ipal argument, denotedby [◦]. Informally, the redu
tion of a term M pro
eeds as follows:

• If M is a value, stop.
• If M is not a value, inspe
t its prin
ipal argument:� If it is a value, apply one of the base redu
tion rules.� If it is not a value, redu
e this prin
ipal argument.We de�ne the prin
ipal arguments in λ→, also 
alled evaluation 
ontexts, bythe following abstra
t grammar:
[◦] ::= [◦] M | case([◦], x : φ.N, x : ψ.O) | fst([◦]) | snd([◦]) | magic([◦])14



Formally, we extend our base redu
tion relation → to all lambda terms by thefollowing indu
tive de�nition:
M →M ′

M N →M ′ N
M →M ′

case(M,x : φ. N, x : ψ. O) → case(M ′, x : φ. N, x : ψ. O)

M → M ′

fst(M) → fst(M ′)
M →M ′

snd(M) → snd(M ′)
M →M ′

magic(M) → magic(M ′)This evaluation order is usually 
alled lazy evaluation or 
all-by-need and ourmethod of introdu
ing the redu
tion relation is 
alled small-step operational se-manti
s.To show one example, the redu
tion sequen
e starting from fst(〈Ip Ip, Ip Ip〉)is:
fst(〈Ip Ip, Ip Ip〉) → Ip Ip → IpIt is straightforward to translate a de�nition using prin
ipal arguments to theindu
tive rules. From now on, we will be extensively using prin
ipal arguments tode�ne our redu
tion relations.Note that there are no redu
tions possible from values. This 
on�rms theintuition of a value being the result of a 
omputation, as no further 
omputationstarting from a value is possible.De�nition 2.1.1 We write M ↓ if the redu
tion sequen
e starting from M ter-minates. In this situation we also say that M normalizes. We write M ↓ v if wewant to state that v is the term at whi
h this redu
tion sequen
e terminates. Wewrite M →∗ M ′ if M redu
es to M ′ in some number of steps.As λ→ is a system 
orresponding to a very simple logi
, its 
omputational
apabilities are not very impressive. Nevertheless, we exhibit one example:Example 2.1.2 A term Ip→p ≡ λx : p → p. x applied to any term M returns

M . For example: Ip→p (λx : p. x) → λx : p. x. Thus Ip→p is 
omputationally anidentity fun
tion. 15



The example shows how lambda terms are interpreted as 
omputational fun
-tions, or programs � the result of a programM on an argument N is the value towhi
h M N redu
es. On
e our lambda 
al
uli be
ome more 
ompli
ated, we shallsee more interesting examples. For now, we pro
eed to the typing system of λ→.The typing judgments of λ→ are of the form Γ ⊢ M : φ, read as �in the
ontext Γ, the termM is of type φ�. In λ→, 
ontexts are sets of pairs (x, φ), where
x ∈ V ar and φ is a type. The domain of a 
ontext Γ, denoted by dom(Γ), is the set
{x | (x, φ) ∈ Γ}. The range of a 
ontext Γ, denoted by rg(Γ), is the 
orrespondingIPC 
ontext {φ | (x, φ) ∈ Γ}. The notation Γ, x : φ stands for Γ ∪ {(x, φ)}, where
x /∈ dom(Γ). The typing system follows.

Γ, x : φ ⊢ x : φ
Γ ⊢M : ⊥

Γ ⊢ magic(M) : φ

Γ, x : φ ⊢M : ψ

Γ ⊢ λx : φ. M : φ→ ψ
x /∈ dom(Γ)

Γ ⊢M : φ→ ψ Γ ⊢ N : φ

Γ ⊢M N : ψ

Γ ⊢M : φ

Γ ⊢ inl(M) : φ ∨ ψ

Γ ⊢M : ψ

Γ ⊢ inr(M) : φ ∨ ψ

Γ ⊢M : φ ∨ ψ Γ, x : φ ⊢ N : ϑ Γ, x : ψ ⊢ O : ϑ

Γ ⊢ case(M,x : φ. N, x : ψ. O) : ϑ

Γ ⊢M : φ Γ ⊢ N : ψ

Γ ⊢ 〈M,N〉 : φ ∧ ψ

Γ ⊢M : φ ∧ ψ

Γ ⊢ fst(M) : φ

Γ ⊢M : φ ∧ ψ

Γ ⊢ snd(M) : ψLemma 2.1.3 If Γ ⊢M : φ, then FV (M) ⊆ dom(Γ).Proof Straightforward indu
tion on the proof tree Γ ⊢M : φ. �De�nition 2.1.4 A term M is typable if there is a formula φ su
h that ⊢M : φ.We say that a typed lambda 
al
ulus normalizes, if every typable term M normal-izes.With the typing system in hand, we 
an state and prove the 
orresponden
ebetween λ→ and IPC: 16



Lemma 2.1.5 If Γ ⊢ O : φ then rg(Γ) ⊢ φ. If Γ ⊢IPC φ, then there exists a term
M su
h that Γ ⊢M : φ, where Γ = {(xφ, φ) | φ ∈ Γ}.Proof Straightforward indu
tion on the proof trees Γ ⊢ O : φ and Γ ⊢IPC φ. Forthe �rst part of the 
laim, simply erase lambda terms from the proof. The se
ondpart follows easily. �Thus indeed the lambda terms of λ→ are exa
tly the proofs of IPC. A di�er-ent, equally valid point of view, is that any formula φ of IPC is a spe
i�
ationand lambda term of type φ realizes the spe
i�
ation. This is often 
alled thepropositions-as-types prin
iple. The reader will need to wait until the next se
tionto see a realisti
 example of the prin
iple in a
tion.In order to exhibit the 
onne
tion of the 
omputational nature of λ→ with IPCand to provide a me
hanism to a

ess the 
omputational 
ontent in IPC, we �rstneed to show several standard te
hni
al properties of λ→.2.1.2 Properties of λ→We start with two te
hni
al properties. Unne
essary extra assumptions 
an beadded to the proof with no harm:Lemma 2.1.6 (Weakening) If Γ ⊢ Q : Ψ and y /∈ dom(Γ), then Γ, y : ψ ⊢ Q :

Ψ.Proof Indu
tion on Γ ⊢ Q : Ψ. Most of the 
ases follow by a straightforwardappli
ation of the indu
tion hypothesis. We show the interesting 
ases. Case thelast rule applied in the proof of:
•

Γ, x : φ ⊢ x : φBy the assumption, y 6= x. Thus also trivially Γ, x : φ, y : ψ ⊢ y : φ.17



•
Γ, x : φ1 ⊢M : φ2

Γ ⊢ λx : φ1. M : φ1 → φ2
x /∈ dom(Γ)Take any y /∈ dom(Γ). Without loss of generality we may assume that y 6= x.Therefore, by the indu
tion hypothesis, Γ, x : φ1, y : ψ ⊢ M : φ2, so also

Γ, y : ψ ⊢ λx : φ1. M : φ1 → φ2. �The following Lemma is stri
tly te
hni
al and used only as a tool in the proofof Lemma 2.1.10.Lemma 2.1.7 (Substitution Lemma) If Γ, x : φ ⊢ M : ψ and Γ ⊢ N : φ, then
Γ ⊢M [x := N ] : ψ.Proof By indu
tion on Γ, x : φ ⊢ M : ψ. We show several interesting 
ases. Case
Γ, x : φ ⊢M : ψ of:

•

Γ, y : φ1 ⊢ y : φ1If y = x, then M [x := N ] = N and φ1 = φ, so we get the 
laim easily. If
y 6= x, then M [x := N ] = M = y. We need to show that Γ \ {(x, φ)} ⊢ y : ψ.But (y, ψ) ∈ (Γ \ {(x, φ)}), so we get the 
laim.

•
Γ, x : φ, y : ψ1 ⊢M1 : ψ2

Γ, x : ψ ⊢ λy : ψ1. M1 : ψ1 → ψ2
y /∈ dom(Γ, x : φ)Without loss of generality we 
an assume that y is fresh, so in parti
ular

y /∈ FV (N). By the indu
tion hypothesis, Γ, y : ψ1 ⊢ M1[x := N ] : ψ2,so also Γ ⊢ (λy : ψ1. M1[x := N ]) : ψ2. Sin
e y /∈ FV (N), Γ ⊢ (λy :

ψ1. M1)[x := N ] : ψ2.
�The next lemma analyzes the last typing rule applied, depending on the formof the lambda term in the 
on
lusion. 18



Lemma 2.1.8 (Inversion) Suppose Γ ⊢ Q : Ψ. Suppose Q is of the form:
• M N . Then there is φ su
h that Γ ⊢ M : φ → Ψ, Γ ⊢ N : φ and the proofends with:

Γ ⊢M : φ→ Ψ Γ ⊢ N : φ

Γ ⊢M N : Ψ

• λx : φ. M . Then for some ψ, Ψ = φ → ψ, Γ, x : φ ⊢ M : ψ and the proofends with:
Γ, x : φ ⊢M : ψ

Γ ⊢ λx : φ. M : φ→ ψ

• inl(M). Then for some φ, ψ, Ψ = φ ∨ ψ, Γ ⊢M : φ and the proof ends with:
Γ ⊢M : φ

Γ ⊢ inl(M) : φ ∨ ψ

• inr(M). Then for some φ, ψ, Ψ = φ∨ψ, Γ ⊢M : ψ and the proof ends with:
Γ ⊢M : ψ

Γ ⊢ inr(M) : φ ∨ ψ

• case(M,x : φ. N, x : ψ. O). Then Γ ⊢M : φ ∨ ψ, Γ, x : φ ⊢ N : Ψ,Γ, x : ψ ⊢

O : Ψ and the proof ends with:
Γ ⊢M : φ ∨ ψ Γ, x : φ ⊢ N : ϑ Γ, x : ψ ⊢ O : Ψ

Γ ⊢ case(M,x : φ. N, x : ψ. O) : Ψ

• fst(M). Then for some ψ, Γ ⊢M : Ψ ∧ ψ and the proof ends with:
Γ ⊢M : Ψ ∧ ψ

Γ ⊢ fst(M) : Ψ

• snd(M). Then for some φ, Γ ⊢M : φ ∧ Ψ and the proof ends with:
Γ ⊢M : φ ∧ Ψ

Γ ⊢ snd(M) : Ψ

19



• 〈M,N〉. Then for some φ, ψ, Ψ = φ∧ψ, Γ ⊢M : φ, Γ ⊢ N : ψ and the proofends with:
Γ ⊢M : φ Γ ⊢ N : ψ

Γ ⊢ 〈M,N〉 : φ ∧ ψ

• magic(M). Then Γ ⊢M : ⊥ and the proof ends with:
Γ ⊢M : ⊥

Γ ⊢ magic(M) : ΨProof Straightforward inspe
tion of the typing rules of λ→. �We will often invoke Inversion impli
itly to determine the last rule applied inthe proof.The next lemma shows that the form of a value is determined by its type:Lemma 2.1.9 (Canoni
al Forms) If M is a value and ⊢M : Ψ, then if Ψ is:
• φ→ ψ � then M = λx : φ. N and x : φ ⊢ N : ψ.
• φ ∨ ψ � then either M = inl(N) and ⊢ N : φ or M = inr(N) and ⊢ N : ψ.
• φ ∧ ψ � then M = 〈N,O〉, ⊢ N : φ and ⊢ O : ψ.
• ⊥ � never happens.Proof Straightforward inspe
tion of the typing rules and possible values. �iWe 
an now show the main properties of the 
omputational behaviour of λ→.First, we show that 
omputation preserves meaning. In other words, programexe
ution 
annot 
hange the program's properties. Formally:Lemma 2.1.10 (Subje
t Redu
tion, Preservation) If Γ ⊢ P : Ψ and P →

Q, then Γ ⊢ Q : Ψ.Proof By indu
tion on the de�nition of P → Q. Case P → Q of:20



• (λx : φ. M) N → M [x := N ]. By Inversion, Γ ⊢ λx : φ. M : φ → Ψ and
Γ ⊢ N : φ. By Inversion again, Γ, x : φ ⊢ M : Ψ. By Substitution Lemma,
Γ ⊢M [x := N ] : Ψ.

• case(inl(M), x : φ. N, x : ψ. O) → N [x := M ]. By Inversion, Γ ⊢ inl(M) :

φ ∨ ψ and Γ, x : φ ⊢ N : Ψ. By Inversion again, Γ ⊢ M : φ. By SubstitutionLemma, Γ ⊢M [x := N ] : Ψ, whi
h shows the 
laim.
• case(inr(M), x : φ. N, x : ψ. O) → O[x := M ]. Symmetri
 to the previous
ase.
• fst(〈M,N〉) → M . By Inversion, Γ ⊢ 〈M,N〉 : Ψ ∧ ψ for some ψ. ByInversion again, Γ ⊢M : Ψ whi
h shows the 
laim.
• snd(〈M,N〉) → N . Symmetri
 to the previous 
ase.
•

M →M1

M N →M1 NBy Inversion, for some φ, Γ ⊢ M : φ → Ψ and Γ ⊢ N : φ. By the indu
tionhypothesis, Γ ⊢M1 : φ→ Ψ, thus also Γ ⊢M1 N : Ψ.
•

M →M1

case(M,x : φ. N, x : ψ. O) → case(M1, x : φ. N, x : ψ. O)By Inversion, Γ ⊢ M : φ ∨ ψ, Γ, x : φ ⊢ N : Ψ, Γ, x : ψ ⊢ O : Ψ. By theindu
tion hypothesis Γ ⊢M1 : φ∨ψ, so also Γ ⊢ case(M1, x : φ. N, x : ψ. O) :

Ψ.
•

M →M1

fst(M) → fst(M1)By Inversion, Γ ⊢ M : Ψ ∧ ψ for some ψ, by the indu
tion hypothesis
Γ ⊢M1 : Ψ ∧ ψ, so also Γ ⊢ fst(M1) : Ψ.21



•
M →M1

snd(M) → snd(M1)Symmetri
 to the previous 
ase.
•

M →M1

magic(M) → magic(M1)Straightforward. �Furthermore, the 
omputation 
annot get �stu
k� before it rea
hes a value,
onsidered to be the result of the 
omputation.Lemma 2.1.11 (Progress) If ⊢ P : Ψ then either P is a value or there is Qsu
h that P → Q.Proof By indu
tion on the length of P . Case P of:
• x. By Lemma 2.1.3, this situation 
annot happen.
• λx : φ. M . Then P is a value.
• M N . By Inversion, for some φ we have ⊢ M : φ → Ψ. By the indu
tionhypothesis, either M is a value or for some Q, M → Q. In the latter 
ase,
M N → Q N . In the former, by Canoni
al Forms M = λx : φ. O for some
O. Therefore M N = (λx : φ. O) N → O[x := N ].

• inl(M), inr(M). These are values.
• case(M,x : φ. N, x : ψ. O). Similar to the 
ase where P = M N .
• 〈M,N〉 is a value.
• fst(M), snd(M). Similar to the 
ase where P = M N .
• magic(M). By Inversion, ⊢M : ⊥. By the indu
tion hypothesis, either M isa value or there is M ′ su
h that M → M ′. By Canoni
al Forms the former
ase is impossible. In the latter 
ase, magic(M) → magic(M ′). �22



Subje
t Redu
tion and Progress together provide useful 
orollaries.Corollary 2.1.12 If ⊢M : φ and M ↓ v, then ⊢ v : φ and v is a value.Proof By Subje
t Redu
tion, ⊢ v : φ. By Progress, v is a value. �Corollary 2.1.13 If ⊢M : ⊥, then M does not normalize.Proof If M normalized, then by Corollary 2.1.12 we would have a value of type ⊥,whi
h by Canoni
al Forms is impossible. �The importan
e of normalization from the logi
al point of view is shown in thefollowing Corollary:Corollary 2.1.14 Normalization of λ→ implies 
onsisten
y of IPC.Proof Suppose λ→ normalizes and there is an IPC proof of ⊥. By Lemma 2.1.5, we
an �nd a termM su
h that ⊢M : ⊥. By Corollary 2.1.13,M does not normalize.This 
ontradi
tion shows the 
laim. �From our point view, however, an equally important property of normalizationis that it provides a means to a

ess 
omputational information hidden in proofs.The reader will need to wait until the se
tion 2.2 to see this me
hanism in a
tion,as IPC is a bit too simple for realisti
 examples.Having established the importan
e of normalization, we pro
eed to show that
λ→ indeed normalizes. There are many known te
hniques used to prove normal-ization. Our 
hoi
e of the te
hnique, 
alled realizability, stems from the fa
t thatit is the only known te
hnique whi
h generalizes smoothly from λ→ to set theory.2.1.3 Realizability for IPCRealizability is a te
hnique introdu
ed by Kleene in 1945 [Kle45℄; see [vO02℄ for ahistori
al a

ount. It provides a formal a

ount of the so-
alled Brouwer-Heyting-Kolmogorov (BHK) interpretation of 
onstru
tive logi
. The BHK interpretation23



explains what the 
onstru
tion, or a 
onstru
tive proof of a formula is. We presentthe 
lauses following [SU06℄.
• The 
onstru
tion of a propositional variable p is unspe
i�ed. This is be
auseintuitively propositional logi
 only 
aptures generi
 statements whi
h holdno matter what the a
tual 
ontent of p is.
• There is no 
onstru
tion of ⊥.
• The 
onstru
tion of a 
onjun
tion φ∧ψ is a pair 
onsisting of a 
onstru
tionof φ and a 
onstru
tion of ψ.
• The 
onstru
tion of a disjun
tion φ ∨ ψ is either a 
onstru
tion of φ or a
onstru
tion of ψ.
• The 
onstru
tion of an impli
ation φ → ψ is a method, whi
h transformsevery 
onstru
tion of φ to a 
onstru
tion of ψ.An important thing to note about the interpretation, often 
onfusing to thenew
omers, is that it is not a mathemati
al de�nition. In parti
ular, the notion ofa method in the 
lause for impli
ation is left unspe
i�ed. The BHK interpretationprovides a set of intuitions whi
h 
an be formalized in various ways. One su
hinterpretation, whi
h we pursue in this se
tion, is realizability.Traditionally, a realizability relation, written as n 
 φ, relates natural numberswith formulas. The natural numbers are 
onstru
tions from the BHK interpre-tation; some are interpreted as pairs, some as methods, implemented as Turingma
hine indi
es.We are interested in using realizability to show normalization of lambda 
al
uli.For this purpose, it is mu
h more 
onvenient to use lambda terms as realizers.However, lambda terms of λ→ are slightly in
onvenient for this purpose. They
ontain more information than ne
essary; while in λ→ the resulting nuisan
e is24



not signi�
ant, with more 
ompli
ated 
al
uli it would signi�
antly obs
ure thepresentation. We therefore use a simpli�ed lambda 
al
ulus, whi
h we 
all λ→, forrealizability.Realizability termsThe terms of λ→ arise by erasing formulas from the terms of λ→. Formally, λ→terms are an image of the following erasure map M →M on terms of λ→:
x ≡ x M N ≡M N λx : φ. M ≡ λx. M

inl(M) ≡ inl(M) inr(M) ≡ inr(M)

case(M,x : φ. N, x : ψ. O) ≡ case(M,x.N, x.O)

〈M,N〉 ≡ 〈M,N〉 fst(M) ≡ fst(M) snd(M) = snd(M)

magic(M) = magic(M)We will use letters M,N to denote the terms of λ→. This will not lead to any
onfusion, as the 
ontext will make it 
lear whether we are dis
ussing the terms of
λ→ or of λ→.The notions of redu
tions and values are indu
ed from λ→ in an obvious way.Formally, the redu
tion relation is generated by the following rules:

(λx. M) N → M [x := N ]

case(inl(M), x.N, x.O) → N [x := M ] case(inr(M), x.N, x.O) → O[x := M ]

fst(〈M,N〉) → M snd(〈M,N〉) → Nand evaluation 
ontexts:
[◦] ::= [◦] M | case([◦], x.N, x.O) | fst([◦]) | snd([◦]) | magic([◦])25



The values are generated by the following abstra
t grammar:
V ::= λx. M | inl(M) | inr(M) | 〈M,N〉The following intuitively obvious properties of the erasure hold:Lemma 2.1.15 M [x := N ] = M [x := N ]Proof Straightforward indu
tion on M . �Lemma 2.1.16 M → N implies M → N .Proof By indu
tion on M → N . We show two representative 
ases of the proof:

• (λx : φ. M) N → M [x := N ]. Then (λx. M) N → M [x := N ]. By Lemma2.1.15 we get the 
laim.
• M N → M ′ N , provided that M → M ′. By the indu
tion hypothesis,
M → M ′, so also M N = M N →M ′ N = M ′ N . �Lemma 2.1.17 If P → Q′, then P → Q and Q = Q′.Proof By indu
tion on P → Q′. We show two representative 
ases of the proof:

• (λx. M ′) N ′ →M ′[x := N ′]. By the de�nition of the erasure map, P = (λx :

φ. M) N for some φ and M = M ′, N = N ′. Thus P →M [x := N ]. Lemma2.1.15 shows the 
laim.
• M N → O N , provided thatM → O. By the indu
tion hypothesis,M →M ′and M ′ = O. Thus M N →M ′ N and we get the 
laim. �These properties make it possible to prove the following, intuitively obviouslemma:Lemma 2.1.18 If M ↓ then M ↓. In other words, the erasure map preservesnormalization. 26



Proof Lemma 2.1.17 shows that the redu
tion sequen
e M → . . .→ v′ entails theexisten
e of the sequen
e M → . . .→ v, where v = v′. As it is easy to see that v′being a value entails v being a value, the 
laim follows. �The 
ru
ial feature of λ→ whi
h makes the proof of Lemma 2.1.18 possible, isthat types in lambda terms do not play any role in redu
tions. In other words,evaluation is type-oblivious. While this might not seem to be that interesting inthe 
ase of λ→, we shall see more signi�
ant examples of obliviousness of 
al
uli
orresponding to stronger systems later.Realizability relationHaving de�ned the terms of λ→, we pro
eed to de�ne the realizability relation.De�nition 2.1.19 A realizer is a 
losed term of λ→.De�nition 2.1.20 The binary realizability relation 
 relates realizers to formulasof IPC. We write the relation as an in�x operator: M 
 φ should be read as �Mrealizes φ�. The relation is de�ned by stru
tural indu
tion on φ:
• M 
 p ≡M ↓

• M 
 ⊥ ≡ ⊥

• M 
 φ ∧ ψ ≡M ↓ 〈M1,M2〉 ∧ (M1 
 φ) ∧ (M2 
 ψ)

• M 
 φ ∨ ψ ≡ (M ↓ inl(M1) ∧M1 
 φ) ∨ (M ↓ inr(M1) ∧M1 
 ψ)

• M 
 φ→ ψ ≡ (M ↓ λx. M1) ∧ ∀N. (N 
 φ) → (M1[x := N ] 
 ψ)The reader should now go ba
k to the BHK interpretation and 
onvin
e herselfthat realizability does provide a reasonable implementation of the interpretation.We pro
eed to show several easy properties of realizability, whi
h are 
ru
ial tothe normalization proof and whi
h hold for all realizability relations we 
onsiderin this thesis. 27



Lemma 2.1.21 If M 
 φ, then M ↓.Proof Straightforward � if φ = ⊥, the 
laim is trivial, all other 
ases of thede�nition start with a 
lause assuring normalization of M . �Lemma 2.1.22 If M →∗ N , then M 
 φ i� N 
 φ.Proof For φ = ⊥, the proof is straightforward. For the rest of the 
ases, Mrealizing φ depends only on its normalization and value whi
h do not 
hange withredu
tions. �Lemma 2.1.23 If M 
 φ→ ψ and N 
 ψ, then M N 
 ψ.Proof By M 
 φ → ψ, then M ↓ λx. O and O[x := N ] 
 ψ. Sin
e M N →∗

(λx. O) N → O[x := N ], Lemma 2.1.22 shows the 
laim. �2.1.4 Normalization of λ→With realizability, we have at our disposal su�
ient means to prove normalizationof λ→. We need the following te
hni
al tool to handle possible free variables inlambda terms:De�nition 2.1.24 An environment, denoted by ρ, is a �nite partial fun
tion from
V ar to realizers. For a term M , M [ρ] denotes M [x1 := ρ(x1), . . ., xn := ρ(xn)].We write ρ |= Γ if for all (x, φ) ∈ Γ, ρ(x) 
 φ.Theorem 2.1.25 If Γ ⊢M : Ψ, then for all ρ |= Γ, M [ρ] 
 Ψ.Proof The proof pro
eeds by indu
tion on the proof Γ ⊢ M : Ψ. To in
reasereadability, we will write M ′ in the proof to denote M [ρ], where M and ρ are 
learfrom the 
ontext. Note that by Lemma 2.1.3 and the de�nition of the erasure map,
M [ρ] is 
losed and so M [ρ] 
 Ψ is de�ned. Case Γ ⊢M : Ψ of:28



•

Γ, x : φ ⊢ x : φThen M ′ = ρ(x) and the 
laim follows.
•

Γ ⊢M : φ→ ψ Γ ⊢ N : φ

Γ ⊢M N : ψBy the indu
tion hypothesis, M ′

 φ → ψ and N ′


 φ. Lemma 2.1.23 givesthe 
laim.
•

Γ, x : φ ⊢M : ψ

Γ ⊢ λx : φ. M : φ→ ψWe need to show that for any N 
 φ, M ′[x := N ] 
 ψ. Take any su
h N .Let ρ′ = ρ[x := N ]. Then ρ′ |= Γ, x : φ, so by the indu
tion hypothesis
M [ρ′] 
 ψ. As it is easy to see that M [ρ′] = M [ρ][x := N ] = M ′[x := N ], weget M ′[x := N ] 
 ψ.

•
Γ ⊢M : ⊥

Γ ⊢ magic(M) : φBy the indu
tion hypothesis, M ′

 ⊥, whi
h is not the 
ase, so anythingholds, in parti
ular magic(M ′) 
 φ.

•
Γ ⊢M : φ ∧ ψ

Γ ⊢ fst(M) : φBy the indu
tion hypothesis, M ′

 φ ∧ ψ, so M ′ ↓ 〈M1,M2〉 and M1 
 φ.Therefore fst(M) →∗ fst(〈M1,M2〉) → M1. Lemma 2.1.22 gives the 
laim.

•
Γ ⊢M : φ ∧ ψ

Γ ⊢ snd(M) : ψSymmetri
 to the previous 
ase. 29



•
Γ ⊢M : φ Γ ⊢ N : ψ

Γ ⊢ 〈M,N〉 : φ ∧ ψAll we need to show is M ′

 φ and N ′


 ψ, whi
h we get from the indu
tionhypothesis.
•

Γ ⊢M : φ

Γ ⊢ inl(M) : φ ∨ ψWe need to show that M ′

 φ, whi
h we get from the indu
tion hypothesis.

•
Γ ⊢M : ψ

Γ ⊢ inr(M) : φ ∨ ψSymmetri
 to the previous 
ase.
•

Γ ⊢M : φ ∨ ψ Γ, x : φ ⊢ N : ϑ Γ, x : ψ ⊢ O : ϑ

Γ ⊢ case(M,x : φ. N, x : ψ. O) : ϑBy the indu
tion hypothesis, M ′

 φ ∨ ψ. Therefore either M ′ ↓ inl(M1)and M1 
 φ or M ′ ↓ inr(M1) and M1 
 ψ. We only treat the former 
ase,the latter is symmetri
. Sin
e ρ[x := M1] 
 Γ, x : φ, by the indu
tionhypothesis we get N [ρ[x := M1]] 
 ϑ. We also have case(M ′, x.N ′, x.O′) →∗

case(inl(M1), x.N
′, x.O′) → N ′[x := M1]. It is easy to see that N ′[x :=

M1] = N [ρ[x := M1]], so Lemma 2.1.22 gives us the 
laim. �Corollary 2.1.26 (Normalization) If ⊢M : φ, then M ↓.Proof Take the empty ρ. Then ρ |= ∅. By Theorem 2.1.25, M [ρ] normalizes. Bythe de�nition of ρ, M [ρ] = M . By Lemma 2.1.18, M normalizes. �Corollary 2.1.27 IPC is 
onsistent.
30



As stated before, we will present some realisti
 appli
ations of applying nor-malization to extra
t 
omputational 
ontent from proofs in the next se
tion. Herewe present, however, an important theoreti
al appli
ation.Corollary 2.1.28 (Disjun
tion Property) If ⊢ φ ∨ ψ, then either ⊢ φ or ⊢ ψ.Proof Suppose ⊢ φ∨ ψ. Then there is a term M su
h that ⊢M : φ∨ψ. Sin
e λ→normalizes, M ↓ v and by Lemma 2.1.12 ⊢ v : φ ∨ ψ. By Canoni
al Forms, either
v = inl(N) and ⊢ N : φ or v = inr(M) and ⊢ N : ψ. By Lemma 2.1.5, in the �rst
ase ⊢ φ, in the se
ond ⊢ ψ. �This 
on
ludes our a

ount of propositional logi
. We now move to more so-phisti
ated systems. However, the list of lemmas in all systems we 
onsider inthis 
hapter will always in
lude the lemmas we showed in this se
tion. Moreover,the proofs and systems we 
onsider are modular � proofs of 
ases in lemmas for
λ→ and IPC still work, possibly with minor modi�
ations, in more 
ompli
atedsystems. This will vastly simplify our a

ount, as we will need to show only thenew 
ases in proofs.2.2 First-order arithmeti
We now extend the system presented in the previous se
tion to the 
onstru
tiveversion of the �rst-order arithmeti
, 
alled Heyting Arithmeti
 (HA).Heyting Arithmeti
 is based on the 
onstru
tive version of the �rst-order logi
,one of the most su

essful logi
s in existen
e. First-order logi
 is widely used asa basis for theorem provers. Moreover, it is an underlying logi
 of set theory, thefoundation of mathemati
s.The 
onstru
tive version of �rst-order logi
 is 
alled intuitionisti
 �rst-orderlogi
 (IFOL). The propositional variables from IPC are repla
ed by mu
h more31




on
rete entities in IFOL. The logi
 allows its user to make statements aboutarbitrary domains. These domains 
an have distinguished elements, operations onsu
h elements and their properties. The synta
ti
 
ounterparts in IFOL are 
alled
onstants, fun
tion symbols and relational symbols, respe
tively. Their list is 
alleda signature; any IFOL theory is parameterized by a signature.We are interested in the domain of natural numbers, formalized as the �rst-order theory 
alled Heyting Arithmeti
. HA has one 
onstant 0, one unary fun
tionsymbol S, whi
h intuitively 
orresponds to the su

essor fun
tion, two binaryfun
tion symbols +, ∗ and one relational symbol =.For the formal presentation, we �rst �x a 
ountable set FV ar of the �rst-ordervariables. We will use the letters a, b, c, n,m for the �rst-order variables. Thesynta
ti
 
ounterpart of an element of a domain is 
alled a term:De�nition 2.2.1 The terms of HA are generated by the following abstra
t gram-mar:
t ::= a | 0 | S(t) | t+ t | t ∗ tIn this se
tion, letters t, s, u will denote ex
lusively the terms of HA. The set of allHA terms will be denoted by Tms and the set of all 
losed terms Tmsc.De�nition 2.2.2 We 
all any term of the form S(S(S(. . .(0)))) a numeral.We now de�ne the formulas of HA.De�nition 2.2.3 The formulas of IFOL are generated by the following abstra
tgrammar:

φ ::= t = t | ⊥ | φ→ ψ | φ ∧ ψ | φ ∨ ψ | ∀n. φ | ∃n. φThe variable n in quanti�ers binds its o

uren
es in respe
tive formulas. Thefree �rst-order variables of a formula φ are denoted by FVF (φ) and de�ned in32



a standard way along with substitution. The notation ~a is used for sequen
es,treated as sets when 
onvenient. The notation φ(~a) is used in the situation whereall free variables of φ are among ~a. The following standard substitution lemma isproven easily:Lemma 2.2.4 For any formula φ, φ[a := t][b := u[a := t]] = φ[b := u][a := t], for
b /∈ FV (t).Proof Straightforward stru
tural indu
tion on φ. �The proof system, similarly to IPC, is used to derive judgments of the form�Γ ⊢ φ�. The 
ontexts are still �nite sets of variables. The logi
 arises by extendingthe rules of IPC by the following 
lauses:

Γ ⊢ φ
Γ ⊢ ∀a. φ

a /∈ FVF (Γ)
Γ ⊢ ∀a. φ

Γ ⊢ φ[a := t]

Γ ⊢ φ[a := t]

Γ ⊢ ∃a. φ
Γ ⊢ ∃a. φ Γ, φ ⊢ ψ

Γ ⊢ ψ
a /∈ FVF (Γ) ∪ FVF (ψ)Finally, as HA is an axiomati
 theory, we list its axioms:

• (eqRe�) ∀n. n = n

• (eqSymm) ∀n,m. n = m→ m = n

• (eqTrans) ∀n,m, o. n = m ∧m = o→ n = o

• (eqS) ∀n,m. n = m→ S(n) = S(m)

• (P3) ∀n. S(n) = 0 → ⊥

• (P4) ∀n,m. S(n) = S(m) → n = m

• (plusZ) ∀n. n+ 0 = 0

• (plusS) ∀n,m. n+ S(m) = S(n+m)

• (mulZ) ∀n. n ∗ 0 = 0 33



• (mulS) ∀n,m. n ∗ S(m) = n ∗m+m

• (indφ(n,~a)) ∀~a. φ(0,~a) → (∀n. φ(n,~a) → φ(S(n),~a)) → ∀n. φ(n,~a).The last axiom is the indu
tion axiom s
hema. This means that this is a
tuallyan abbreviation for an in�nite family of axioms � there is one instan
e of thes
hema for ever possible formula φ(n,~a). We use the notation Γ ⊢HA φ if φ 
an bederived from Γ and the axioms of HA.For any 
losed term t, there is a unique natural number denoted by t, whi
hwe denote by [[t]] and de�ne as follows:
• [[0]] = 0.
• [[S(t)]] = [[t]] + 1.
• [[t+ u]] = [[t]] + [[u]].
• [[t ∗ u]] = [[t]] ∗ [[u]].De�nition 2.2.5 We denote by tn the unique numeral su
h that [[t]] = [[tn]]. Sim-ilarly, for any natural number m we denote by mn the unique numeral su
h that

[[mn]] = m.Lemma 2.2.6 For any formula φ, 
losed term t and variable a, Γ ⊢HA φ[a := t]i� Γ ⊢HA φ[a := tn].Proof Exer
ise. �2.2.1 λH 
al
ulusWe now extend λ→ from the previous se
tion to en
ompass HA. The new 
al
uluswill be 
alled λH . Its terms arise by extending the grammar generating terms of
34



t ::= a | 0 | S(t) | t+ t | t ∗ t

φ ::= t = t | ⊥ | φ→ ψ | φ ∧ ψ | φ ∨ ψ | ∀n. φ | ∃n. φ

Γ, φ ⊢ φ
Γ ⊢ ⊥
Γ ⊢ φ

Γ, φ ⊢ ψ

Γ ⊢ φ→ ψ

Γ ⊢ φ→ ψ Γ ⊢ φ

Γ ⊢ ψ

Γ ⊢ φ

Γ ⊢ φ ∨ ψ

Γ ⊢ ψ

Γ ⊢ φ ∨ ψ

Γ ⊢ φ ∨ ψ Γ, φ ⊢ ϑ Γ, ψ ⊢ ϑ

Γ ⊢ ϑ

Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ∧ ψ

Γ ⊢ φ ∧ ψ

Γ ⊢ φ

Γ ⊢ φ ∧ ψ

Γ ⊢ ψ

Γ ⊢ φ

Γ ⊢ ∀a. φ
a /∈ FVF (Γ)

Γ ⊢ ∀a. φ

Γ ⊢ φ[a := t]

Γ ⊢ φ[a := t]

Γ ⊢ ∃a. φ

Γ ⊢ ∃a. φ Γ, φ ⊢ ψ

Γ ⊢ ψ
a /∈ FVF (Γ) ∪ FVF (ψ)

(eqRefl) ∀n. n = n (eqSymm) ∀n,m. n = m→ m = n
(eqTrans) ∀n,m, o. n = m ∧m = o→ n = o (eqS) ∀n,m. n = m→ S(n) = S(m)
(P3) ∀n. S(n) = 0 → ⊥ (P4) ∀n,m. S(n) = S(m) → n = m
(plusZ) ∀n. n+ 0 = 0 (plusS) ∀n,m. n+ S(m) = S(n +m)
(mulZ) ∀n. n ∗ 0 = 0 (mulS) ∀n,m. n ∗ S(m) = n ∗m+m

(indφ(n,~a)) ∀~a. φ(0,~a) → (∀n. φ(n,~a) → φ(S(n),~a)) → ∀n. φ(n,~a)Figure 2.1: Heyting Arithmeti


35



λ→ by the following 
lauses. The �rst group of new 
lauses 
orresponds to theproof rules of the �rst-order logi
.
M ::= . . . | λa. M | M t | [t,M ] | let [a, x : φ] := M in NThe se
ond group 
orresponds to HA axioms:

M ::= . . . | eqReflRep(t) | eqSymmRep(t, s,M) | eqTransRep(t, s, u,M) |

eqSRep(t, s,M) | p3Rep(t,M) | p3Rep(t, s,M) |

plusZRep(t) | plusSRep(t, s) | mulZRep(t) |

mulSRep(t, s) | indn,~a. φ(n,~a)(t,~t,M)The Rep su�x in these terms refers to the fa
t that these terms are represen-tatives of the 
orresponding axioms � given a proof M of t = s, eqSRep(t, s,M)represents a proof of S(t) = S(s). The notation a, ~n. φ(n,~a) denotes a formula φwith its variables a, ~n bound. The inda,~n. φ(n,~a)(t,~t,M) term in the grammer is aterm s
hema, des
ribing a family of terms. There is thus one term for ea
h formula
n,~a. φ(n,~a). In any su
h term, the number of terms in the sequen
e ~t is the sameas the number of variables in the sequen
e ~a.A subtle point in the de�nition of �rst-order substitution on lambda terms isthat it is extended to the formulas parameterizing ind terms:

(inda,~n. φ(n,~a)(t,~t,M))[b := u] ≡ inda,~n. φ[b:=u](n,~a)(t[b := u],
−−−−−→
t[b := u],M [b := u])This is the reason for the adoption of binders in the parameterizing formula; hadit not been for them, the variables n,~a in the term indφ(n,~a) might be 
onsideredfree and a subje
t to substitution, whi
h is not a desired behavior.The redu
tion system is expanded by adding the following 
lauses to the re-du
tion relation.

(λa. M) t→M [a := t] let [a, x : φ] := [t,M ] in N → N [a := t][x := M ]36



indn,~a. φ(n,~a)(0,~t,M) → fst(M)

indn,~a. φ(n,~a)(S(t),~t,M) → snd(M) t indn,~a. φ(n,~a)(t, ,~t,M),where t is a numeral.
t→ tn, for 
losed t whi
h is not a numeral.The new evaluation 
ontexts are:

[◦] ::= . . . | [◦] t | let [a, x : φ] := [◦] in N | indn,~a. φ(n,~a)([◦],~t,M)The new values are λa. M , [t,M ] and all Rep terms.A new feature in λH is a se
ond redu
tion relation, de�ned on formulas and de-noted by →ω. Intuitively, we will 
onsider formulas with 
losed terms denoting thesame natural numbers as being the same. This is be
ause the indn,~a. φ(n,~a)(t, t,M)term 
an only redu
e if t is a numeral. For this reason we have a rule t → t′along with the evaluation 
ontext indn,~a. φ(n,~a)([◦],~t,M), in order to for
e the �rstargument of the ind term to redu
e to the 
orresponding numeral. If we want tobe able to prove Subje
t Redu
tion, these redu
tions must have their 
ounterpartin the logi
. This is the reason for the new relation →ω, whi
h is formally de�nedas follows:
φ[a := t] →ω φ[a := tn], for any φ, a and 
losed term t.De�nition 2.2.7 We write φ↔ω ψ if either φ→ω ψ or ψ →ω φ. We will denoteby =ω the smallest equivalen
e relation extending →ω.We now move on to de�ne the typing system for λH . It arises by extendingthe system for λ→ presented in the previous system. The 
ontexts are still �nitesets of pairs (x, φ). The new rules 
orresponding to the �rst-order logi
 are:

Γ ⊢M : φ

Γ ⊢ λa. M : ∀a. φ
a /∈ FVF (Γ)

Γ ⊢M : ∀a. φ

Γ ⊢M t : φ[a := t]

Γ ⊢M : φ[a := t]

Γ ⊢ [t,M ] : ∃a. φ

Γ ⊢M : ∃a. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ let [a, x : φ] := M in N : ψ
a /∈ FVF (Γ, ψ)37



The rules 
orresponding to HA axioms are:
Γ ⊢ eqReflRep(t) : t = t

Γ ⊢M : s = t
Γ ⊢ eqSymmRep(t, s,M) : t = s

Γ ⊢M : t = s ∧ s = u
Γ ⊢ eqTransRep(t, s, u,M) : t = u

Γ ⊢M : t = s
Γ ⊢ eqSRep(t, s,M) : S(t) = S(s)

Γ ⊢M : S(t) = 0

Γ ⊢ p3Rep(t,M) : ⊥

Γ ⊢M : S(t) = S(s)

Γ ⊢ p4Rep(t, s,M) : t = s

Γ ⊢ plusZRep(t) : t+ 0 = 0 Γ ⊢ plusSRep(t, s) : t+ S(s) = S(t+ s)

Γ ⊢ mulZRep(t) : t ∗ 0 = 0 Γ ⊢ mulSRep(t, s) : t ∗ (S(s)) = t ∗ s+ t

Γ ⊢M : φ(0,~t) ∧ ∀n. φ(n,~t) → φ(S(n),~t)

Γ ⊢ indn,~a. φ(n,~a)(t,~t,M) : φ(t,~t)In addition, there is a rule 
orresponding to Lemma 2.2.6:
Γ ⊢M : φ

Γ ⊢M : ψ
φ↔ω ψDe�nition 2.2.8 We 
all the last proof rule inessential and all other proof rulesessential.Lemma 2.2.9 If φ =ω ψ, then Γ ⊢M : φ i� Γ ⊢M : ψ.Proof Straightforward indu
tion on the de�nition of =ω. �In order to smoothen further presentation, we remark that all rules involving

Rep terms are of the same form:
Γ ⊢M : φA(~t)

Γ ⊢ axRep(~t,M) : ψA(~t)
,for appropriate number of terms t and formulas φA and ψA. The term M andthe assumptions might be not present. For example, for ax ≡ eqReflRep we have

~t ≡ t, M is not present and ψA ≡ t = t. For ax ≡ eqSRep, ~t ≡ t, s, φA ≡ t = s38



and ψA ≡ S(t) = S(s). We will therefore use meta-level s
hemas using axRep,
φA and ψA to talk about all these terms and rules at on
e. For example, usingthis 
onvention, we 
an spe
ify the typing rules 
orresponding to HA axioms apartfrom the indu
tion axiom 
on
isely as:

Γ ⊢M : φA(~t)

Γ ⊢ axRep(~t,M) : ψA(~t)The following Lemma shows that λH 
al
ulus is a faithful representation ofHA.Lemma 2.2.10 (Curry-Howard isomorphism) If Γ ⊢ O : Ψ then rg(Γ) ⊢HA

Ψ. If Γ ⊢HA Ψ, then there exists a term M su
h that Γ ⊢ M : Ψ, where Γ =

{(xφ, φ) | φ ∈ Γ}.Proof The �rst part is obvious � for the new typing rules use the 
orrespondingHA axioms and Lemma 2.2.6 to derive the formulas. For the se
ond part, wepro
eed by indu
tion on the proof tree just as in 
ase of λ→. The proofs of the
ases 
orresponding to the rules of λ→ are the same as before. We show the new
ases in the proof. Case the last rule in the proof Γ ⊢HA Ψ of:
•

Γ ⊢ ∃a. φ Γ, φ ⊢ Ψ

Γ ⊢ Ψ
a /∈ FVF (Γ) ∪ FVF (ψ)By the indu
tion hypothesis we get termsM,N su
h that Γ ⊢M : ∃a. φ and

Γ, xφ : φ ⊢ N : Ψ. The following proof tree shows the 
laim:
Γ ⊢M : ∃a. φ Γ, xφ : φ ⊢ N : Ψ

Γ ⊢ let [a, xφ : φ] := M in N : Ψ

•
Γ ⊢ φ

Γ ⊢ ∀a. φ
a /∈ FVF (Γ)39



By the indu
tion hypothesis we get a lambda term M su
h that Γ ⊢ M : φ.Therefore Γ ⊢ λa. M : ∀a. φ.
•

Γ ⊢ ∀a. φ

Γ ⊢ φ[a := t]By the indu
tion hypothesis we get a lambda term M su
h that Γ ⊢ M :

∀a. φ. Therefore Γ ⊢M t : φ[a := t].
•

Γ ⊢ φ[a := t]

Γ ⊢ ∃a. φBy the indu
tion hypothesis we get a lambda term M su
h that Γ ⊢ M :

φ[a := t]. Therefore Γ ⊢ [t,M ] : φ[a := t].
• One of the axioms ax. Then Ψ = ∀~n. φA(~n) → ψA(~n). The following prooftree shows the 
laim. To in
rease readability, we 
ompress several stepsintrodu
ing the universal quanti�er into one:

x : φA(~n) ⊢ x : φA(~n)

x : φA(~n) ⊢ axRep(~n, x) : ψA(~n)

⊢ λx : φA(~n). axRep(~n, x) : φA(~n) → ψA(~n)

⊢ λ~n. λx : φA(~n). axRep(~n, x) : ∀~n. φA(~n) → ψA(~n)

• The indu
tion axiom. Then Ψ ≡ ∀~a. φ(0,~a) ∧ ∀n. φ(n,~a) → φ(S(n),~a) →

∀n. φ(n,~a). The following proof tree shows the 
laim.
x : φ(0,~a) ∧ ∀n. φ(n,~a) → φ(S(n),~a) ⊢ x : φ(0,~a) ∧ ∀n. φ(n,~a) → φ(S(n),~a)

x : φ(0,~a) ∧ ∀n. φ(n,~a) → φ(S(n),~a) ⊢ indn,~a. φ(n,~a)(n,~a, x) : φ(n,~a)

x : φ(0,~a) ∧ ∀n. φ(n,~a) → φ(S(n),~a) ⊢ λn. indn,~a. φ(n,~a)(n,~a, x) : ∀n. φ(n,~a)

⊢ λ~aλx : φ(0,~a) ∧ ∀n. φ(n,~a) → φ(S(n),~a)λn. indn,~a. φ(n,~a)(n,~a, x) : Ψ

�

40



2.2.2 Properties of λHThe lemmas proved for λ→ extend in a natural way to en
ompass λH .Lemma 2.2.11 (Weakening) If Γ ⊢ Q : Ψ and y and FVF (ψ) are fresh to theproof tree Γ ⊢ Q : Ψ, then Γ, y : ψ ⊢ Q : Ψ.Proof By indu
tion on Γ ⊢ Q : Ψ. We show the new 
ases in the proof. Case
Γ ⊢ Q : Ψ of:

•
Γ ⊢M : φ

Γ ⊢ λa. M : ∀a. φ
a /∈ FVF (Γ)By the indu
tion hypothesis, Γ, y : ψ ⊢M : φ. By y and FVF (ψ) being freshto the proof tree, a /∈ FVF (Γ, y : ψ). Therefore, Γ, y : ψ ⊢ λa. M : ∀a. φ.

•
Γ ⊢M : ∀a. φ

Γ ⊢M t : φ[a := t]Straightforward.
•

Γ ⊢M : φ[a := t]

Γ ⊢ [t,M ] : ∃a. φStraightforward.
•

Γ ⊢M : ∃a. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ let [a, x : φ] := M in N : ψ
a /∈ FV (Γ, ψ)Similar to the �rst 
ase in the proof.

•
Γ ⊢M : φA(~t)

Γ ⊢ axRep(~t,M) : ψA(~t)Straightforward. 41



•
Γ ⊢M : φ

Γ ⊢M : ψ
φ↔ω ψStraightforward. �The �propositional� substitution lemma is proved in exa
tly the same way asits 
ounterpart in IPC. As the new typing rules do not intera
t with propositionalsubstitution, the proof for the 
orresponding 
ases follows by a straightforwardappli
ation of the indu
tion hypothesis.Lemma 2.2.12 If Γ, x : φ ⊢M : ψ and Γ ⊢ N : φ, then Γ ⊢M [x := N ] : ψ.Sin
e λH introdu
es �rst-order binders, a new, �rst-order substitution lemmais ne
essary. Similarly to Lemma 2.2.12, it is used only in the proof of Subje
tRedu
tion.Lemma 2.2.13 If Γ ⊢ Q : Ψ, then for any �rst-order variable b and term u,

Γ[b := u] ⊢ Q[b := u] : Ψ[b := u].Proof By indu
tion on the proof tree Γ ⊢ Q : Ψ. Most of the rules do not intera
twith �rst-order substitution, so we show the proof only for four of them whi
h do.Case Γ ⊢ Q : Ψ of:
•

Γ ⊢M : φ

Γ ⊢ λa. M : ∀a. φ
a /∈ FVF (Γ)Without loss of generality we 
an assume that a /∈ FVF (u) ∪ {b}. By theindu
tion hypothesis, Γ[b := u] ⊢ M [b := u] : φ[b := u]. Therefore Γ[b :=

u] ⊢ λa. M1[b := u] : ∀a. φ[b := u] and by the 
hoi
e of a, Γ[b := u] ⊢

(λa. M)[b := u] ⊢ (∀a. φ)[b := u].
42



•
Γ ⊢M : ∀a. φ

Γ ⊢M t : φ[a := t]Choosing a to be fresh, by the indu
tion hypothesis we get Γ[b := u] ⊢

M [b := u] : ∀a. (φ[b := u]), so Γ[b := u] ⊢ M [b := u] t[b := u] : φ[b := u][a :=

t[b := u]]. By Lemma 2.2.4 and a /∈ FV (t), we get Γ[b := u] ⊢ (M t)[b :=

u] : φ[a := t][b := u].
•

Γ ⊢M : φ(0,~t) ∧ ∀n. φ(n,~t) → φ(S(n),~t)

Γ ⊢ indn,~a. φ(n,~a)(t,~t,M) : φ(t,~t)By the indu
tion hypothesis, Γ[b := u] ⊢ M [b := u] : φ[b := u](0,
−−−−−→
t[b := u]) ∧

∀n. φ[b := u](n,
−−−−−→
t[b := u]) → φ[b := u](S(n),

−−−−−→
t[b := u]). Therefore Γ[b := u] ⊢

indn,~a. φ[b:=u](n,~a)(t[b := u],
−−−−−→
t[b := u],M [b := u]) : φ[b := u](t[b := u],

−−−−−→
t[b := u]).The 
laim follows.

•
Γ ⊢M : φ

Γ ⊢M : ψ
φ↔ω ψTo �x our attention, assume φ →ω ψ. Therefore for some φ1 and a freshvariable a, we have:

Γ ⊢M : φ1[a := t]

Γ ⊢M : φ1[a := tn]By the indu
tion hypothesis, Γ[b := u] ⊢ M [b := u] : φ1[a := t][b := u].As t is 
losed and a is fresh, Γ[b := u] ⊢ M [b := u] : φ1[b := u][a := t],so Γ[b := u] ⊢ M [b := u] : φ1[b := u][a := tn]. As tn is 
losed as well,
Γ[b := u] ⊢M [b := u] : φ1[a := tn][b := u], whi
h shows the 
laim. �Taking into a

ount the relation↔ω, the lambda terms still determine formulas:Lemma 2.2.14 (Inversion) Suppose Γ ⊢ Q : Ψ. Suppose Q is of the form:

• M N . Then there is φ su
h that Γ ⊢M : φ→ Ψ1, Γ ⊢ N : φ and Ψ1 =ω Ψ.43



• λx : φ. M . Then for some φ, ψ, Ψ =ω φ→ ψ and Γ, x : φ ⊢M : ψ.
• inl(M). Then for some φ, ψ, Ψ =ω φ ∨ ψ and Γ ⊢M : φ.
• inr(M). Then for some φ, ψ, Ψ =ω φ ∨ ψ and Γ ⊢M : ψ.
• case(M,x : φ.N, x : ψ.O). Then Γ ⊢ M : φ ∨ ψ, Γ, x : φ ⊢ N : Ψ1,Γ, x : ψ ⊢

O : Ψ1 and Ψ1 =ω Ψ.
• fst(M). Then for some ψ, Γ ⊢M : Ψ1 ∧ ψ and Ψ1 =ω Ψ.
• snd(M). Then for some φ, Γ ⊢M : φ ∧ Ψ1 and Ψ1 =ω Ψ.
• 〈M,N〉. Then for some φ, ψ, Ψ =ω φ ∧ ψ, Γ ⊢M : φ and Γ ⊢ N : ψ.
• magic(M). Then Γ ⊢M : ⊥.
• λa. M . Then Ψ =ω ∀a. φ, a /∈ FV (Γ) and Γ ⊢M : φ.
• M t. Then for some term t and a formula φ, Ψ =ω φ[a := t] and Γ ⊢ M :

∀a. φ.
• [t,M ]. Then Ψ =ω ∃a. φ and Γ ⊢M : φ[a := t].
• let [a, x : φ] := M in N . Then a /∈ FVF (Γ, ψ),Γ ⊢ M : ∃a. φ, Γ, x : φ ⊢ N :

Ψ1 and Ψ1 =ω Ψ.
• axRep(~t,M). Then Ψ =ω ψA(~t) and Γ ⊢M : φA(~t).
• indn,~a. φ(n,~a)(t,~t,M). Then Ψ =ω φ(t,~t), Γ ⊢ M : φ(0,~t) ∧ ∀n. φ(n,~t) →

φ(S(n),~t).Moreover, in all the 
ases, the proof trees in the 
on
lusion are subtrees of Γ ⊢ Q :

Ψ.Proof The proof tree ends with (possibly zero) appli
ations of the inessential proofrule, pre
eded by an essential rule. An inspe
tion of the latter shows the 
laim. �The new formulas still determine values:44



Lemma 2.2.15 (Canoni
al Forms) Suppose M is a value, ⊢ M : Ψ and Ψ isof the form:
• φ → ψ. Then M = λx : φ1. N and x : φ1 ⊢ N : ψ1, where φ → ψ =ω φ1 →

ψ1.
• φ ∨ ψ. Then either M = inl(N) and ⊢ N : φ1 or M = inr(N) and ⊢ N : ψ1,where φ1 =ω φ and ψ1 =ω ψ.
• φ ∧ ψ. Then M = 〈N,O〉, ⊢ N : φ1 and ⊢ O : ψ1, where φ =ω φ1 and
ψ =ω ψ1.

• ⊥. This never happens.
• ∀a. φ. Then M = λa. N and ⊢ N : φ1, where φ1 =ω φ.
• ∃a. φ. Then M = [t, N ] and ⊢ N : φ1[a := t], where φ1 =ω φ.
• t = u. Then M is one of axRep terms.Proof Straightforward. �Lemma 2.2.16 (Subje
t Redu
tion, Preservation) If Γ ⊢ P : Ψ and P →

Q, then Γ ⊢ Q : Ψ.Proof By indu
tion on the de�nition of P → Q. Case P → Q of:
• (λx : φ. M) N → M [x := N ]. By Inversion, there is φ1 su
h that Γ ⊢

λx : φ. M : φ1 → Ψ1, Γ ⊢ N : φ1 and Ψ1 =ω Ψ. By Inversion again,
Γ, x : φ ⊢ M : Ψ2, φ1 =ω φ and Ψ2 =ω Ψ1. Therefore Γ ⊢ N : φ, soby Lemma 2.2.12, Γ ⊢ M [x := N ] : Ψ2. Sin
e Ψ2 =ω Ψ, by Lemma 2.2.9
Γ ⊢M [x := N ] : Ψ.

• case(inl(M), x : φ. N, x : ψ. O) → N [x := M ]. By Inversion, Γ ⊢ inl(M) :

φ ∨ ψ, Γ, x : φ ⊢ N : Ψ1 and Ψ1 =ω Ψ. By Inversion again, Γ ⊢ M : φ1 and45



φ1 =ω φ, so also Γ ⊢ M : φ. By Lemma 2.2.12, Γ ⊢ M [x := N ] : Ψ1, so byLemma 2.2.9 also Γ ⊢M [x := N ] : Ψ.
• case(inr(M), x : φ. N, x : ψ. O) → O[x := M ]. Symmetri
 to the previous
ase.
• fst(〈M,N〉) → M . By Inversion, Γ ⊢ 〈M,N〉 : Ψ1 ∧ ψ for some ψ and

Ψ1 =ω Ψ. By Inversion again, Γ ⊢M : Ψ2 and Ψ2 =ω Ψ1, so also Γ ⊢M : Ψ.
• snd(〈M,N〉) → N . Symmetri
 to the previous 
ase.
• (λa. M) t→M [a := t]. By Inversion, Γ ⊢ λa. M : ∀a. φ and Ψ =ω φ[a := t].By Inversion again, Γ ⊢ M : φ1, φ1 =ω φ and a /∈ FVF (Γ), so Γ[a := t] = Γ.By Lemma 2.2.13, Γ ⊢ M [a := t] : φ1[a := t]. As it is easy to see that
φ[a := t] =ω φ1[a := t], the 
laim follows.

• let [a, x : φ] := [t,M ] in N → N [a := t][x := M ]. Choose a to be fresh, so inparti
ular M [a := t] = M . By Inversion, a /∈ FV (Γ,Ψ), Γ ⊢ [t,M ] : ∃a. φ,
Γ, x : φ ⊢ N : Ψ1, Γ[a := t] = Γ and Ψ1 =ω Ψ. By Inversion again,
Γ ⊢ M : φ1[a := t] and φ1 =ω φ. Therefore, Γ ⊢ M : φ[a := t]. As
a /∈ FV (Ψ), also a /∈ FV (Ψ1), so Ψ1[a := t] = Ψ1. By Lemma 2.2.13 weget Γ[a := t], x : φ[a := t] ⊢ N [a := t] : Ψ1[a := t], so also Γ, x : φ[a := t] ⊢

N [a := t] : Ψ1. By Lemma 2.2.12, we get Γ ⊢ N [a := t][x := M ] : Ψ1, so also
Γ ⊢ N [a := t][x := M ] : Ψ.

• indn,~a. φ(n,~a)(t,~t,M) → indn,~a. φ(n,~a)(tn,~t,M). This redu
tion rule is the rea-son for the inessential proof rule in the typing system for λH . By Inversion,
Γ ⊢ M : φ(0,~t) ∧ ∀n. φ(n,~t) → φ(S(n),~t) and Ψ =ω φ(t, t). Thus also
Γ ⊢ indn,~a. φ(n,~a)(tn,~t,M) : φ(tn, t).

• indn,~a. φ(n,~a)(0,~t,M) → fst(M). Then Ψ =ω φ(0,~t). By Inversion, Γ ⊢ M :

φ(0,~t) ∧ ∀n. φ(n,~t) → φ(S(n),~t). Therefore, Γ ⊢ fst(M) : φ(0,~t) and 
onse-quently Γ ⊢ fst(M) : Ψ. 46



• indn,~a. φ(n,~a)(S(t),~t,M) → snd(M) t indn,~a. φ(n,~a)(t,~t,M). Then Ψ =ω φ(S(t),~t).By Inversion, Γ ⊢ M : φ(0) ∧ ∀n. φ(n,~t) → φ(S(n),~t). The following prooftree shows the 
laim.
Γ ⊢ snd(M) : ∀n. φ(n,~t) → φ(S(n),~t)

Γ ⊢ snd(M) t : φ(t,~t) → φ(S(t),~t)

Γ ⊢M : φ(0) ∧ ∀n. φ(n,~t) → φ(S(n),~t)

Γ ⊢ indn,~a. φ(n,~a)(t,~t,M) : φ(t,~t)

Γ ⊢ snd(M) t indn,~a. φ(n,~a)(t,~t,M) : φ(S(t),~t)

Γ ⊢ snd(M) t indn,~a. φ(n,~a)(t,~t,M) : Ψ

• The indu
tion steps are easy. �Lemma 2.2.17 (Progress) If ⊢ P : Ψ and FVF (P ) = ∅, then either P is a valueor there is Q su
h that P → Q and FVF (Q) = ∅.Proof Indu
tion on the length of P . We show the 
ases for the new terms. In all
ases, the 
laim about FVF (Q) is trivial to verify. Case P of:
• λa. M, [t,M ]. These are values.
• M t. By Inversion and Canoni
al Forms, Ψ =ω φ[a := t] and ⊢ M : ∀a. φ.By the indu
tion hypothesis, eitherM = λa. N in whi
h 
ase P → N [a := t],or M →M ′ and also M t→M ′ t.
• let [a, x : φ] := M in N . By Inversion, ⊢ M : ∃a. φ. By the indu
tionhypothesis and Canoni
al Forms, either M = [t, O] in whi
h 
ase P →

N [a := t][x := O], or M → M ′ when also let [a, x : φ] := M in N →

let [a, x : φ] := M ′ in N .
• axRep(~t,M). These terms are values.
• indn,~a. φ(n,~a)(t,~t,M). Sin
e FVF (P ) = ∅, t is 
losed. If t is a numeral, theterm immediately redu
es. If not, then t → tn and indn,~a. φ(n,~a)(t,~t,M) →

indn,~a. φ(n,~a)(tn,~t,M). �47



By 
omposing Subje
t Redu
tion and Preservation as before, we get:Corollary 2.2.18 If ⊢ M : φ, M is 
losed and M ↓ v, then ⊢ v : φ and v is avalue.Corollary 2.2.19 If ⊢M : ⊥ and M is 
losed, then M does not normalize.2.2.3 Realizability for HAWe will extend realizability for IPC to en
ompass HA. For this purpose, we will�rst present a BHK interpretation for the �rst-order arithmeti
:
• The 
onstru
tion of an atomi
 formula t = s exists only if if the numbers
orresponding to the terms are equal.
• There is no 
onstru
tion of ⊥.
• The 
onstru
tion of a 
onjun
tion φ∧ψ is a pair 
onsisting of a 
onstru
tionof φ and a 
onstru
tion of ψ.
• The 
onstru
tion of a disjun
tion φ ∨ ψ is either a 
onstru
tion of φ or a
onstru
tion of ψ.
• The 
onstru
tion of an impli
ation φ → ψ is a method, whi
h transformsevery 
onstru
tion of φ to a 
onstru
tion of ψ.
• The 
onstru
tion of an existential ∃n. φ is a pair 
onsisting of a term t anda 
onstru
tion of φ[n := t].
• The 
onstru
tion of ∀n. φ is a method transforming any term t into φ[a := t].We pro
eed to implement the new BHK interpretation via realizability. We�rst extend the erasure map so that it maps λH to λH, by adding the following
lauses to its de�nition:

[t,M ] ≡ [t,M ] let [a, y : φ] := M in N ≡ let [a, y] := M in N48



M t ≡M t λa. M ≡ λa. M

axRep(~t,M) ≡ axRep(~t,M) indn,~a. φ(n,~a))(t,~t,M) ≡ ind(t,~t,M)It is easy to see that the main lemma still holds:Lemma 2.2.20 If M ↓ then M ↓.IFOL expands IPC by quanti�ers, terms and equality relational symbols. Therealizability relation has to a

ount for these new features. We de�ne realizabilityonly on 
losed formulas. The de�nition of realizers stays un
hanged:De�nition 2.2.21 A realizer is a 
losed term of λD.De�nition 2.2.22 The realizability relation M 
 φ between realizers M and
losed formulas φ is de�ned by the following 
lauses:
M 
 t = s ≡ M ↓ ∧[[t]] = [[s]]

M 
 ⊥ ≡ ⊥

M 
 φ ∧ ψ ≡ M ↓ 〈M1,M2〉 ∧ (M1 
 φ) ∧ (M2 
 ψ)

M 
 φ ∨ ψ ≡ (M ↓ inl(M1) ∧M1 
 φ) ∨ (M ↓ inr(M1) ∧M1 
 ψ)

M 
 φ→ ψ ≡ (M ↓ λx. M1) ∧ ∀N. (N 
 φ) → (M1[x := N ] 
 ψ)

M 
 ∃a. φ ≡ M ↓ [t, N ] ∧N 
 φ[a := t]

M 
 ∀a. φ ≡ M ↓ λa. N ∧ ∀t ∈ Tmsc. N [a := t] 
 φ[a := t]It is easy to see that all the properties of realizability proved for λ→ hold for
λH as well:Lemma 2.2.23 If M 
 φ, then M ↓.Lemma 2.2.24 If M →∗ N , then M 
 φ i� N 
 φ.Lemma 2.2.25 If M 
 φ→ ψ and N 
 ψ, then M N 
 ψ.49



One new property is ne
essary in order to treat appli
ations of the inessentialproof rule:Lemma 2.2.26 If φ↔ω φ
′ then M 
ρ φ i� M 
ρ φ

′.Proof Straightforward indu
tion on the de�nition of realizability, using the fa
tthat for any term t, [[t]] = [[tn]]. �2.2.4 Normalization of λHThe normalization proof pro
eeds mostly un
hanged. The de�nition of an environ-ment must be updated to a

ount for the free �rst-order variables in the sequent.De�nition 2.2.27 An environment, denoted by ρ, is a �nite partial fun
tion from
V ar to λH and from FV ar to 
losed HA terms. For a term M , M [ρ] denotes
M [x1 := ρ(x1), . . ., xn := ρ(xn), a1 := ρ(a1), . . ., am := ρ(am)]. Similarly, φ[ρ]denotes φ[a1 := ρ(a1), . . ., am := ρ(am)]. We write ρ |= Γ ⊢ M : φ if for all
a ∈ FVF (Γ,M, φ), ρ(a) is de�ned and for all (x, φ) ∈ Γ, ρ(x) 
 φ[ρ].Theorem 2.2.28 (Normalization) If Γ ⊢ Q : Ψ, then for all ρ |= Γ ⊢ Q : Ψ,
M [ρ] 
 Ψ[ρ].Proof For any λH term M , M ′ in the proof denotes M [ρ] and φ′ denotes φ[ρ].We pro
eed by indu
tion on the proof tree Γ ⊢ Q : Ψ. As the 
ases 
orrespondingto λ→ do not intera
t with �rst-order substitutions, the proofs remain un
hangedfrom Theorem 2.1.25. We therefore show only the new 
ases. Case Γ ⊢ Q : Ψ of:

•
Γ ⊢M : φ

Γ ⊢ λa. M : ∀a. φBy the indu
tion hypothesis, for all ρ |= Γ ⊢ M : φ, M [ρ] 
 φ[ρ]. We needto show that for all ρ |= Γ ⊢ λa. M : ∀a. φ, (λa. M)[ρ] 
 (∀a. φ)[ρ]. Take50



any su
h ρ. It su�
es to show λa. M [ρ] 
 ∀a. φ[ρ], whi
h is equivalent to
∀t ∈ Tmsc. M [ρ][a := t] 
 φ[ρ][a := t]. Take any t ∈ Tmsc. We know that
ρ[a := t] |= Γ ⊢ M : φ, M [ρ][a := t] = M [ρ[a := t]] and φ[ρ][a := t] =

φ[ρ[a := t]]. Thus, by the indu
tion hypothesis M [ρ][a := t] 
 φ[ρ][a := t]whi
h is what we want.
•

Γ ⊢M : ∀a. φ

Γ ⊢M t : φ[a := t]Take any ρ |= Γ ⊢M t : φ[a := t]. By the indu
tion hypothesis, M ′

 ∀a. φ′,so M ′ ↓ λa. N and ∀u ∈ Tmsc. N [a := u] 
 φ′[a := u]. As t[ρ] ∈ Tmsc, weget in parti
ular N [a := t[ρ]] 
 φ′[a := t[ρ]]. Sin
e M t[ρ] = M ′ (t[ρ]) →∗

(λa. N) t[ρ] → N [a := t[ρ]] and (φ[a := t])′ = φ′[a := t[ρ]], Lemma 2.2.24gives us the 
laim.
•

Γ ⊢M : φ[a := t]

Γ ⊢ [t,M ] : ∃a. φBy the indu
tion hypothesis, M ′

 φ′[a := t[ρ]]. Thus [t,M ][ρ] = [t[ρ],M ′] 


∃a.φ′ whi
h is what we want.
•

Γ ⊢M : ∃a. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ let [a, x : φ] := M in N : ψ
a /∈ FV (Γ, ψ)Let ρ |= Γ ⊢ let [a, x : φ] := M in N : ψ. We need to show that

let [a, x : φ] := M in N [ρ] = let [a, x] := M ′ in N [ρ] 
 ψ′. By the indu
tionhypothesis, M ′

 ∃a. φ′, so M ′ ↓ [t,M1] and M1 
 φ′[a := t]. By the indu
-tion hypothesis again, for any ρ′ |= Γ, x : φ ⊢ N : ψ we have N [ρ′] 
 ψ[ρ′].Take ρ′ = ρ[x := M1, a := t]. Sin
e a /∈ FV (ψ), ψ[ρ′] = ψ′, so N [ρ′] 
 ψ′.Now, let [a, x : φ] := M ′ in N [ρ] →∗ let [a, x] := [t,M1] in N [ρ] → N [ρ][a :=

t][x := M1] = N [ρ′]. Lemma 2.2.24 gives us the 
laim.51



•
Γ ⊢M : φA(~t)

Γ ⊢ axRep(~t,M) : ψA(~t)By the indu
tion hypothesis, M ′

 φ′

A(
−→
t[ρ]). Sin
e possible φ′

A are all atomi
formulas, this means that φ′
A(
−→
t[ρ]) holds in the real world. It su�
es to showthat axRep(~t[ρ],M ′) 
 ψ′

A(
−→
t[ρ]). Again, all possible ψ′

A are atomi
, so sin
e
axRep(

−→
t[ρ],M ′) is a value, we only need to verify the truth of ψ′

A(
−→
t[ρ]) inthe real world. As the real natural numbers satisfy axioms of HA, the 
laimfollows.

•
Γ ⊢M : φ(0,~t) ∧ ∀n. φ(n,~t) → φ(S(n),~t)

Γ ⊢ indn,~a. φ(n,~a)(t,~t,M) : φ(t,~t)By the indu
tion hypothesis,M ′

 φ′(0,

−→
t[ρ])∧∀n. φ′(n,

−→
t[ρ]) → φ′(S(n),

−→
t[ρ]).Therefore, M ′ ↓ 〈M1,M2〉, M1 
 φ′(0,

−→
t[ρ]) and M2 
 ∀n. φ′(n,

−→
t[ρ]) →

φ′(S(n),
−→
t[ρ]). By Lemma 2.2.24 therefore also fst(M) 
 φ′(0,

−→
t[ρ]) and

snd(M) 
 ∀n. φ′(n,
−→
t[ρ]) → φ′(S(n),

−→
t[ρ]). Sin
e ρ |= Γ ⊢ indn,~a. φ(n,~a)(t,

−→
t[ρ],M) :

φ(t,
−→
t[ρ]), t[ρ] is 
losed, so it is either a numeral or it redu
es to a numeral.By Lemma 2.2.24, it su�
es to show that for all numerals m, ind(n,M ′) 


φ′(n, ~t[ρ]). We pro
eed by indu
tion on m:� Ifm = 0, ind(m,
−→
t[ρ],M ′) → fst(M ′). Sin
e fst(M ′) 
 φ′(0)∧∀n. φ′(n,

−→
t[ρ]) →

φ′(S(n),
−→
t[ρ]), Lemma 2.2.24 shows the 
laim.� If m = S(k), ind(m,

−→
t[ρ],M ′) → snd(M ′) k ind(k,

−→
t[ρ],M ′). We knowthat snd(M ′) ↓ λn. O and O[n := k] 
 φ′(k,

−→
t[ρ]) → φ′(S(k),

−→
t[ρ]).By the indu
tion hypothesis ind(k,

−→
t[ρ],M ′) 
 φ′(k,

−→
t[ρ]), so by Lemma2.2.25 O[n := k] ind(k,

−→
t[ρ],M ′) 
 φ′(S(k),

−→
t[ρ]). Lemma 2.2.24 appliedagain shows the 
laim.

52



•
Γ ⊢M : φ

Γ ⊢M : ψ
φ↔ω ψStraightforward by Lemma 2.2.26. �Corollary 2.2.29 (Normalization) If ⊢M : φ, then M ↓.Proof Take ρ mapping all free �rst-order variables of M,φ to themselves. Then

ρ |=⊢ M : φ. By Theorem 2.2.28, M [ρ] 
 φ[ρ], so by the 
hoi
e of ρ, M 
 φ.Lemmas 2.2.23 and 2.2.20 show the 
laim. �By Corollary 2.2.19, we have just shown 
onsisten
y of HA. As HA is equi
on-sistent with PA [Göd65℄, by Gödel's Se
ond Theorem we must have used morepower than available in PA. However, it might seem that it is not the 
ase; afterall, the proof amounts to simple indu
tion and veri�
ation of atomi
 formulas.The answer lies in the indu
tion axiom. In PA, it is impossible to formalizethe proof of all instan
es of the s
hema at the same time, be
ause there is no wayto 
arry out the indu
tive proof in the normalization theorem �uniformly� for allformulas. However, for any �nite number of formulas, the proof 
an be formalized,so PA 
an prove 
onsisten
y of any �nite fragment of its 
onstru
tive 
ounterpart.The Disjun
tion Property (DP) still holds, for 
losed formulas. A te
hni
allemma is useful:Lemma 2.2.30 If ⊢HA M : φ and φ is 
losed, then there is a term N su
h that
⊢HA N : φ and FVF (N) = ∅.Proof Let FVF (M) = ~a. By φ being 
losed and Lemma 2.2.13, ⊢HA M [~a := ~0] : φ.
�Corollary 2.2.31 (Disjun
tion Property) If ⊢HA φ ∨ ψ and φ, ψ are 
losed,then either ⊢HA φ or ⊢HA ψ. 53



Proof By Lemma 2.2.10, there is a lambda term M su
h that ⊢ M : φ ∨ ψ. ByLemma 2.2.30, we may assume that FVF (M) = ∅. Thus we 
an use Lemma 2.2.18and the proof of the Disjun
tion Property from the previous se
tion. �From the point of view of 
omputational information, the more important prop-erty is Numeri
al Existen
e Property (NEP):Corollary 2.2.32 (Numeri
al Existen
e Property) If ⊢HA ∃a. φ and ∃a. φis 
losed, then there is a natural number n su
h that ⊢HA φ[a := nn].Proof By Lemma 2.2.10, there is a lambda term M su
h that ⊢ M : ∃a. φ. ByLemma 2.2.30, we may assume that FVF (M) = ∅. By Corollary 2.2.18, M ↓ v,
⊢ v : ∃a. φ and v is 
losed. By Canoni
al Forms, v = [t, N ]. By Inversion,
⊢ N : φ1[a := t] and φ1 =ω φ. By Lemma 2.2.6, ⊢ N : φ[a := tn], so by Lemma2.2.10, HA ⊢ φ[a := [[t]]n]. �2.2.5 Computation in HAWe have �nally arrived at the stage where we 
an present a realisti
 example of
omputation hidden in proofs. Consider a simple example � a fun
tion, whi
hgiven any natural number returns 0 if the number is even and 1 otherwise. Let us�rst write the spe
i�
ation:

φ(n,m) ≡ (m = 0 ∨m = 1) ∧

((m = 0 → ∃o. n = o+ o) ∧

(m = 1 → ∃o. n = S(o+ o)))Spe
i�
ation : ∀n∃m. φ(n,m)We prove this simple theorem by indu
tion on n. For n = 0, take m = 0. For
n = S(k), take m from the indu
tion hypothesis. If m is 0, return 1, otherwisereturn 0. The 
orre
tness follows easily.54



By the Curry-Howard isomorphism, there is a lambda term M su
h that ⊢

M : ∀n∃m. φ(n,m). A proof assistant, su
h as Nuprl or Coq, 
ould produ
e Mautomati
ally during the pro
ess of proving ∀n∃m. φ. We show only the partof M whi
h is relevant for the 
omputation, leaving the re
onstru
tion of theomitted terms (denoted by the �_� 
hara
ter), types and of the proof tree ⊢ M :

∀n∃m. φ(n,m) to the reader.
M ≡ λn. indn,m. φ(n,m)(n, 〈M1,M2〉)

M1 ≡ [0, 〈inl(eqReflRep(0)),_〉]
M2 ≡ λn. λx. let [m, y] := x in M3

M3 ≡ case(fst(y), x. [1, 〈inr(eqReflRep(1)),_〉], x. [0, 〈inl(eqReflRep(0)),_〉])We want to use M as a program P whi
h, given any n, produ
es a number msu
h that m = n mod 2. The program P , given n, works as follows:
• It 
onstru
ts M n, whi
h is of the type ∃m. φ(n,m).
• By Normalization, M n ↓ v. By Lemma 2.2.18, v : ∃m. φ(n,m). By Canon-i
al Forms, v = [m,N ] for some natural number m and term N .
• It therefore normalizes M n to [m,N ] and returns m.Let us denote by P (n) the result of P on a number n. By the de�nition of P andthe properties of λH , for any natural number n we have HA ⊢ φ(n, P (n)). Thus,the program P satis�es its spe
i�
ation.To make this a

ount a bit less abstra
t, let us see the 
omputation of P (0)and P (1). For P (0), we have:
M 0 ≡

(λn. indn,m. φ(n,m)(n, 〈M1,M2〉)) 0 → indn,m. φ(n,m)(0, 〈M1[n := 0],M2[n := 0〉)) →

fst(〈M1[n := 0],M2[n := 0]〉)) →M1[n := 0] ≡

[0, 〈inl(eqReflRep(0)),_〉] 55



Therefore, P (0) returns 0.The redu
tion sequen
e for P (1) is a bit longer. We abbreviate eqReflRep by
eqRR.

M 1 ≡

(λn. indn,m. φ(n,m)(n, 〈M1,M2〉)) S(0) →

indn,m. φ(n,m)(S(0), 〈M1[n := S(0)],M2[n := S(0)]〉)) →

snd(〈M1[n := S(0)],M2[n := S(0)]〉)) 0 indn,m. φ(n,m)(0,

〈M1[n := S(0)],M2[n := S(0)]〉)) →

M2[n := S(0)] 0 indn,m. φ(n,m)(0, 〈M1[n := S(0)],M2[n := S(0)]〉)) ≡

(λn. λx. let [m, y] := x in M3) 0 indφ(n,m)(0, 〈M1[n := S(0)],M2[n := S(0)]〉)) →

λx. let [m, y] := x in M3) 0 indφ(n,m)(0, 〈M1[n := S(0)],M2[n := S(0)]〉)) →

let [m, y] := indn,m. φ(n,m)(0, 〈M1[n := S(0)],M2[n := S(0)]〉) in M3 →
∗

let [m, y] := [0, 〈inl(eRR(0)),_〉] in M3 →

M3[m := 0][y := 〈inl(eRR(0)),_〉] ≡
case(fst(〈inl(eRR(0)),_〉), x. [1, 〈inr(eRR(1)),_〉], x. [0, 〈inl(eRR(0)),_〉]) →

case(inl(eRR(0)), x. [1, 〈inr(eRR(1)),_〉], x. [0, 〈inl(eRR(0)),_〉]) →
[1, 〈inr(eRR(1)),_〉]Therefore, P (1) returns 1.

56



CHAPTER 3TOWARDS COMPUTATIONAL UNDERSTANDING OF SETTHEORY II : SETSHaving de�ned the isomorphism for simple systems, we 
an now move towardsmore powerful and abstra
t systems. Whereas in the previous 
hapter the mainrole was played by the natural numbers, one of the most 
on
rete mathemati
alobje
ts in existen
e, this 
hapter will be dominated by mu
h more abstra
t entities:sets. While we will 
onsider only sets of natural numbers in Se
tion 3.1, the fullset theory will enter in Se
tion 3.2.3.1 Se
ond-order arithmeti
The formulation of arithmeti
 presented in the previous 
hapter was developed
arefully by logi
ians trying to 
apture intuitions about numbers using �rst-orderlogi
. However, the original Peano axiomatization is not �rst-order. The indu
tionaxiom in [Pea89℄ is �Any set 
ontaining 0 and 
losed under the su

essor operation
ontains all natural numbers�. Thus, an abstra
t notion of a set of natural numberswas deemed ne
essary to talk about natural numbers.Although �rst-order axiomatization is more elementary and useful for variouspurposes, a se
ond-order1 axiomatization is 
loser to Peano's original ideas, mu
hmore expressive and, most importantly from our point of view, it is a signi�
antstep in our journey toward understanding 
omputation in set theory. Thus in thisse
tion we investigate se
ond-order Heyting arithmeti
, whi
h we 
all HAS. Moreinformation on se
ond- and higher-order logi
s 
an be found in [Lei94℄.The intuitionisti
 se
ond-order logi
, underlying HAS, is an extension of IFOL.Informally, the extension 
onsists of adding sets of individuals to the language,1�se
ond� refers to the fa
t that a logi
 en
ompasses sets of individuals.57



together with the 
apability of quantifying over them and dis
ussing whether anumber is a member of a set.Formally, we �rst �x a 
ountable set of set variables SV ar. Elements of SV arwill be usually denoted by lettersX, Y, Z. We will sometimes also 
all them se
ond-order variables. Furthermore, we extend the de�nition of terms and formulas. Onesigni�
ant di�eren
e from IFOL is that in se
ond-order logi
 terms and formulas arede�ned together, by mutual indu
tion. More spe
i�
ally, there is a new synta
ti
kind of terms, whi
h we 
all set terms. The set terms are generated by the followingabstra
t grammar:
A ::= X | {a | φ},where φ is an arbitrary formula with the �rst-order variable a bound inside. In-tuitively, the term {a | φ} denotes the set of all n su
h that φ[a := n] holds. Wewill 
all the {a | φ} terms 
omprehension terms or set terms. We will use letters

A,B,C ex
lusively in this se
tion to denote set terms. The set of all set terms willbe denoted by STms and the set of all 
losed set terms by STmsc.We extend the de�nition of formulas to in
orporate reasoning about set-terms.The extension 
onsists of adding one new atomi
 formula and two new quanti�ers:
φ ::= . . . | t ∈ A | ∀X. φ | ∃X. φThe variable X in the de�nition binds in φ. Formulas 
an therefore have twokinds of variables � �rst- and se
ond-order. We denote the free �rst-order variablesin a formula φ by FVF (φ), the free se
ond-order variables by FVS(φ) and all freevariables by FV (φ). These de�nitions are extended to 
ontexts in a natural way.The need for mutual indu
tion in the de�nition should now be 
lear � formulas
an mention set terms, while set terms may 
ontain formulas.The logi
 rules are extended to take into a

ount new formulas in the following58



t ::= a | 0 | S(t) | t+ t | t ∗ t

A ::= X | {a | φ}

φ ::= t = t | ⊥ | φ→ ψ | φ ∧ ψ | φ ∨ ψ | ∀n. φ | ∃n. φ

t ∈ A | ∀X. φ | ∃X. φ

Γ, φ ⊢ φ
Γ ⊢ ⊥
Γ ⊢ φ

Γ, φ ⊢ ψ

Γ ⊢ φ→ ψ

Γ ⊢ φ→ ψ Γ ⊢ φ

Γ ⊢ ψ

Γ ⊢ φ

Γ ⊢ φ ∨ ψ

Γ ⊢ ψ

Γ ⊢ φ ∨ ψ

Γ ⊢ φ ∨ ψ Γ, φ ⊢ ϑ Γ, ψ ⊢ ϑ

Γ ⊢ ϑ

Γ ⊢ φ Γ ⊢ ψ

Γ ⊢ φ ∧ ψ

Γ ⊢ φ ∧ ψ

Γ ⊢ φ

Γ ⊢ φ ∧ ψ

Γ ⊢ ψ

Γ ⊢ φ

Γ ⊢ ∀a. φ
a /∈ FVF (Γ)

Γ ⊢ ∀a. φ

Γ ⊢ φ[a := t]

Γ ⊢ φ[a := t]

Γ ⊢ ∃a. φ

Γ ⊢ ∃a. φ Γ, φ ⊢ ψ

Γ ⊢ ψ
a /∈ FVF (Γ) ∪ FVF (ψ)

Γ ⊢ φ[a := t]

Γ ⊢ t ∈ {a | φ}

Γ ⊢ t ∈ {a | φ}

Γ ⊢ φ[a := t]

Γ ⊢ φ

Γ ⊢ ∀X. φ
X /∈ FVS(Γ)

Γ ⊢ ∀X. φ

Γ ⊢ φ[X := A]

Γ ⊢ φ[X := A]

Γ ⊢ ∃X. φ

Γ ⊢ ∃X. φ Γ, φ ⊢ ψ

Γ ⊢ ψ
X /∈ FVS(Γ, ψ)

(eqRefl) ∀n. n = n (eqSymm) ∀n,m. n = m→ m = n
(eqTrans) ∀n,m, o. n = m ∧m = o→ n = o (eqS) ∀n,m. n = m→ S(n) = S(m)
(P3) ∀n. S(n) = 0 → ⊥ (P4) ∀n,m. S(n) = S(m) → n = m
(plusZ) ∀n. n+ 0 = 0 (plusS) ∀n,m. n+ S(m) = S(n +m)
(mulZ) ∀n. n ∗ 0 = 0 (mulS) ∀n,m. n ∗ S(m) = n ∗m+m

(IND) ∀X. 0 ∈ X → (∀n. n ∈ X → S(n) ∈ X) → ∀n. n ∈ XFigure 3.1: Se
ond-order Heyting Arithmeti
 (HAS)
59



way:
Γ ⊢ φ[a := t]

Γ ⊢ t ∈ {a | φ}

Γ ⊢ t ∈ {a | φ}

Γ ⊢ φ[a := t]

Γ ⊢ φ
Γ ⊢ ∀X. φ

X /∈ FVS(Γ)
Γ ⊢ ∀X. φ

Γ ⊢ φ[X := A]

Γ ⊢ φ[X := A]

Γ ⊢ ∃X. φ
Γ ⊢ ∃X. φ Γ, φ ⊢ ψ

Γ ⊢ ψ
X /∈ FVS(Γ, ψ)The intuitive justi�
ation of new rules should be 
lear. Note the symmetry be-tween the �rst two rules; it will be 
ru
ial for developing the lambda 
al
ulus
orresponding to HAS proofs.HAS is deeply impredi
ative. Consider, for example, the set D ≡ {n | ∀X. n ∈

X}. This a set of natural numbers and as su
h, it 
an be used to instantiate anyse
ond-order universal quanti�er. Thus, sin
e in order to determine whether n ∈ Dwe need to know whether ∀X. n ∈ X, in parti
ular we should know already whether
n ∈ D. This per
eived 
ir
ularity is still disquieting to some mathemati
ians whosubs
ribe to the view that mathemati
s should be predi
ative. See [Fef05℄ for moreinformation.Having extended the logi
, we pro
eed to amend the axioms of HA. The amend-ment amounts to axiomatizing indu
tion in the spirit 
loser to the Peano's originalde�nition:De�nition 3.1.1 HAS arises by repla
ing the indu
tion axiom s
hema in HA byone axiom:

(IND) ∀X. 0 ∈ X → (∀n. n ∈ X → S(n) ∈ X) → ∀n. n ∈ XNote that HAS 
ontains HA:Lemma 3.1.2 HAS ⊢ HA.
60



Proof It su�
es to show that all instan
es of the indu
tion axiom s
hema areprovable. Re
all that the s
hema has the following form:
(indφ(n,~a)) ∀~n. φ(0, ~n) → (∀n. φ(n, ~n) → φ(S(n), ~n)) → ∀n. φ(n, ~n)Take any ~n, suppose φ(0, ~n) and ∀n. φ(n, ~n) → φ(S(n), ~n) and take any n. Weneed to show φ(n, ~n). Take X = {a | φ(a, n)}. Then 0 ∈ X and ∀m. m ∈ X →

S(m) ∈ X, so ∀m. m ∈ X. In parti
ular, n ∈ X so φ(n, ~n). �3.1.1 λS 
al
ulusWe now present a lambda 
al
ulus λS for HAS. We add to λH the new synta
ti

ategory of set terms, whi
h are exa
tly the set terms of HAS, generated by thesame grammar:
A ::= X | {a | φ}We eliminate the indu
tion terms from HA and extend the resulting grammar bythe following 
lauses:

M ::= M A | λX. M | [A,M ] | lets [X, x : φ] := M in N |

sepRep(t,M) | sepProp(t,M) | ind(t,M)The �rst four new terms mirror their 
ounterparts in the �rst-order logi
.The ind(t,M) term 
orresponds to the indu
tion axiom. The sepRep(t,M) and
sepProp(t,M) terms 
orrespond to the proof rules governing the 
omprehensionterms. Informally, if M is a proof of φ(t), then sepRep(t,M) is a proof of t ∈

{n | φ(n)}. Symmetri
ally, if M is a proof of t ∈ {n | φ(n)}, then sepProp(t,M)is a proof of φ(t). This symmetry is 
ru
ial for the 
onstru
tion of λS.The redu
tion system is extended by the following redu
tion relations:
(λX. M) A→ M [X := A] lets [X, x : φ] := [A,M ] inN → N [X := A][x := M ]61



ind(0,M) → fst(M) ind(S(t),M) → snd(M) t ind(t,M),where t is 
losed
ind(t,M) → ind(tn,M),where t is a 
losed non-numeral

sepProp(t, sepRep(u,M)) → MThe last redu
tion rule is signi�
antly di�erent from all rules we en
ountered sofar. It provides a way to eliminate possible redundan
ies introdu
ed by the 
om-prehension axiom. For example, the proof �0 = 0, so 0 ∈ {_ | 0 = 0}, so 0 = 0�is 
learly redundant and the rule would redu
e it to �0 = 0�. We retain the →ωrelation un
hanged.The new evaluation 
ontexts are:
[◦] ::= . . . | [◦] A | lets [a, x : φ] := [◦] in N | ind([◦],M)The new values in the 
al
ulus are:

V ::= . . . | sepRep(t,M) | λX. M | [A,M ]The typing system of λH is extended by the following typing rules:
Γ ⊢M : φ

Γ ⊢ λX. M : ∀X. φ
X /∈ FVS(Γ)

Γ ⊢M : ∀X. φ

Γ ⊢M A : φ[X := A]

Γ ⊢M : φ[X := A]

Γ ⊢ [A,M ] : ∃X. φ

Γ ⊢M : ∃X. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ lets [X, x : φ] := M in N : ψ
X /∈ FVS(Γ, ψ)

Γ ⊢M : 0 ∈ A ∧ ∀n. n ∈ A→ S(n) ∈ A

Γ ⊢ ind(t,M) : t ∈ A

Γ ⊢M : φ[a := t]

Γ ⊢ sepRep(t,M) : t ∈ {a | φ}

Γ ⊢M : t ∈ {a | φ}

Γ ⊢ sepProp(t,M) : φ[a := t]Note the similarity between the �rst four rules and the rules in the �rst-order 
ase.There is no signi�
ant di�eren
e; this will make our proofs of the standard lemmasmu
h shorter.The 
orresponden
e 
ontinues to hold:62



Lemma 3.1.3 (Curry-Howard isomorphism) If Γ ⊢ O : φ then rg(Γ) ⊢HAS

φ. If Γ ⊢HAS φ, then there exists a term M su
h that Γ ⊢ M : φ, where Γ =

{(xφ, φ) | φ ∈ Γ}.Proof Straightforward indu
tion on the proof tree Γ ⊢ O : φ. �3.1.2 Properties of λSThe properties are extended mostly in entirely predi
table way.Lemma 3.1.4 (Inversion) Suppose Γ ⊢ Q : Ψ. Suppose Q is of the form:
• λX. M . Then Ψ =ω ∀X. φ and Γ ⊢M : φ.
• M A. Then Γ ⊢M : ∀X. φ and Ψ =ω φ[X := A].
• [A,M ]. Then Γ ⊢M : φ[X := A] and Ψ =ω ∃X. φ.
• lets [a, x : φ] := M in N . Then Γ ⊢ M : ∃X. φ and Γ, x : φ ⊢ N : Ψ1 and

Ψ =ω Ψ1.
• sepRep(t,M). Then for some φ, Ψ =ω t ∈ {a | φ} and Γ ⊢M : φ[a := t].
• sepProp(t,M). Then for some φ, Ψ =ω φ[a := t] and Γ ⊢M : t ∈ {a | φ}.
• ind(t,M). Then for some A, Ψ =ω t ∈ A and Γ ⊢M : 0 ∈ A∧ ∀n. n ∈ A→

S(n) ∈ A.Lemma 3.1.5 (Canoni
al Forms) Suppose Q is a value, ⊢ Q : Ψ and Ψ is ofthe form:
• t ∈ {a | φ}. Then Q = sepRep(t1,M), ⊢ M : φ1[a := t1], φ1 =ω φ and
t1 =ω t.

• ∀X. φ. Then Q = λX. M , ⊢M : φ1 and φ1 =ω φ.63



• ∃X. φ. Then Q = [A,M ], M : φ1[X := A] and φ1 =ω φ.The substitution lemmas are proved with no new di�
ulties:Lemma 3.1.6 If Γ, x : φ ⊢M : ψ and Γ ⊢ N : φ, then Γ ⊢M [x := N ] : ψ.Lemma 3.1.7 If Γ ⊢ Q : Ψ, then for any �rst-order variable b and term u,
Γ[b := u] ⊢ Q[b := u] : Ψ[b := u].We need a new substitution lemma, for se
ond-order variables:Lemma 3.1.8 If Γ ⊢ Q : Ψ, then Γ[X := A] ⊢ Q[X := A] : Ψ[X := A].Proof Straightforward indu
tion on Γ ⊢ Q : Ψ. The proof is very similar to theproof of Lemma 3.1.7. �Lemma 3.1.9 (Subje
t Redu
tion, Preservation) If Γ ⊢ O : Ψ and O → P ,then Γ ⊢ P : Ψ.Proof By indu
tion on the de�nition of O → P . The proofs of most of the new
ases mirror the �rst-order 
ases in the proof in Se
tion 2.2. We present thereforethe only signi�
antly new 
ase. Case O → P of:

•

sepProp(t, sepRep(u,M)) → MBy Inversion, for some φ, Ψ =ω φ[a := t] and Γ ⊢ sepRep(u,M) : t ∈ {a | φ}.By Inversion again, for some φ1, t =ω u, φ1 =ω φ and Γ ⊢ M : φ1[a := u].Thus also Γ ⊢M : φ[a := t] and 
onsequently Γ ⊢M : Ψ. �Lemma 3.1.10 (Progress) If ⊢ P : Ψ and FVF (P ) = ∅ then either P is a valueor there is Q su
h that P → Q. 64



Proof By indu
tion on the length of P . The proofs of most of the new 
ases mirrorthe �rst-order 
ases in Se
tion 2.2. We present the remaining 
ase:
• P = sepProp(t,M). By Inversion, for some φ, Γ ⊢ M : t ∈ {a | φ}.By the indu
tion hypothesis, either M is a value or M → M ′. In theformer 
ase, by Canoni
al Forms for some t1, M = sepRep(t1, N) andsin
e sepProp(t, sepRep(t1,M)) → M , the 
laim follows. In the latter 
ase,

sepProp(t,M) → sepProp(t,M ′). �Note the importan
e of the redu
tion rule sepProp(t, sepRep(u,M)) → M tothe proof; had it not been for this rule, the redu
tions might stop well beforerea
hing the values.3.1.3 Realizability for HASIn HAS, providing a BHK interpretation be
omes 
hallenging. What should the
onstru
tion for ∃X. φ be? Presumably a set of natural numbers A along with the
onstru
tion of φ[X := A]. However, su
h an approa
h would presume independentexisten
e of sets of natural numbers; entities not at all intuitive and a

eptablefrom a 
onstru
tive point of view. Although some substitutes exist, su
h as theset of all fun
tions from N to a two-element set, in a 
onstru
tive world they donot rea
h full generality of arbitrary subsets of natural numbers.We therefore at this point leave BHK interpretations behind; providing onlyrealizability relations instead. We are not worried about the existen
e of sets ofnatural numbers, nor even arbitrarily large sets as we shall see later. We remindthe reader that in our view the theories we 
onsider are 
onstru
tive 
ores of
lassi
al theories, providing information about their 
omputational 
ontent. Theirphilosophi
al justi�
ation is of no 
on
ern to us. What is important is the methodto ta
kle impredi
ativity, generalizing smoothly to our �nal goal: the set theory.65



As before, we start with the erasure map, erasing λS to λS. A important featureof λS is that the se
ond-order terms play no role in redu
tions; 
ontrast this withthe �rst-order terms, whi
h are ne
essary for the redu
tion rule 
orresponding tothe indu
tion axiom. The erasure map takes this into a

ount and repla
es all these
ond-order terms by the term ∅ ≡ {n | ⊥}. We present the representative 
ases.
M A = M ∅ λX. M = λX. M [A,M ] = [∅,M ]

lets [X, x : φ] := M in N = lets [X, x] := M in N

sepRep(t,M) = sepRep(M) sepProp(t,M) = sepProp(M)The main lemma is still valid:Lemma 3.1.11 If M ↓ then M ↓.The moment we try to write a realizability relation in a naive way, we en
ounterthe following problem. The meaning of a term {a | φ} should somehow be relatedto whether φ is realizable or not. On the other hand, looking at realizability forHA, we would probably like to haveM 
 ∀X. φ if for all terms A, M 
 φ[X := A].As A may be arbitrary, in parti
ular 
ontaining ∀X. φ again, it seems that some
ir
ularity is involved. And indeed, there is no way to write a de�nition in thismanner. This should not 
ome as a surprise, as HAS is mu
h more powerful thanHA. Sin
e realizability 
an be used as a tool to prove the normalization of λS and
onsequently the 
onsisten
y of HAS, simple indu
tion formalizable in HA 
annotsu�
e.We need to utilize in an essential way the impredi
ativity of �real� naturalnumbers. For this purpose, we introdu
e a notion of λ-set :De�nition 3.1.12 A λ-set is a set of pairs (M,n), where M is a 
losed term of
λS and n is a natural number. 66



The (un
ountable) set of all λ-sets will be denoted by Hλ. More formally:
Hλ ≡ P (ΛSc × N),where P denotes the power set operation and ΛSc denotes the set of all 
losed λSterms.

Hλ gives us the ne
essary leverage to de�ne realizability for HAS. The elementsof Hλ will be denoted by letters D,E, F .We will use the sets from Hλ in the realizability relation. For this purpose,we introdu
e environments to our realizability relations as well. There will be no
onfusion between these environments and the ones used for normalization proofs;the 
ontext will always make the situation 
lear.De�nition 3.1.13 An environment is a �nite fun
tion mapping se
ond-order vari-ables to Hλ.We will use the letter ρ to denote environments.From now on, realizability relations will be parameterized by environments. Wewill write M 
ρ φ and read �M realizes φ in an environment ρ�. We in
orporatethe de�nition of a meaning of a term into the realizability relation. As before, wede�ne realizability only on formulas φ su
h that FVF (φ) = ∅. However, φ 
an havefree se
ond-order variables; their meaning will be �xed by the environment. Asbefore, realizers are 
losed terms of λS.De�nition 3.1.14 The realizability relation for HAS, written as M 
ρ φ, relatesrealizers with formulas φ su
h that FVF (φ) = ∅ for environments ρ de�ned on
FVS(φ). The meaning of a 
losed term T in an environment ρ is denoted by [[T ]]ρ.

67



They are de�ned by the following 
lauses:
[[0]]ρ ≡ 0

[[S(t)]]ρ ≡ [[t]]ρ + 1

[[t+ s]]ρ ≡ [[t]]ρ + [[s]]ρ

[[t ∗ s]]ρ ≡ [[t]]ρ ∗ [[s]]ρ

[[X]]ρ ≡ ρ(X)

[[{a | φ}]]ρ ≡ {(sepRep(M), m) | M 
ρ φ[a := mn]}

M 
ρ t = s ≡ M ↓ ∧[[t]]ρ = [[s]]ρ

M 
ρ t ∈ A ≡ M ↓ v ∧ (v, [[t]]ρ) ∈ [[A]]ρ

M 
ρ ⊥ ≡ ⊥

M 
ρ φ ∧ ψ ≡ M ↓ 〈M1,M2〉 ∧ (M1 
ρ φ) ∧ (M2 
ρ ψ)

M 
ρ φ ∨ ψ ≡ (M ↓ inl(M1) ∧M1 
ρ φ) ∨ (M ↓ inr(M1) ∧M1 
ρ ψ)

M 
ρ φ→ ψ ≡ (M ↓ λx. M1) ∧ ∀N. (N 
ρ φ) → (M1[x := N ] 
ρ ψ)

M 
ρ ∃a. φ ≡ M ↓ [t, N ] ∧N 
ρ φ[a := t]

M 
ρ ∀a. φ ≡ M ↓ λa. N ∧ ∀t ∈ Tmsc. N [a := t] 
ρ φ[a := t]

M 
ρ ∃X. φ ≡ M ↓ [∅, N ] ∧ ∃D ∈ Hλ. N 
ρ[X:=D] φ

M 
ρ ∀X. φ ≡ M ↓ λX. N ∧ ∀D ∈ Hλ. N [X := ∅] 
ρ[X:=D] φNote that this de�nition is deeply impredi
ative. The meaning C of a 
ompre-hension term {a | φ} is a set from Hλ. In order to determine the members of C,we may need to quantify over all sets in Hλ, in
luding C. The two guilty 
lausesin the de�nition are:
M 
ρ t ∈ A ≡ M ↓ v ∧ (v, [[t]]ρ) ∈ [[A]]ρ

M 
ρ ∀X. φ ≡ M ↓ λX. N ∧ ∀D ∈ Hλ. N [X := ∅] 
ρ[X:=D] φFor example, taking again D ≡ {n | ∀X. n ∈ X}, we see that [[D]]ρ ≡

{(sepRep(M), m) |M 
ρ ∀X. mn ∈ X} whi
h is equal to {(sepRep(M), m) | ∀C ∈

Hλ. M [X := ∅] 
ρ mn ∈ C}. Sin
e [[D]]ρ ∈ Hλ, in order to determine whether68



(sepRep(M), m) ∈ [[D]]ρ, it seem that we already need to have the informationabout members of [[D]]ρ. Despite this fa
t, the de�nition is not 
ir
ular:Lemma 3.1.15 The de�nition of realizability is well-founded.Proof Use the measure fun
tion m whi
h takes a 
lause in the de�nition andreturns an element of N
2 with the lexi
ographi
al order:

m(M 
ρ φ) = (�the number of 
omprehension terms in φ,�stru
tural 
omplexity of φ�)
m([[t]]ρ) = (�the number of 
omprehension terms in t, 0)Then the measure of the de�niendum is always greater than the measure of thede�niens. Note that in the 
lauses for formulas the stru
tural 
omplexity de
reases,while the number of 
omprehension terms does not grow larger. Moreover, in thede�nition of [[{a | φ}]]ρ, one 
omprehension term disappears. �It is easy to see that the standard lemmas 
ontinue to hold:Lemma 3.1.16 If M 
ρ φ, then M ↓.Lemma 3.1.17 If M →∗ N , then M 
ρ φ i� N 
ρ φ.There is one new Lemma, stating that environments �
ommute� with substitu-tions:Lemma 3.1.18 [[s[a := t]]]ρ = [[s[a := ([[t]]ρ)n]]] and M 
ρ φ[a := t] i� M 
ρ

φ[a := ([[t]]ρ)n]. Also, [[A[X := B]]]ρ = [[A]]ρ[X:=[[B]]ρ] and M 
ρ φ[X := B] i�
M 
ρ[X:=[[B]]ρ] φProof Straightforward indu
tion on the de�nition of realizability. �

69



3.1.4 Normalization of λSThe normalization proof is not 
hanged mu
h 
ompared to λH . We need to extendthe notion of an environment.De�nition 3.1.19 An environment, denoted by ρ, is a �nite partial fun
tion from
V ar ∪ FV ar ∪ SV ar to λS∪Tmsc ∪ Hλ su
h that ρ→(V ar) ⊆λSc, ρ

→(FV ar) ⊆

Tmsc and ρ→(SV ar) ⊆ Hλ.We de�ne M [ρ] and φ[ρ] essentially as before:
M [ρ] ≡ M [~x :=

−−→
ρ(x),~a :=

−−→
ρ(a)]

φ[ρ] ≡ φ[~a :=
−−→
ρ(a)]Note that any ρ 
an be used as a realizability environment, by 
onsidering only itspart mapping se
ond-order variables to sets from Hλ. Therefore we will be usingthe notation 
ρ also for these environments ρ.We write ρ |= Γ ⊢ M : φ if for all (x, φ) ∈ Γ, ρ(x) 
ρ φ[ρ] and ρ is de�ned on

FV (Γ,M, φ). It is easy to see that if ρ |= Γ ⊢M : φ, then M [ρ] 
ρ φ[ρ] is de�ned.Lemma 3.1.20 (Normalization) If Γ ⊢ O : Ψ, then for all ρ |= Γ ⊢ O : Ψ,
M [ρ] 
ρ Ψ[ρ].Proof For any lambda term M , M ′ in the proof denotes M [ρ]. We pro
eed byindu
tion on the proof and show the new 
ases 
ompared to HA. Case Γ ⊢ O : Ψof:

•
Γ ⊢M : φ

Γ ⊢ λX. M : ∀X. φ
X /∈ FVS(Γ)Take any ρ |= Γ ⊢ λX. M : ∀X. φ. We need to show that for all D,

M [ρ][X := ∅] 
ρ[X:=D] φ[ρ]. Take any su
h D and let ρ′ = ρ[X := D].70



Then ρ′ |= Γ ⊢ M : φ, so by the indu
tion hypothesis, M [ρ′] 
ρ′ φ[ρ′]. As
M [ρ][X := ∅] = M [ρ′] and φ[ρ′] = φ[ρ], the 
laim follows.

•
Γ ⊢M : ∀X. φ

Γ ⊢M A : φ[X := A]Take any ρ |= Γ ⊢ λX. M : ∀X. φ. Then also ρ |= Γ ⊢ M : ∀X. φ. By theindu
tion hypothesis, M ′ ↓ λX. N and for all D, N [X := ∅] 
ρ[X:=D] φ. Inparti
ular, taking D = [[A]]ρ, N [X := ∅] 
ρ[X:=[[A]]ρ] φ, so by Lemma 3.1.18,
N [X := ∅] 
ρ φ[X := A]. Sin
e M A[ρ] = M ′ ∅ →∗ (λX. N) ∅ → N [X :=

∅], Lemma 2.2.24 shows the 
laim.
•

Γ ⊢M : φ[X := A]

Γ ⊢ [A,M ] : ∃X. φTake any ρ |= Γ ⊢ [A,M ] : ∃X. φ. It su�
es to show that there is D su
hthat M ′

ρ[X:=D] φ. By the indu
tion hypothesis, M ′


ρ φ[X := A]. Taking
D = [[A]]ρ and applying Lemma 3.1.18, we get the 
laim.

•
Γ ⊢M : ∃X. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ lets [X, x : φ] := M in N : ψ
X /∈ FVS(Γ, ψ)Take any ρ |= Γ ⊢ lets [X, x : φ] := M in N : ψ. By the indu
tion hypothesis,

M ′

ρ ∃X. φ[ρ], soM ′ ↓ [∅,M1] and there is someD su
h thatM1 
ρ[X:=D] φ.Sin
e lets [X, x] := M in N →∗ lets [X, x] := [∅,M1] in N ′ → N ′[x := M1],by Lemma 3.1.17 it su�
es to show that N ′[x := M1] 
ρ ψ. Let ρ′ ≡ ρ[X :=

D, x := M1]. Note that ρ′ |= Γ, x : φ ⊢ N : ψ, so by the indu
tion hypothesis
N [ρ′] 
ρ′ ψ[ρ′]. As X /∈ FVS(ψ), it is easy to see that N [ρ′] 
ρ ψ[ρ]. As
N [ρ′] = N ′[x := M1], we get the 
laim.

•
Γ ⊢M : 0 ∈ A ∧ ∀n. n ∈ A→ S(n) ∈ A

Γ ⊢ ind(t,M) : t ∈ A71



The proof follows the steps of the proof of the 
orresponding 
ase in λH .
•

Γ ⊢M : φ[a := t]

Γ ⊢ sepRep(t,M) : t ∈ {a | φ}Take any ρ |= Γ ⊢ sepRep(t,M) : t ∈ {a | φ}. By the indu
tion hypothesis,
M ′


ρ φ
′[a := t[ρ]]. We need to show M ′


ρ φ
′[a := ([[t[ρ]]]ρ)n]. Lemma3.1.18 shows the 
laim.

•
Γ ⊢M : t ∈ {a | φ}

Γ ⊢ sepProp(t,M) : φ[a := t]Take any ρ |= Γ ⊢ sepProp(t,M) : φ[a := t]. By the indu
tion hypoth-esis, M ′ ↓ v and (v, [[t[ρ]]]ρ) ∈ [[{a | φ}]]ρ. This means that for some N ,
v = sepRep(N) and N 
ρ φ[a := ([[t[ρ]]]ρ)n]. Sin
e sepProp(M ′) →∗

sepProp(sepRep(N)) → N , Lemma 3.1.18 shows the 
laim. �Corollary 3.1.21 (Normalization) If ⊢M : φ, then M ↓.Corollary 3.1.22 HAS has the Disjun
tion Property and the Numeri
al Existen
eProperty.As in 
ase of HA, normalization provides the a

ess to the 
omputational 
on-tent of HAS proofs. Se
ond-order quanti�
ation enhan
es the spe
i�
ation lan-guage signi�
antly, as for example real and 
omplex numbers 
an be easily en
odedas sets of natural numbers. There are many 
lassi
al examples of su
h en
odingspresented for example in [Sim99℄. Constru
tively, 
oming up with a �
orre
t� def-inition of real numbers is more di�
ult. See [Lub07℄ for the des
ription of theissues involved.At this point, our adventures with weak systems are over. We showed normal-ization of propositional logi
, using realizability. Later, we extended our methods72



to the �rst-order Heyting arithmeti
, in
orporating quanti�
ation to our proofs.Finally, in this se
tion, we showed how to ta
kle systems involving impredi
ativityusing our method. We are now ready to approa
h the strongest and the mostexpressive formal system ever invented � ZFC set theory.3.2 Set theoryIn the introdu
tion, we des
ribed the origins of ZFC, Zermelo-Fraenkel set the-ory with Choi
e, now widely a

epted as the foundation of mathemati
s. In theprevious se
tions we showed how to �nd 
omputation in the 
onstru
tive 
ores ofpropositional logi
, �rst and se
ond-order arithmeti
. We are now ready to exposethe 
omputational 
ontent of the 
onstru
tive 
ore of ZFC. We assume basi
 fa-miliarity with set theory, found for example in the �rst few 
hapters of [Kun80℄ or[Je
03℄. The results of this se
tion 
an also be found in [Mo
06a℄.The 
onstru
tive 
ore of ZFC is 
alled IZF, Intutionisti
 Zermelo-Fraenkel. Itwas �rst introdu
ed by Myhill [Myh73℄. It is essentially what remains of ZFCafter the ex
luded middle is 
arefully taken away. More spe
i�
ally, apart fromeliminating the ex
luded middle, we also need to make two 
hanges to the ax-ioms of ZFC. First, as Choi
e is inherently non
onstru
tive, it needs to be takenaway. Se
ond, surprisingly, Foundation in the standard formulation also impliesthe Ex
luded Middle, so in IZF it is reformulated as ∈-Indu
tion.An important de
ision to make is whether to use Repla
ement or Colle
tionaxiom s
hema. We will 
all the version with Colle
tion IZFC and the versionwith Repla
ement IZFR. In the literature, IZF usually denotes IZFC. Both the-ories extended with ex
luded middle are equivalent to ZF [Fri73℄ and thus proof-theoreti
ally as strong as ZFC. We will have more to say about the di�eren
es inSe
tion 4.2. 73



Both versions have been investigated thoroughly. Results up to 1985 arepresented in [Bee85, �85℄. Later resear
h 
on
entrated on weaker subsystems[AR01, Lub02℄. A predi
ative 
onstru
tive set theory CZF has attra
ted par-ti
ular interest. [AR01℄ des
ribes the set-theoreti
 apparatus available in CZF andprovides further referen
es.3.2.1 The axioms of IZFRIZF is a �rst-order theory. There are three binary relational symbols: ∈I ,∈,=. The�rst one might look unfamiliar to the reader. It denotes an intensional membershiprelation and it is used as a low-level me
hanism to ta
kle the extensional nature ofset theory � see Lemmas 3.2.6, 3.2.7 and 3.2.8. In this se
tion, we will fo
us onIZFR, as Colle
tion is mu
h more di�
ult to ta
kle using our methods. However,it is possible to apply our methods also to IZFC , as we show in Se
tion 4.2.Similarly to HAS, some terms of IZFR are parameterized by formulas. Wetherefore de�ne terms and formulas at the same time, by mutual indu
tion andthe following abstra
t grammar:
t ::= a | ∅ | {t, t} | ω |

⋃
t | P (t) | S

a, ~f. φ(a, ~f)(t,~t) | Ra,b, ~f . φ(a,b, ~f)(t,~t)

φ ::= ⊥ | t ∈ t | t = t | t ∈I t | φ ∨ φ | φ ∧ φ | φ→ φ | ∀a. φ | ∃a. φThe terms S
a, ~f. φ(a, ~f)(t,~t) and Ra,b, ~f. φ(a,b, ~f)(t,~t) 
ould be displayed more familiarlyas {c ∈ t | φ(c,~t)} and {c | (∀x ∈ t∃!yφ(x, y,~t))∧ (∃x ∈ t. φ(x, c,~t))}, respe
tively.The rules of the �rst-order logi
 remain un
hanged. The axioms follow, with

S(t) abbreviating t ∪ {t, t}.
• (IN) ∀a, b. a ∈ b↔ ∃c. c ∈I b ∧ a = c

• (EQ) ∀a, b. a = b↔ ∀d. (d ∈I a→ d ∈ b) ∧ (d ∈I b→ d = a)74



• (EMPTY) ∀c. c ∈I ∅ ↔ ⊥

• (PAIR) ∀a, b∀c. c ∈I {a, b} ↔ c = a ∨ c = b

• (INF) ∀c. c ∈I ω ↔ c = 0 ∨ ∃b ∈ ω. c = S(b)

• (SEP
φ(a, ~f)) ∀~f∀a∀c. c ∈I Sa, ~f. φ(a, ~f)(a,

~f) ↔ c ∈ a ∧ φ(c, ~f)

• (UNION): ∀a∀c. c ∈I ⋃
a↔ ∃b ∈ a. c ∈ b

• (POWER) ∀a∀c. c ∈I P (a) ↔ ∀b. b ∈ c→ b ∈ a

• (REPL
φ(a,b, ~f)) ∀~f, a∀c. c ∈I Ra,b, ~f . φ(a,b, ~f)(a,

~f) ↔ (∀x ∈ a∃!y. φ(x, y, ~f)) ∧

(∃x ∈ a. φ(x, c, ~f))

• (IND
φ(a, ~f)) ∀~f.(∀a.(∀b ∈I a. φ(b, ~f)) → φ(a, ~f)) → ∀a. φ(a, ~f)Extensionality and IZFRThere are two axioms seemingly missing from IZFR. The �rst one is the Leibnizaxiom s
hema:

(Lφ) ∀a, b, ~f . a = b ∧ φ(a, ~f) → φ(b, ~f)The se
ond is Extensionality:(EXT) ∀a, b. a = b↔ ∀c. c ∈ a↔ c ∈ bTheir presen
e in set theories is the reason for in
orporation of the relationalsymbol ∈I in our logi
 along with (IN) and (EQ) axioms. We will now show thatboth Leibniz and Extensionality axioms 
an be derived. Moreover, we shall seethat the rest of the axioms of IZFR hold with ∈I repla
ed by the more familiar ∈.Therefore, a user of our presentation of IZFR does not need to worry about ∈I , asthe standard presentation is derivable.From now on in this se
tion, we work in IZFR. The following sequen
e of lem-mas establishes that equality and membership behave in the 
orre
t way. State-ments similar in spirit are also proved in the 
ontext of Boolean-valued models.75



Our treatment slightly simpli�es the standard presentation by avoiding the needfor mutual indu
tion.Lemma 3.2.1 For all a, a = a.Proof By ∈-indu
tion on a. Take any b ∈I a. By the indu
tion hypothesis, b = b,so also b ∈ a. �Corollary 3.2.2 If a ∈I b, then a ∈ b.Lemma 3.2.3 For all a, b, if a = b, then b = a.Proof Straighforward. �Lemma 3.2.4 For all b, a, c, if a = b and b = c, then a = c.Proof By ∈-indu
tion on b. First take any d ∈I a. By a = b, d ∈ b, so there is
e ∈I b su
h that d = e. By b = c, e ∈ c, so there is f ∈I c su
h that e = f . By theindu
tion hypothesis for e, d = f , so d ∈ c.The other dire
tion is symmetri
 and pro
eeds from c to a. Take any d ∈I c.By b = c, d ∈ b, so there is e ∈I b su
h that d = e. By a = b, e ∈ a, so there is
f ∈I a su
h that e = f . The indu
tion hypothesis gives the 
laim. �Lemma 3.2.5 For all a, b, c, if a ∈ c and a = b, then b ∈ c.Proof Sin
e a ∈ c, there is d ∈I c su
h that a = d. By previous lemmas we alsohave b = d, so b ∈ c. �Lemma 3.2.6 For all a, b, d, if a = b and d ∈ a, then d ∈ b.Proof Suppose d ∈ a, then there is e su
h that e ∈I a and d = e. By a = b, e ∈ b.By Lemma 3.2.5, d ∈ b. �76



Lemma 3.2.7 (Extensionality) If for all d, d ∈ a i� d ∈ b, then a = b.Proof Take any d ∈I a. By Corollary 3.2.2 d ∈ a, so by Lemma 3.2.6 also d ∈ b.The other dire
tion is symmetri
. �All the lemmas above have been veri�ed by a 
omputer, with the help of a toyprover we wrote to experiment with IZFR.Lemma 3.2.8 (The Leibniz axiom) For any term t(a, ~f) and formula φ(a, ~f)not 
ontaining ∈I , if a = b, then t(a, ~f) = t(b, ~f) and φ(a, ~f) ↔ φ(b, ~f).Proof Straightforward mutual indu
tion on generation of t and φ. We show somerepresentative 
ases. Case t or φ of:
•

⋃
t1(a). If c ∈I

⋃
t1(a), then for some d, c ∈ d ∈ t1(a). By the indu
tionhypothesis t!(a) = t1(b), so by Lemma 3.2.6 d ∈ t1(b), so c ∈I

⋃
t1(b) andby Corollary 3.2.2 also c ∈ ⋃

t1(b). The other dire
tion is symmetri
 and bythe (EQ) axiom we get t(a) = t(b).
• Sa, ~f . φ(a, ~f)(t1(a), ~u(a)). If c ∈I Sa, ~f . φ(a, ~f)(t1(a), ~u(a)), then c ∈ t1(a)and φ(c, ~u(a)). By the indu
tion hypothesis, t1(a) = t1(b), ~u(a) = ~u(b),and thus φ(c, ~u(b)) and c ∈ t1(b), so c ∈I Sa, ~f . φ(a, ~f)(t1(b), ~u(b)) and also
c ∈ S

a, ~f
. φ(a, ~f)(t1(b), ~u(b)).

• t(a) ∈ s(a). By the indu
tion hypothesis, t(a) = t(b) and s(a) = s(b). Thusby Lemma 3.2.6 t(a) ∈ s(b) and by Lemma 3.2.5 t(b) ∈ s(b).
• ∀c. φ(c, a, ~f). Take any c, we have φ(c, a, ~f), so by indu
tion hypothesis
φ(c, b, ~f), so ∀c. φ(c, b, ~f). �Lemma 3.2.9 For any term tA(~a), c ∈ tA(~a) i� φA(c,~a).Proof The right-to-left dire
tion follows immediately by Corollary 3.2.2. For theleft-to-right dire
tion, suppose c ∈ tA(~a). Then there is d su
h that d ∈I tA(~a) and

c = d. Therefore φA(d,~a) holds and by the Leibniz axiom we also get φA(c,~a). �77



Lemma 3.2.10 For any axiom A of IZFR, IZFR⊢ A[∈I :=∈].Proof Lemma 3.2.9 shows the 
laim for all the axioms apart from ∈-Indu
tion. Sosuppose ∀a. (∀b ∈ a. φ(b, ~f)) → φ(a, ~f). We need to show ∀a. φ(a, ~f). We pro
eedby ∈I-indu
tion on a. It su�
es to show ∀c. (∀d ∈I c. φ(d, ~f)) → φ(c, ~f). Takeany c and suppose ∀d ∈I c. φ(d, ~f). We need to show φ(c, ~f). Take a to be c in theassumption, so it su�
es to show that ∀b ∈ c. φ(b, ~f). Take any b ∈ c. Then thereis e ∈I c su
h that e = b. By the indu
tion hypothesis φ(e, ~f) holds and hen
e bythe Leibniz axiom we get φ(b, ~f), whi
h shows the 
laim. �Therefore a user of IZFR 
an ignore the ∈I symbol and thanks to Lemma 3.2.10use the ∈I -free axiomatization.The Repla
ement axiomA more familiar formulation of Repla
ement 
ould be: �For all ~F ,A, if for all x ∈ Athere is exa
tly one y su
h that φ(x, y, ~F ) holds, then there is a set D su
h that
∀x ∈ A∃y ∈ D. φ(x, y, ~F ) and for all d ∈ D there is x ∈ A su
h that φ(x, d, ~F )�.Let this formulation of Repla
ement be 
alled (REPL0φ), let (Rφ) be the term-freestatement of our Repla
ement axiom, that is:

(Rφ) ≡ ∀~f, a∃!d. ∀c. c ∈ d↔ (∀x ∈ a∃!y. φ(x, y, ~f)) ∧ (∃x ∈ a. φ(x, c, ~f))and let IZ denote IZFR without the Repla
ement axiom and 
orresponding fun
tionsymbols. To justify our de�nition of Repla
ement, we prove the following twolemmas:Lemma 3.2.11 IZ ⊢ (Rφ) →(REPL0φ).Proof Assume (Rφ), take any ~F ,A and suppose that for all x ∈ A there is exa
tlyone y su
h that φ(x, y, ~F ). Let D be the set we get by applying (Rφ). Take any78



x ∈ A, then there is y su
h that φ(x, y, ~F ), so y ∈ D. Moreover, if d ∈ D thenthere is x ∈ A su
h that φ(x, d, ~F ). This shows (REPL0φ). �Lemma 3.2.12 IZ ⊢ (REPL0φ) →(Rφ).Proof Assume (REPL0φ), take any ~F ,A and 
onsider the set
B ≡ {a ∈ A | ∀x ∈ A∃!y. φ(x, y, ~F )}.Then for all b ∈ B there is exa
tly one y su
h that φ(b, y, ~F ). Use (REPL0φ) toget a set D. Then D is the set we are looking for. Indeed, if d ∈ D, then thereis b ∈ B su
h that φ(b, d, ~F ) and so by the de�nition of B, ∀x ∈ A∃!y. φ(x, y, ~F )and b ∈ A. On the other hand, take any d and suppose that ∀x ∈ A∃!y. φ(x, y, ~F )and there is x ∈ A su
h that φ(x, d, ~F ). Then x ∈ B, so there is y′ ∈ D su
h that

φ(x, y′, ~F ). But y′ must be equal to d, so d ∈ D. As it is trivial to see that D isunique, the 
laim follows. �The terms of IZFRThe original presentation of IZF with Repla
ement presented in [Myh73℄ is term-free. Let us 
all it IZFR0. We will now show that IZFR is a de�nitional extensionof IZFR0.In IZFR0 for ea
h axiom (A) among the Empty Set, Pairing, In�nity, Separation,Repla
ement, Union and Power Set axioms, we 
an derive ∀~a∃!d∀c. c ∈ d ↔

φA(c,~a), using Lemma 3.2.12 in 
ase of the Repla
ement axiom. We thereforede�nitionally extend IZFR0, by introdu
ing for ea
h su
h (A) the 
orrespondingnew fun
tion symbol tA(~a) along with the de�ning axiom ∀~a∀c. c ∈ tA(~a) ↔

φA(c,~a).We then need to provide the Separation and Repla
ement fun
tion symbols
R
a,b, ~f. φ(a,b, ~f) and Sa, ~f. φ(a, ~f), where φ may 
ontain the new terms. To �x our at-tention, 
onsider the Separation axiom. For some fun
tion symbol S

a, ~f . φ(a, ~f), we79



need to have:
∀~f, a∀c. c ∈ S

a, ~f. φ(a, ~f)(a,
~f) ↔ c ∈ a ∧ φ(c, ~f)As all terms present in φ were introdu
ed via a de�nitional extension of IZFR0,there is a term-free formula φ′ equivalent to φ. We therefore have:

∀~f, a∀c. c ∈ S
a, ~f. φ′(a, ~f)(a,

~f) ↔ c ∈ a ∧ φ′(c, ~f)and 
onsequently:
∀~f, a∀c. c ∈ S

a, ~f. φ′(a, ~f)(a,
~f) ↔ c ∈ a ∧ φ(c, ~f)We de�ne S

a, ~f. φ(a, ~f) to be S
a, ~f. φ′(a, ~f). Similarly, we 
an de�ne R

a,b, ~f. φ(a,b, ~f) to be
R
a,b, ~f. φ′(a,b, ~f). After iterating this pro
ess ω-many times, we obtain all instan
esof terms and axioms (A) present in IZFR.In order to �nish the demonstration that IZFR is a de�nitional extension ofIZFR0, it remains to justify the instan
es of the Leibniz and ∈-Indu
tion axioms,when the parameterizing formula 
ontains terms. For the Leibniz axiom, take any

A,B, ~F and suppose A = B and φ(A, ~F ). Then there is a term-free formula φ′equivalent to φ, so also φ′(A, ~F ). By the Leibniz axiom in IZFR0, φ′(B, ~F ), so also
φ(B, ~F ).For the ∈-Indu
tion axiom, take any ~F and suppose:

∀a. (∀b ∈ a. φ(b, ~F )) → φ(a, ~F )Taking φ′ to be the term-free formula equivalent to φ, we get:
∀a. (∀b ∈ a. φ′(b, ~F )) → φ′(a, ~F )By ∈-Indu
tion in IZFR0, we get ∀a. φ′(a, ~F ), thus also ∀a. φ(a, ~F ).

80



3.2.2 λZ 
al
ulusThe lambda 
al
ulus λZ for IZFR 
an be seen as a generalization of ideas underly-ing λH and λS. The �rst-order part of the 
al
ulus is the same as the �rst-orderpart of λH . As the axioms of IZFR have a similar form to the 
omprehension axiomin HAS, similar Prop and Rep terms are used. Finally, the terms 
orresponding tothe indu
tion axiom behave similarly to the indu
tion terms in λH .We pro
eed with the formal de�nitions. As this 
al
ulus is the 
ulmination ofdevelopments in the previous se
tions, we present it in its entirety.The lambda terms in λZ will be denoted by letters M,N,O, P . There are twokinds of lambda abstra
tion in λZ, one 
orresponding to the proofs of impli
ation,the other to the proofs of universal quanti�
ation. We use separate sets of variablesfor these abstra
tions and 
all them proof- and �rst-order variables, respe
tively.Letters x, y, z will be used for the proof variables and letters a, b, c for the �rst-order variables. Letters t, s, u are reserved for IZFR terms. The types in the systemare IZFR formulas. The terms are generated by the following abstra
t grammar.The �rst group of terms is standard and 
omes from the �rst-order logi
:
M ::= x | M N | λa. M | λx : φ. M | inl(M) | inr(M) | fst(M) | snd(M)

[t,M ] | M t | 〈M,N〉 | case(M,x : φ. N, x : ψ. O)

magic(M) | let [a, x : φ] := M in NThe se
ond group of terms 
orresponds to the IZFR axioms:
inProp(t, u,M) | inRep(t, u,M)

eqProp(t, u,M) | eqRep(t, u,M)

pairProp(t, u1, u2,M) | pairRep(t, u1, u2,M)

unionProp(t, u,M) | unionRep(t, u,M)81



sepa, ~f. φ(a, ~f)Prop(t, u, ~u,M) | sepa, ~f . φ(a, ~f)Rep(t, u, ~u,M)

powerProp(t, u,M) | powerRep(t, u,M)

infProp(t,M) | infRep(t,M)

repl
a,b, ~f. φ(a,b, ~f)Prop(t, u, ~u,M) | repl

a,b, ~f. φ(a,b, ~f)Rep(t, u, ~u,M)

ind
a, ~f. φ(a, ~f)(M,~t)The ind terms 
orrespond to the (IND) axiom and Prop and Rep terms 
orrespondto the respe
tive axioms of IZFR. As in 
ase of HAS, we adopt a 
onvention ofusing axRep and axProp terms to ta
itly mean all Rep and Prop terms, for axbeing one of in, eq, pair, union, sep, power, inf, repl, unless we list some of themseparately. With this 
onvention in mind, we 
an summarize the de�nition of the

Prop and Rep terms as:
axProp(t, ~u,M) | axRep(t, ~u,M),where the number of terms in the sequen
e ~u depends on the parti
ular axiom.The variables in λ, case and let terms bind respe
tive terms. We denote allfree variables of a term M by FV (M) and the free �rst-order variables of a termby FVF (M). The free (�rst-order) variables of a 
ontext Γ are denoted by FV (Γ)(FVF (Γ)) and de�ned in a natural way.The deterministi
 redu
tion relation→ arises from the following redu
tion rulesand evaluation 
ontexts:

(λx : φ. M) N →M [x := N ] (λa. M) t→M [a := t]

fst(〈M,N〉) → M snd(〈M,N〉) → N

case(inl(M), x : φ. N, x : ψ. O) → N [x := M ]

case(inr(M), x : φ. N, x : ψ. O) → O[x := M ]82



let [a, x : φ] := [t,M ] in N → N [a := t][x := M ]

axProp(t, ~u, axRep(t, ~u,M)) → M

ind
a, ~f. φ(a, ~f)(M,~t) → λc. M c (λb.λx : b ∈I c. ind

a, ~f. φ(a, ~f)(M,~t) b)In the redu
tion rules for ind terms, the variable x is new.The evaluation 
ontexts 
ontinue to des
ribe the lazy evaluation order:
[◦] ::= fst([◦]) | snd([◦]) | case([◦], x.N, x.O)

axProp(t, ~u, [◦]) | let [a, x : φ] := [◦] in N | [◦] M | magic([◦])The values of λZ are generated by the following abstra
t grammar, where Mis an arbitrary term.
V ::= λa. M | λx : φ. M | inr(M) | inl(M) | [t,M ] | 〈M,N〉 | axRep(t, ~u,M)The type system for λZ follows. Types are IZFR formulas, and terms are λZterms. Contexts Γ are �nite sets of pairs (xi, φi). The �rst set of rules 
orrespondsto the �rst-order logi
.

Γ, x : φ ⊢ x : φ

Γ ⊢M : φ→ ψ Γ ⊢ N : φ

Γ ⊢M N : ψ

Γ, x : φ ⊢M : ψ

Γ ⊢ λx : φ. M : φ→ ψ

Γ ⊢M : φ Γ ⊢ N : ψ

Γ ⊢ 〈M,N〉 : φ ∧ ψ

Γ ⊢M : φ ∧ ψ

Γ ⊢ fst(M) : φ

Γ ⊢M : φ ∧ ψ

Γ ⊢ snd(M) : ψ

Γ ⊢M : φ

Γ ⊢ inl(M) : φ ∨ ψ

Γ ⊢M : ψ

Γ ⊢ inr(M) : φ ∨ ψ

Γ ⊢M : φ ∨ ψ Γ, x : φ ⊢ N : ϑ Γ, x : ψ ⊢ O : ϑ

Γ ⊢ case(M,x : φ. N, x : ψ. O) : ϑ

Γ ⊢M : φ

Γ ⊢ λa. M : ∀a. φ
a /∈ FVF (Γ)

Γ ⊢M : ∀a. φ

Γ ⊢M t : φ[a := t]

Γ ⊢M : φ[a := t]

Γ ⊢ [t,M ] : ∃a. φ

Γ ⊢M : ⊥
Γ ⊢ magic(M) : φ

Γ ⊢M : ∃a. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ let [a, x : φ] := M in N : ψ
a /∈ FVF (Γ, ψ)The rest of the rules 
orrespond to IZFR axioms:83



Γ ⊢M : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)

Γ ⊢ eqRep(t, u,M) : t = u

Γ ⊢M : t = u
Γ ⊢ eqProp(t, u,M) : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)

Γ ⊢M : ∃c. c ∈I u ∧ t = c

Γ ⊢ inRep(t, u,M) : t ∈ u
Γ ⊢ t ∈ u

Γ ⊢ inProp(t, u,M) : ∃c. c ∈I u ∧ t = c

Γ ⊢M : φA(t, ~u)

Γ ⊢ axRep(t, ~u,M) : t ∈I tA(~u)

Γ ⊢M : t ∈I tA(~u)

Γ ⊢ axProp(t, ~u,M) : φA(t, ~u)

Γ ⊢M : ∀c. (∀b. b ∈I c→ φ(b,~t)) → φ(c,~t)

Γ ⊢ ind
a, ~f . φ(a, ~f)(M,~t) : ∀a. φ(a,~t)As expe
ted, we have the 
orresponden
e between IZFR and λZ:Lemma 3.2.13 If Γ ⊢ O : φ then IZFR+rg(Γ) ⊢ φ, where rg(Γ) = {φ | (x, φ) ∈

Γ}. If IZFR+Γ ⊢ φ, then there exists a term M su
h that Γ ⊢ M : φ, where
Γ = {(xφ, φ) | φ ∈ Γ}.Proof Both parts follow by easy indu
tion on the proof. The �rst part is straight-forward, to get the 
laim simply erase the lambda terms from the proof tree. Forthe se
ond part, we show terms and trees 
orresponding to IZFR axioms:

• Let φ be one of the IZFR axioms apart from ∈-Indu
tion. Then φ =

∀~a. ∀c. c ∈I tA(~a) ↔ φA(c,~a) for the axiom (A). Re
all that φ1 ↔ φ2 isan abbreviation for (φ1 → φ2) ∧ (φ2 → φ1). Let T be the following prooftree:
Γ, x : φA(c,~a) ⊢ x : φA(c,~a)

Γ, x : φA(c,~a) ⊢ axRep(c,~a, x) : c ∈I tA(~a)

Γ ⊢ λx : φA(c,~a). axRep(c,~a, x) : φA(c,~a) → c ∈I tA(~a)Let M ≡ 〈λx : c ∈I tA(~a). axProp(c,~a, x), λx : φA(c,~a). axRep(c,~a, x)〉.Then the following proof tree shows the 
laim:
Γ, x : c ∈I tA(~a) ⊢ x : c ∈I tA(~a)

Γ, x : c ∈I tA(~a) ⊢ axProp(c,~a, x) : φA(c,~a)

Γ ⊢ λx : c ∈I tA(~a). axProp(c,~a, x) : c ∈I tA(~a) → φA(c,~a) T

Γ ⊢M : c ∈I tA(~a) ↔ φA(c,~a)

Γ ⊢ λ~aλc.M : ∀~a. ∀c. c ∈I tA(~a) ↔ φA(c,~a)84



• Let φ be the ∈-indu
tion axiom. Let M = λ~fλx : (∀a.(∀b. b ∈ a →

ψ(b, ~f)) → ψ(a, ~f)). ind
ψ(a, ~f)(

~f, x). The following proof tree shows the 
laim:
Γ, x : ∀a.(∀b. b ∈I a→ ψ(b, ~f)) → ψ(a, ~f) ⊢ x : ∀a.(∀b. b ∈I a→ ψ(b, ~f)) → ψ(a, ~f)

Γ, x : ∀a.(∀b. b ∈I a→ φ(b, ~f)) → ψ(a, ~f) ⊢ indψ(a, ~f)(
~f, x) : ∀a. ψ(a, ~f)

Γ ⊢M : ∀~f.(∀a.(∀b. b ∈I a→ ψ(b, ~f)) → ψ(a, ~f)) → ∀a. ψ(a, ~f)

�3.2.3 Properties of λZThe properties are extended from λH in an entirely predi
table way. Note that wedo not have to worry about the =ω relation anymore, be
ause there are no numberterms and 
orresponding redu
tion rules in the logi
.Lemma 3.2.14 (Inversion) Suppose Γ ⊢ Q : Ψ. Suppose Q is of the form:
• inRep(t, u,M). Then Ψ = t ∈ u and Γ ⊢M : ∃c. c ∈I u ∧ t = c.
• inProp(t, u,M). Then Ψ = ∃c. c ∈I u ∧ t = c and Γ ⊢M : t ∈ u.
• eqRep(t, u,M). Then Ψ = t = u and Γ ⊢ M : ∀d. (d ∈I t → d ∈ u) ∧ (d ∈I

u→ d ∈ t).
• eqProp(t, u,M). Then Ψ = ∀d. (d ∈I t → d ∈ u) ∧ (d ∈I u → d ∈ t) and

Γ ⊢M : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t).
• axRep(t, ~u,M). Then Ψ = t ∈I tA(~u) and Γ ⊢M : φA(t, ~u).
• axProp(t, ~u,M). Then Ψ = φA(t, ~u) and Γ ⊢M : t ∈I tA(~u).
• ind

a, ~f . φ(a, ~f)(M,~t). Then Ψ = ∀a. φ(a,~t) and Γ ⊢ M : ∀c. (∀b. b ∈I c →

φ(b,~t)) → φ(c,~t).Lemma 3.2.15 (Canoni
al forms) Suppose Q is a value, ⊢ Q : Ψ and Ψ is ofthe form: 85



• t ∈I tA(~u). Then Q = axRep(t, ~u,M).
• t ∈ tA(~u). Then Q = inRep(t, ~u,M).
• t = u. Then Q = eqRep(t, u,M).The propositional and �rst-order Substitution Lemmas 
ontinue to hold, togetherwith Weakening.Lemma 3.2.16 (Subje
t Redu
tion, Preservation) If Γ ⊢ P : Ψ and P →

Q, then Γ ⊢ Q : Ψ.Proof By indu
tion on the de�nition of O → P . As usual, we show the new 
ases.Case O → P of:
• axProp(t, ~u, axRep(t, ~u,M1)) →M1. The proof tree must end with:

Γ ⊢M1 : φA(t, ~u)

Γ ⊢ axRep(t, ~u,M1)) : t ∈I tA(~u)

Γ ⊢ axProp(t, ~u, axRep(t, ~u,M1)) : φA(t, ~u)The 
laim follows immediately.
• ind

a, ~f . ψ(a, ~f)(M1,~t) → λc. M1 c (λb.λx : b ∈I c. ind
a, ~f. ψ(a,~b)(M1,~t) b). Theproof tree must end with:

Γ ⊢M1 : ∀c. (∀b. b ∈I c→ ψ(b,~t)) → ψ(c,~t)

Γ ⊢ ind
a, ~f. ψ(a, ~f )(M1,~t) : ∀a. ψ(a,~t)We 
hoose b, c, x to be fresh. By applying α-
onversion we 
an also obtain aproof tree of Γ ⊢ M1 : ∀e. (∀d. d ∈I e → ψ(d,~t)) → ψ(e,~t), where {d, e} ∩

{b, c} = ∅. Then by Weakening we get Γ, x : b ∈I c ⊢M1 : ∀e. (∀d. d ∈I e→

ψ(d,~t)) → ψ(e,~t), so also Γ, x : b ∈I c ⊢ ind
a, ~f . ψ(a,~b)(M1,~t) : ∀a. ψ(a,~t). Letthe proof tree T be de�ned as:

Γ, x : b ∈I c ⊢ ind
a, ~f. ψ(a,~b)(M1,~t) : ∀a. ψ(a,~t)

Γ, x : b ∈I c ⊢ ind
a, ~f. ψ(a,~b)(M1,~t) b : ψ(b,~t)

Γ ⊢ λx : b ∈I c. inda, ~f . ψ(a,~b)(M1,~t) b : b ∈I c→ ψ(b,~t)

Γ ⊢ λb.λx : b ∈I c. ind
a, ~f. ψ(a,~b)(M1,~t) b : ∀b. b ∈I c→ ψ(b,~t)86



Then the following proof tree shows the 
laim:
Γ ⊢M1 : ∀c. (∀b. b ∈I c→ ψ(b,~t)) → ψ(c,~t)

Γ ⊢M1 c : (∀b. b ∈I c→ ψ(b,~t)) → ψ(c,~t) T

Γ ⊢M1 c (λb.λx : b ∈I c. ind
a, ~f. ψ(a,~b)(M1,~t) b) : ψ(c,~t)

Γ ⊢ λc. M1 c (λb.λx : b ∈I c. ind
a, ~f. ψ(a,~b)(M1,~t) b) : ∀c. ψ(c,~t)

�Lemma 3.2.17 (Progress) If ⊢ P : Ψ then either P is a value or there is Qsu
h that P → Q.Proof Indu
tion on the length of P . Case P of:
• axProp(t, ~u, O). By Inversion, the proof tree ends with:

⊢ O : t ∈I tA(~u)

⊢ axProp(t, ~u, O) : φA(t, ~u)By the indu
tion hypothesis, either O is a value or there is O1 su
h that O →

O1. In the former 
ase, by Canoni
al Forms, O = axRep(t, ~u, P ) andM → P .In the latter, by the evaluation rules axProp(t, ~u, O) → axProp(t, ~u, O1).
• axRep(t, ~u, O) is a value.
• The 
ases where P is a term 
orresponding to the equality and membershipaxioms work in the same way.
• The ind terms always redu
e. �3.2.4 Realizability for IZFRRealizability for IZF was born and at the same time used for an amazing varietyof appli
ations in the Ph. D. thesis of David M
Carty [M
C84℄, written under thedire
tion of Dana S
ott. The de�nition and the thesis were a major inspiration forour proof of normalization of λZ. 87



M
Carty's realizability relation is presented in a 
onventional way. It relatesnatural numbers, interpreted as pairs, Turing ma
hine indi
es and other 
onstru
ts,with set-theoreti
 formulas. Our de�nition, as usual, uses lambda terms as vehi
lesfor 
omputational 
ontent. It seems that the de�nitions behave mostly similarlyfrom the 
omputational point of view. We 
onje
ture, however, that if a formal
orresponden
e were to be de�ned and stated, some di�eren
es would show up inthe treatment of existential quanti�er.As usual, we start with the erasure map. In λZ, redu
tions are set-oblivious� the set terms do not play any role in redu
tions. We therefore erase them to ∅.The erasure map is indu
ed by the following 
ases:
axRep(t, ~u,M) = axRep(M) axProp(t, ~u,M) = axProp(M)

inda, ~f. φ(a, ~f)(M,~t) = ind(M)

λx : φ. M = λx. M let [a, x : φ] := M in N = let [a, x] := M in N

case(M,x : φ. N, x : ψ. O) = case(M,x.N, x.O)The erasure on the rest of the terms is de�ned in a natural way, for example
〈M,N〉 = 〈M,N〉, [t,M ] = [∅,M ] and M t = M ∅. As before, we 
all the 
losedterms of λZ realizers. The set of all realizers will be denoted by λZc and the setof all λZ values whi
h are realizers will be denoted by λZvc.Lemma 3.2.18 If M normalizes, so does M .Having de�ned realizers, we pro
eed to de�ne the realizability relation. Just aswe used λ-sets in HAS, we use λ-names in IZFR:De�nition 3.2.19 A set A is a λ-name i� A is a set of pairs (v, B) su
h that
v ∈ λZvc and B is a λ-name. 88



In other words, λ-names are sets hereditarily labelled by λZ values whi
h arerealizers.De�nition 3.2.20 The 
lass of λ-names is denoted by V λ.Thus, any λ-name has the form:
{(v, A) | v ∈ λZvc ∧A ∈ V λ}Formally, V λ is generated by the following trans�nite indu
tive de�nition onordinals:

V λ
α =

⋃

β<α

P (λZvc × V λ
β ) V λ =

⋃

α∈ORDV λ
αDe�nition 3.2.21 The λ-rank of a λ-name A, denoted by λrk(A), is the smallest

α su
h that A ∈ V λ
α .We now de�ne three auxiliary relations between realizers and pairs of sets in

V λ, whi
h we write as M 
 A ∈I B, M 
 A ∈ B, M 
 A = B. These relationsare a prelude to the de�nition of realizability.
M 
 A ∈I B ≡ M ↓ v ∧ (v, A) ∈ B

M 
 A ∈ B ≡ M ↓ inRep(N) ∧N ↓ [∅, O] ∧ ∃C ∈ V λ. O ↓ 〈O1, O2〉∧

O1 
 C ∈I B ∧ O2 
 A = C

M 
 A = B ≡ M ↓ eqRep(M0) ∧M0 ↓ λa. M1 ∧ ∀D ∈ V λ. M1[a := ∅] ↓ 〈O,P 〉∧

O ↓ λx. O1 ∧ ∀N. (N 
 D ∈I A) → O1[x := N ] 
 D ∈ B∧

P ↓ λx. P1 ∧ ∀N. (N 
 D ∈I B) → P1[x := N ] 
 D ∈ AThe relations M 
 A ∈ B and M 
 A = B are de�ned together in a standardway by trans�nite re
ursion. See for example [Rat05a℄ for more details.De�nition 3.2.22 For any set C ∈ V λ, C+ denotes {(M,A) | M 
 A ∈ C}.89



In realizability for HAS, the environments were used to store �semanti
� obje
ts� the elements of Hλ. This is also going to be the 
ase in IZFR; however, inorder to give a smooth presentation and make the a

ount 
loser to the standarda

ounts of realizability for 
onstru
tive set theories [M
C84, Rat04, Rat06℄, wemake it possible for the formulas to mention 
onstants from V λ as well. Formally,we extend the �rst-order language of IZFR in the following way:De�nition 3.2.23 A (
lass-sized) �rst-order language L(V λ) arises from enri
h-ing the IZFR signature with 
onstants for all λ-names.We leave as an exer
ise a reformulation of our development not using L(V λ).From now on until the end of this se
tion, symbolsM,N,O, P range ex
lusivelyover realizers, letters a, b, c vary over �rst-order variables in the language, letters
A,B,C vary over λ-names. Environments are �nite partial fun
tions from �rst-order variables in L(V λ) to V λ.De�nition 3.2.24 For any formula φ of L(V λ), any term t of L(V λ), ρ de�nedon all free variables of φ and t, any realizer M , we de�ne by metalevel indu
tiona realizability relation M 
ρ φ in an environment ρ and a meaning of a term [[t]]ρin an environment ρ:1. [[a]]ρ ≡ ρ(a)2. [[A]]ρ ≡ A3. [[ω]]ρ ≡ ω′, where ω′ is de�ned by the means of indu
tive de�nition: ω′ is thesmallest set su
h that:

• (infRep(N), A) ∈ ω′ if N ↓ inl(O), O 
ρ A = 0 and A ∈ V λ
ω .

• If (M,B) ∈ ω′+, then (infRep(N), A) ∈ ω′ if N ↓ inr(N1), N1 ↓ [∅, O],
O ↓ 〈M,P 〉, P 
ρ A = S(B) and A ∈ V λ

ω .90



Note that if (M,B) ∈ ω′+, then there is a �nite ordinal α su
h that B ∈ V λ
α .4. [[tA(~u)]]ρ ≡ {(axRep(N), B) ∈ λZvc × V λ

γ | N 
ρ φA(B, [[~u]]ρ)}. The ordinal
γ will be de�ned below.5. M 
ρ ⊥ ≡ ⊥6. M 
ρ t ∈I s ≡M 
 [[t]]ρ ∈I [[s]]ρ7. M 
ρ t ∈ s ≡M 
 [[t]]ρ ∈ [[s]]ρ8. M 
ρ t = s ≡M 
 [[t]]ρ = [[s]]ρ9. M 
ρ φ ∧ ψ ≡ M ↓ 〈M1,M2〉 ∧ (M1 
ρ φ) ∧ (M2 
ρ ψ)10. M 
ρ φ ∨ ψ ≡ (M ↓ inl(M1) ∧M1 
ρ φ) ∨ (M ↓ inr(M1) ∧M1 
ρ ψ)11. M 
ρ φ→ ψ ≡ (M ↓ λx. M1) ∧ ∀N. (N 
ρ φ) → (M1[x := N ] 
ρ ψ)12. M 
ρ ∃a. φ ≡M ↓ [∅, N ] ∧ ∃A ∈ V λ. N 
ρ φ[a := A]13. M 
ρ ∀a. φ ≡M ↓ λa. N ∧ ∀A ∈ V λ. N [a := ∅] 
 φ[a := A]The de�nition of the ordinal γ in item 4 depends on tA(~u). This ordinal is 
loseto the rank of the set denoted by tA(~u) and is 
hosen so that Lemma 3.2.38 
anbe proved. Let ~α =

−−−−−−→
λrk([[u]]ρ) and let ~α = (α1, . . ., αn). Case tA(~u) of:

• {u1, u2} � γ = max(α1, α2)

• P (u) � γ = α1 + 1.
•

⋃
u � γ = α1.

• S
a, ~f. φ(a, ~f)(u, ~u) � γ = α1.

• Ra,b, ~f. φ(a,b, ~f)(u, ~u). This 
ase is more 
ompli
ated. The names, su
h as N21,are 
hosen to mat
h the 
orresponding 
lause in the proof of Lemma 3.2.38.Let G = {(N1, (N21, B)) ∈ λZc × [[u]]+ρ | ∃d ∈ V λ. ψ(N1, N21, B, d)}, where
ψ(N1, N21, B, d) ≡ (N1 ↓ λa. N11) ∧ (N11[a := ∅] ↓ λx. O) ∧ (O[x :=91



N21] ↓ [∅, O1]) ∧ O1 
ρ φ(B, d,
−−→
[[u]]ρ) ∧ ∀e. φ(B, e,

−−→
[[u]]ρ) → e = d). Thenfor all g ∈ G there is D and (N1, (N21, B)) su
h that g = (N1, (N21, B)) and

ψ(N1, N21, B,D). Use Colle
tion to 
olle
t these D's in one set H , so that forall g ∈ G there is D ∈ H su
h that the property holds. Apply Repla
ementto H to get the set of λ-ranks of sets in H . Then β ≡
⋃
H is an ordinal andfor any D ∈ H , λrk(D) < β. Therefore for all g ∈ G there is D ∈ V λ

β and
(N1, (N21, B)) su
h that g = (N1, (N21, B)) and ψ(N1, N21, B,D) holds. Set
γ = β + 1.The proof of well-foundedness of the realizability de�nition is just a little bitmore di�
ult than the similar proof for HAS.De�nition 3.2.25 For any 
losed term s, we de�ne number of o

uren
es of sin any term t and formula φ, denoted by Occ(s, t) and Occ(s, φ), respe
tively, byindu
tion on the de�nition of terms and formulas. We show representative 
lausesof the de�nition:

• Occ(s, s) = 1.
• Occ(s, a) = 0, where a is a variable.
• Occ(s, tA(~u)) = Occ(s, u1) + . . .+Occ(s, un).
• Occ(s, Sφ(t, ~u)) = Occ(s, φ) +Occ(s, t) +Occ(s, u1) + . . .+Occ(s, un).
• Occ(s, t ∈ u) = Occ(s, t) +Occ(s, u).
• Occ(s, φ ∧ ψ) = Occ(s, φ) +Occ(s, ψ).In a similar manner we de�ne the number of fun
tion symbols FS in a term andformula.Lemma 3.2.26 The de�nition of realizability is well-founded.92



Proof Use the measure fun
tion m whi
h takes a 
lause in the de�nition andreturns an element of N
3 with the lexi
ographi
al order:

m(M 
ρ φ) = (Occ(ω, φ), FS(φ), �stru
tural 
omplexity of φ�)
m([[t]]ρ) = (Occ(ω, t), FS(t), 0)Then the measure of the de�niendum is always greater than the measure of thede�niens � in the 
lauses for formulas the stru
tural 
omplexity goes down, whilethe rest of parameters do not grow larger. In the de�nition of [[ω]]ρ, one ω disap-pears. Finally, in the de�nition of [[tA(~u)]]ρ, the topmost tA disappears, while nonew Vi's and ω's appear. �The three 
riti
al 
lauses of our realizability de�nition are:

• [[tA(~u)]]ρ ≡ {(axRep(N), B) ∈ λZvc × V λ
γ | N 
ρ φA(B, [[~u]]ρ)}

• M 
ρ t ∈I s ≡M 
 [[t]]ρ ∈I [[s]]ρ

• M 
ρ ∀a. φ ≡M ↓ λa. N ∧ ∀A ∈ V λ. N [a := ∅] 
 φ[a := A]These 
lauses exhibit deep impredi
ativity of set theory. The tri
k we use to ta
klethe impredi
ativity is essentially the same as the one we applied for HAS. To de�nethe realizability 
lause for the universal quanti�er, we quantify over all sets in V λ.Sin
e the meaning of any term is a member of V λ, the 
onstru
tion makes sense,as we just saw in Lemma 3.2.26.As expe
ted, realizability �
ommutes� with substitution:Lemma 3.2.27 [[t[a := s]]]ρ = [[t[a := [[s]]ρ]]]ρ = [[t]]ρ[a:=[[s]]ρ] and M 
ρ φ[a := s] i�
M 
ρ φ[a := [[s]]ρ] i� M 
ρ[a:=[[s]]ρ] φ.Proof By indu
tion on the de�nition of realizability. We show representative 
ases.Case t of:

• A � then [[t[a := s]]]ρ = [[t[a := [[s]]ρ]]]ρ = [[t]]ρ[a:=[[s]]ρ] = A.93



• a � then [[t[a := s]]]ρ = [[s]]ρ, [[t[a := [[s]]ρ]]]ρ = [[[[s]]ρ]]ρ = [[s]]ρ and also
[[t]]ρ[a:=[[s]]ρ] = [[s]]ρ.

• tA(~u). Then [[t[a := s]]]ρ = {(axRep(N), A) | N 
ρ φA(A, ~u[a := s])}. Bythe indu
tion hypothesis, this is equal to {(axRep(N), A) | N 
ρ[a:=[[s]]ρ]

φA(A, ~u)} = [[t]]ρ[a:=[[s]]ρ] and also to {(axRep(N), A) | N 
ρ φA(A, ~u[a :=

[[s]]ρ])} and thus to [[t[a := [[s]]ρ]]]ρ.For formulas, the atomi
 
ases follow by the proof above and the non-atomi
 
asesfollow immediately by appli
ation of the indu
tion hypothesis. �The standard lemmas 
ontinue to hold:Lemma 3.2.28 If (M 
ρ φ) then M ↓.Lemma 3.2.29 If M →∗ M ′ then M ′

ρ φ i� M 
ρ φ.Lemma 3.2.30 If M 
ρ φ→ ψ and N 
ρ ψ, then M N 
ρ ψ.The following Lemma is stri
tly te
hni
al:Lemma 3.2.31 If ρ agrees with ρ′ on FV (φ), then M 
ρ φ i� M 
ρ′ φ. Inparti
ular, if a /∈ FV (φ), then M 
ρ φ i� M 
ρ[a:=A] φ.Proof Straightforward indu
tion on the de�nition of realizability � the environ-ment is used only to provide the meaning of the free variables of terms in a formula.

� We now establish several properties of the realizability relation, whi
h mostlystate that the truth in the realizability universe is not far from the truth in thereal world, as far as ranks of sets are 
on
erned. Several lemmas mirror similarfa
ts from M
Carty's thesis [M
C84℄.
94



Lemma 3.2.32 If A ∈ V λ
α , then there is β < α su
h that for all B, if M 
ρ

B ∈ A, then B ∈ V λ
β . If M 
ρ B = A, then B ∈ V λ

α . If M 
ρ B ∈I A, then
λrk(B) < λrk(A).Proof By indu
tion on α. Take any A ∈ V λ

α . By the de�nition of V λ
α , there is

β < α su
h that A ⊆ λZvc × V λ
β . Suppose M 
ρ B ∈ A. Then M ↓ inRep(N),

N ↓ [∅, O], O ↓ 〈O1, O2〉 and there is C su
h that O1 
 C ∈I A and O2 
 B = C.Therefore, O1 ↓ v and (v, C) ∈ A. Thus C ∈ V λ
β , so by the indu
tion hypothesisalso B ∈ V λ

β and we get the 
laim of the �rst part of the lemma.For the se
ond part, suppose M 
ρ B = A. This means that M ↓ eqRep(M0),
M0 ↓ λa. M1 and for all D, M1[a := ∅] ↓ 〈O,P 〉. Moreover, O ↓ λx. O1 and for all
N 
ρ D ∈I B we have O1[x := N ] 
ρ D ∈ A. In parti
ular, if (v,D) ∈ B, then
O1[x := v] 
ρ D ∈ A. By the �rst part of the lemma, any su
h D is in V λ

β forsome β < α, so B ∈ V λ
α .The third part is trivial. �Lemma 3.2.33 M 
ρ A = B i� M ↓ eqRep(N) and N 
ρ ∀d. (d ∈I A →

d ∈ B) ∧ (d ∈I B → d ∈ A). Also, M 
ρ A ∈ B i� M ↓ inRep(N) and
N 
ρ ∃c. c ∈I B ∧ A = c.Proof Simply expand what it means for M to realize respe
tive formulas. �The following two lemmas will be used for the treatment of ω in Lemma 3.2.38.Lemma 3.2.34 If A,B ∈ V λ

α , then [[{A,B}]]ρ ∈ V λ
α+1.Proof Take any (M,C) ∈ [[{A,B}]]ρ. By the de�nition of [[{A,B}]]ρ, any su
h Cis in V λ

α , so [[{A,B}]]ρ ∈ V λ
α+1. �Lemma 3.2.35 If A ∈ V λ
α and M 
ρ B = S(A), then B ∈ V λ

α+3.95



Proof M 
ρ B = S(A) means M 
ρ B =
⋃
{A, {A,A}}. By Lemma 3.2.32,it su�
es to show that [[

⋃
{A, {A,A}}]]ρ ∈ V λ

α+3. Applying Lemma 3.2.34 twi
e,we �nd that [[{A, {A,A}}]]ρ ∈ V λ
α+2. By the de�nition of [[

⋃
{A, {A,A}}]]ρ, if

(M,C) ∈ [[
⋃
{A, {A,A}}]]ρ, then C ∈ Vλrk([[

S

{A,{A,A}}]]ρ), so C ∈ V λ
α+2. Therefore

[[
⋃
{A, {A,A}}]]ρ ∈ V λ

α+3 whi
h shows the 
laim. �Lemma 3.2.36 If A,B ∈ V λ
α and M 
ρ C = (A,B), then C ∈ V λ

α+2.Proof Similar to the proof of Lemma 3.2.35, utilizing Lemmas 3.2.34 and 3.2.32.
� We will need one helpful realizer, mirroring the proof of Lemma 3.2.1:Lemma 3.2.37 There is a term eqRefl su
h that eqRefl 
ρ ∀a. a = a.Proof Take the term eqRefl ≡ ind(M), where M = λc. λx. eqRep(λd. 〈N,N〉) and
N = λy. inRep([∅, 〈y, x ∅ y〉]). Then eqRefl → λa. M a (λe. λz. ind(M) e). It suf-�
es to show that for any A, M ∅ (λe. λz. ind(M) e) 
ρ A = A. We pro
eed by in-du
tion on λ-rank of A. We have M ∅ (λe. λz. ind(M) e) ↓ eqRep(λd. 〈N,N〉[x :=

λe. λz. ind(M) e]). It su�
es to show that for all D ∈ V λ, for all O 
ρ D ∈I A,
inRep([∅, 〈O, (λe. λz. ind(M) e) ∅ O〉]) 
ρ D ∈ A. Take any D and O 
ρ D ∈I A.By Lemma 3.2.32, λrk(D) < λrk(A). We need to show the existen
e of C su
hthat O 
ρ C ∈I A and (λe. λz. ind(M) e) ∅ O 
ρ D = C. Taking C ≡ D,the �rst part follows trivially. Sin
e (λe. λz. ind(M) e) ∅ O →∗ ind(M) ∅ →

M ∅ (λe. λz. ind(M) ∅), we get the 
laim by Lemma 4.2.11 and the indu
tionhypothesis. �The following lemma states the 
ru
ial property of our realizability relation.Lemma 3.2.38 (M,C) ∈ [[tA(~u)]]ρ i� M = axRep(N) and N 
ρ φA(C,
−−→
[[u]]ρ).

96



Proof The proof pro
eeds by 
ase analysis on tA(~u). We �rst do the proof forall terms apart from ω, then we show the 
laim for ω.For all terms, save ω, the left-to-right dire
tion is immediate. For the right-to-left dire
tion, suppose N 
ρ φA(C,
−−→
[[u]]ρ) and M = axRep(N). To show that

(M,C) ∈ [[tA(~u)]]ρ, we need to show that C ∈ V λ
γ . Let ~α =

−−−−−−→
λrk([[u]]ρ) =

(α1, . . ., αn). Case tA(~u) of:
• {u1, u2}. Suppose that N 
ρ C = [[u1]]ρ ∨ C = [[u2]]ρ. Then either N ↓

inl(N1) ∧ N1 
ρ C = [[u1]]ρ or N ↓ inr(N1) ∧ N1 
ρ C = [[u2]]ρ. By Lemma3.2.32, in the former 
ase C ∈ V λ
α1
, in the latter C ∈ V λ

α2
, so C ∈ V λ

max(α1,α2).
• P (u). Suppose that N 
ρ ∀d. d ∈ C → d ∈ [[u]]ρ. Then N ↓ λa. N1 and
∀D. N1[a := ∅] 
ρ D ∈ C → D ∈ [[u]]ρ, so ∀D. N1[a := ∅] ↓ λx. N2 and for all
O, if O 
 D ∈ C then N2[x := O] 
ρ D ∈ [[u]]ρ. Take any (v, B) ∈ C. Then
inRep([∅, 〈v, eqRefl ∅〉]) 
ρ B ∈ C, so N2[x := inRep([∅, 〈v, eqRefl ∅〉]] 
ρ

B ∈ [[u]]ρ. Thus by Lemma 3.2.32 any su
h B is in V λ
α1
, so C ∈ V λ

α1+1.
•

⋃
u. Suppose N 
ρ ∃c. c ∈ [[u]]ρ ∧ C ∈ c. Then N ↓ [∅, N1] and there is Bsu
h that N1 
ρ B ∈ [[u]]ρ ∧ C ∈ B. Thus N1 ↓ 〈N1, N2〉, N1 
ρ B ∈ [[u]]ρ,

N2 
ρ C ∈ B. By Lemma 3.2.32, any su
h B is in V λ
α1
, so also C ∈ V λ

α1
.

• Sa, ~f. φ(a, ~f)(u, ~u). Suppose N 
ρ C ∈ [[u]]ρ ∧ φ(C,
−−→
[[u]]ρ). Then N ↓ 〈N1, N2〉and N1 
ρ C ∈ [[u]]ρ. Thus C ∈ V λ

α1
.

• R
a,b, ~f. φ(a,b, ~f)(u, ~u). Suppose N 
ρ (∀x ∈ [[u]]ρ∃!y. φ(x, y,

−−→
[[u]]ρ)) ∧ ∃x ∈

[[u]]ρ. φ(x, C,
−−→
[[u]]ρ). Then N ↓ 〈N1, N2〉 and N2 
ρ ∃x ∈ [[u]]ρ. φ(x, C, ~[[u]]ρ).Thus N2 ↓ [∅, N20], N20 ↓ 〈N21, N22〉 and there isB su
h thatN21 
ρ B ∈ [[u]]ρand N22 
ρ φ(B,C, ~[[u]]ρ). We also have N1 
ρ ∀x ∈ [[u]]ρ∃!y. φ(x, y, ~[[u]]ρ), so

N1 ↓ λa. N11 and for all C, N11[a := ∅] ↓ λx. O and for all P 
ρ C ∈ [[u]]ρ,
O[x := P ] 
ρ ∃!y. φ(C, y,

−−→
[[u]]ρ). So taking C = B and P = N21, thereis D su
h that N1 ↓ λa. N11, N11[a := ∅] ↓ λx. O and O[x := N21] ↓97



[∅, O1] and O1 
ρ φ(B,D,
−−→
[[u]]ρ) ∧ ∀e. φ(B, e,

−−→
[[u]]ρ) → e = D. Therefore

(N1, (N21, B)) ∈ G from the de�nition of γ, so there is D ∈ V λ
γ su
h that

N1 ↓ λa. N11, N11[a := ∅] ↓ λx. O, O[x := N21] ↓ [∅, O1] and O1 
ρ

φ(B,D, ~[[u]]ρ) ∧ ∀e. φ(B, e, ~[[u]]ρ) → e = D. So O1 ↓ 〈O11, O12〉 and O12 
ρ

∀e. φ(B, e, ~[[u]]ρ) → e = D. Therefore, O12 ↓ λa. Q, Q[a := ∅] ↓ λx. Q1 and
Q1[x := N22] 
ρ C = D. By Lemma 3.2.32, C ∈ V λ

γ .Now we ta
kle ω. For the left-to-right dire
tion, obviously M = infRep(N). Forthe 
laim about N we pro
eed by indu
tion on the de�nition of ω′:
• The base 
ase. Then N ↓ inl(O) and O 
ρ A = 0, so N 
ρ A = 0 ∨ ∃y ∈

ω′. A = S(y).
• Indu
tive step. Then N ↓ inr(N1), N1 ↓ [∅, O], O ↓ 〈M ′, P 〉, (M ′, B) ∈ ω′+,
P 
ρ A = S(B). Therefore, there is C (namely B) su
h that M ′


ρ C ∈ ω′and P 
ρ A = S(C). Thus [∅, O] 
ρ ∃y. y ∈ ω′ ∧ A = S(y), so N 
ρ A =

0 ∨ ∃y ∈ ω′. A = S(y).For the right-to-left dire
tion, suppose N 
ρ A = 0 ∨ (∃y. y ∈ ω′ ∧ A = S(y)).Then either N ↓ inl(N1) or N ↓ inr(N1). In the former 
ase, N1 
ρ A = 0, soby Lemma 3.2.32 A ∈ V λ
ω . In the latter, N1 
ρ ∃y. y ∈ ω′ ∧ A = S(y). Thus

N1 ↓ [∅, O] and there is B su
h that O 
ρ B ∈ ω′ ∧ A = S(B). So O ↓ 〈M ′, P 〉,
(M ′, B) ∈ ω′+ and P 
ρ A = S(B). This is exa
tly the indu
tive step of thede�nition of ω′, so it remains to show that A ∈ V λ

ω . Sin
e (M ′, B) ∈ ω′+, there isa �nite ordinal α su
h that B ∈ V λ
α . By Lemma 3.2.35, A ∈ V λ

α+3, so also A ∈ V λ
ωand we get the 
laim. �

98



3.2.5 Normalization of λZIn this se
tion, environments ρ are �nite partial fun
tions mapping propositionalvariables to realizers and �rst-order variables to V λ. In other words, ρ : V ar ∪

FV ar → λZc ∪ V
λ, ρ→(V ar) ⊆ λZc and ρ→(FV ar) ⊆ V λ. As before, any ρ 
anbe used as a realizability environment by 
onsidering only the mapping of �rst-order variables to V λ. Therefore we will be using the notation 
ρ also for theseenvironments ρ.De�nition 3.2.39 For a sequent Γ ⊢ M : φ, ρ |= Γ ⊢ M : φ means that ρ isde�ned on FV (Γ,M, φ) and for all (xi, φi) ∈ Γ, ρ(xi) 
ρ φi.Note that if ρ |= Γ ⊢ M : φ, then for any term t in Γ, φ, [[t]]ρ is de�ned and sois the realizability relation M 
ρ φ.De�nition 3.2.40 As usual, M [ρ] ≡ M [x1 := ρ(x1), . . ., xn := ρ(xn)], where

FV (M) = {x1, . . ., xn}.Theorem 3.2.41 (Normalization) If Γ ⊢ M : ϑ then for all ρ |= Γ ⊢ M : ϑ,
M [ρ] 
ρ ϑ.Proof For any λZ termM ,M ′ in the proof denotesM [ρ]. We pro
eed by metalevelindu
tion on Γ ⊢ M : ϑ and show some 
ases where the treatment signi�
antlydi�ers from the normalization proof for λH . Case Γ ⊢M : ϑ of:

•
Γ ⊢M : φ

Γ ⊢ λa. M : ∀a. φBy the indu
tion hypothesis, for all ρ |= Γ ⊢ M : φ, M [ρ] 
 φ. We needto show that for all ρ |= Γ ⊢ λa. M : ∀a. φ, (λa. M)[ρ] 
ρ ∀a. φ. This isequivalent to λa. M [ρ] 
ρ ∀a. φ. Take any su
h ρ. We need to show that99



∀A. M [ρ][a := ∅] 
ρ φ[a := A]. Take any A. Sin
e ρ[a := A] |= Γ ⊢ M : φand M [ρ][a := ∅] = M [ρ[a := A]][a := ∅], we get the 
laim by the indu
tionhypothesis.
•

Γ ⊢M : ∀a. φ

Γ ⊢M t : φ[a := t]By the indu
tion hypothesis, M ′

ρ ∀a. φ, so M ′ ↓ λa. N and ∀A. N [a :=

∅] 
ρ φ[a := A]. In parti
ular N [a := ∅] 
ρ φ[a := [[t]]ρ]. By Lemma 3.2.27,
N [a := ∅] 
ρ φ[a := t]. Sin
e M t[ρ] = M ′ ∅ →∗ (λa. N) ∅ → N [a := ∅],Lemma 3.2.29 gives us the 
laim.

•
Γ ⊢M : φ[a := t]

Γ ⊢ [t,M ] : ∃a. φBy the indu
tion hypothesis, M ′

ρ φ[a := t], so by Lemma 3.2.27, M ′


ρ

φ[a := [[t]]ρ]. Thus, there is a lambda-name A, namely [[t]]ρ, su
h that M ′

ρ

φ[a := A]. Thus, [t,M ][ρ] = [∅,M ′] 
ρ ∃a.φ, whi
h is what we want.
•

Γ ⊢M : ∃a. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ let [a, x : φ] := M in N : ψ
a /∈ FV (Γ, ψ)Let ρ |= Γ ⊢ let [a, x : φ] := M in N : ψ. We need to show that

let [a, x : φ] := M in N [ρ] = let [a, x] := M ′ in N [ρ] 
ρ ψ. By the indu
tionhypothesis, M ′

ρ ∃a. φ, so M ′ ↓ [∅,M1] and for some A, M1 
ρ φ[a := A].By the indu
tion hypothesis again, for any ρ′ |= Γ, x : φ ⊢ N : ψ wehave N [ρ′] 
ρ′ ψ. Take ρ′ = ρ[x := M1, a := A]. Sin
e a /∈ FV (ψ), byLemma 3.2.31 N [ρ′] 
ρ ψ. Now, let [a, x : φ] := M ′ in N [ρ] →∗ let [a, x] :=

[∅,M1] in N [ρ] → N [ρ][a := ∅][x := M1] = N [ρ′]. Lemma 3.2.29 gives us the
laim.
100



•
Γ ⊢M : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)

Γ ⊢ eqRep(t, u,M) : t = uBy the indu
tion hypothesis, M ′

ρ ∀d. (d ∈I t→ d ∈ u)∧ (d ∈I u→ d ∈ t).By Lemma 3.2.27,M ′


ρ ∀d. (d ∈I [[t]]ρ → d ∈ [[u]]ρ)∧(d ∈I [[u]]ρ → d ∈ [[t]]ρ).By Lemma 3.2.33, eqRep(M ′) 
ρ [[t]]ρ = [[u]]ρ. Lemma 3.2.27 applied againgives us the 
laim.
•

Γ ⊢M : t = u
Γ ⊢ eqProp(t, u,M) : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)By the indu
tion hypothesis, M ′


ρ t = u. By Lemma 3.2.27, M ′

ρ [[t]]ρ =

[[u]]ρ. By Lemma 3.2.33, M ′ ↓ eqRep(N) and N 
ρ ∀d. (d ∈I [[t]]ρ → d ∈

[[u]]ρ) ∧ (d ∈I [[u]]ρ → d ∈ [[t]]ρ). Sin
e eqProp(t, u,M) = eqProp(M ′) →∗

eqProp(eqRep(N)) → N , by Lemma 3.2.29 eqProp(t, u,M) 
ρ ∀d. (d ∈I

[[t]]ρ → d ∈ [[u]]ρ) ∧ (d ∈I [[u]]ρ → d ∈ [[t]]ρ). Lemma 3.2.27 applied on
e againgives us the 
laim.
• For inProp and inRep, the proof is similar to the two previous 
ases.
•

Γ ⊢M : φA(t, ~u)

Γ ⊢ axRep(t, ~u,M) : t ∈I tA(~u)By the indu
tion hypothesis,M ′

ρ φA(t, ~u). By Lemma 3.2.27 this is equiva-lent to M ′


ρ φA([[t]]ρ,
−−→
[[u]]ρ). By Lemma 3.2.38 (axRep(M ′), [[t]]ρ) ∈ [[tA(~u)]]ρ,so axRep(M ′) 
ρ t ∈I tA(~u).

•
Γ ⊢M : t ∈I tA(~u)

Γ ⊢ axProp(t, ~u,M) : φA(t, ~u)By the indu
tion hypothesis, M ′

ρ t ∈I tA(~u). This means that M ′ ↓ vand (v, [[t]]ρ) ∈ [[tA(~u)]]ρ. By Lemma 3.2.38, v = axRep(N) and N 
ρ101



φA([[t]]ρ,
−−→
[[u]]ρ). By Lemma 3.2.27,N 
ρ φA(t, ~u). Moreover, axProp(t, ~u,M) =

axProp(M ′) →∗ axProp(axRep(N)) → N . Lemma 3.2.29 gives us the 
laim.
•

Γ ⊢M : ∀c. (∀b. b ∈I c→ φ(b,~t)) → φ(c,~t)

Γ ⊢ ind(M,~t) : ∀a. φ(a,~t)Sin
e ind(M ′) redu
es to λc. M ′ c (λb. λx. ind(M ′) b), by Lemma 3.2.29 itsu�
es to show that for all C, M ′ ∅ (λb. λx. ind(M ′) b) 
ρ φ(C,~t). Wepro
eed by indu
tion on λ-rank of C. Take any C. By the indu
tion hy-pothesis, M ′

ρ ∀c. (∀b. b ∈I c → φ(b,~t)) → φ(c,~t), so M ′ ↓ λc. N and

N [c := ∅] 
ρ ∀b. b ∈I C → φ(b,~t). By Lemma 3.2.30, it su�
es to show that
λb. λx. ind(M ′) b 
ρ ∀b. b ∈I C → φ(b,~t). Take any B and O 
ρ B ∈I C, weneed to show that ind(M ′)[x := O] ∅ 
ρ φ(B,~t). As x /∈ FV (M ′), it su�
esto show that ind(M ′) ∅ 
ρ φ(B,~t), whi
h, by Lemma 3.2.29, is equivalent to
M ′ ∅ (λb. λx. ind(M ′) b) 
ρ φ(B,~t). As O 
ρ B ∈I C, the λ-rank of B isless than the λ-rank of C and we get the 
laim by the indu
tion hypothesis.
�Corollary 3.2.42 (Normalization) If ⊢M : φ, then M ↓.Proof Take ρ mapping all free propositional variables of M to themselves, and allfree �rst-order variables a ofM to ∅. Then ρ |=⊢M : φ. By Theorem 3.2.41, M [ρ]normalizes. By the de�nition of ρ, M [ρ] = M . By Lemma 3.2.18, M normalizes.

�Normalization properties of set theoriesAll redu
tion systems we have 
onsidered so far are deterministi
 � the evaluation
ontexts uniquely determine the pla
e in the term where one of the redu
tion
102



rules is applied. However, it is possible to imagine extended systems, where baseredu
tion rules 
an be applied anywhere in the term in a nondeterministi
 fashion.In su
h extended systems, whi
h are a
tually more 
ommon in the world ofapplied type theories, su
h as Cal
ulus of (Indu
tive) Constru
tions or ExtendedCal
ulus of Constru
tions, the normalization has two aspe
ts: weak and strong:De�nition 3.2.43 A 
al
ulus weakly normalizes if there is a redu
tion path ter-minating in a value. It strongly normalizes if all redu
tion paths terminate in avalue.Obviously, strong normalization implies weak normalization. The other dire
-tion needs not hold; however, the gap between weak and strong normalization forthe 
al
uli used in proof assistants seems minimal. Apart from Martin-Löf's typetheory, all of them strongly normalize. Many of them 
an be spe
i�ed in the frame-work of Pure Type Systems and it has been 
onje
tured by Barendregt, Geuversand Klop that for Pure Type Systems, weak normalization entails strong nor-malization. For more about Pure Type Systems see [Bar92℄. Reasonable 
al
uli,su
h as Cal
ulus of Indu
tive Constru
tions or Extended Cal
ulus of Constru
-tions, have also the property that their in
onsisten
y implies the existen
e of anon-normalizing term, whi
h violates even weak normalization of the 
al
ulus.Suppose we extend our redu
tion systems to enable appli
ations of base re-du
tions anywhere in lambda terms. Then λ→, λH and λS strongly normalize.However, most surprisingly, λZ does not. One trivial reason are the ind terms.However, even without them, the system would not strongly normalize, as the fol-lowing 
ounterexample, invented by Mar
el Crabbé and adapted to our frameworkshows. The original 
ounterexample was not a part of a published paper. Althoughit is available on the author's website [Cra℄, our presentation is as 
omprehensiveas any other. 103



Theorem 3.2.44 (Crabbé's 
ounterexample) There is a formula φ and term
M su
h that ⊢M : φ and M does not strongly normalize.Proof Let t = {x ∈ 0 | x ∈ x→ ⊥}. Consider the terms:
N ≡ λy : t ∈ t. snd(sepProp(t, 0, y)) y M ≡ λx : t ∈ 0. N (sepRep(t, 0, 〈x,N〉))We �rst show that these terms 
an be typed. Let T denote the following prooftree:

y : t ∈ t ⊢ y : t ∈ {x ∈ 0 | x ∈ x→ ⊥}

y : t ∈ t ⊢ sepProp(t, 0, y)) : t ∈ 0 ∧ t ∈ t→ ⊥

y : t ∈ t ⊢ snd(sepProp(t, 0, y)) : t ∈ t→ ⊥ y : t ∈ t ⊢ y : t ∈ t

y : t ∈ t ⊢ snd(sepProp(t, 0, y)) y : ⊥

⊢ λy : t ∈ t. snd(sepProp(t, 0, y)) y : t ∈ t→ ⊥By Weakening, we 
an also obtain a tree T1 showing that x : t ∈ 0 ⊢ N : t ∈ t→ ⊥.The following proof tree shows that ⊢M : t ∈ 0 → ⊥:
T1

x : t ∈ 0 ⊢ N : t ∈ t→ ⊥

x : t ∈ 0 ⊢ x : t ∈ 0
T1

x : t ∈ 0 ⊢ N : t ∈ t→ ⊥
x : t ∈ 0 ⊢ 〈x,N〉 : t ∈ 0 ∧ t ∈ t→ ⊥

x : t ∈ 0 ⊢ sepRep(t, 0, 〈x,N〉) : t ∈ t

x : t ∈ 0 ⊢ N (sepRep(t, 0, 〈x,N〉)) : ⊥

⊢ λx : t ∈ 0. N (sepRep(t, 0, 〈x,N〉)) : t ∈ 0 → ⊥We now exhibit an in�nite redu
tion sequen
e starting from M :
M = λx : t ∈ 0. N (sepRep(t, 0, 〈x,N〉)) =

λx : t ∈ 0. (λy : t ∈ t. snd(sepProp(t, 0, y)) y) (sepRep(t, 0, 〈x,N〉)) →

λx : t ∈ 0. snd(sepProp(t, 0, (sepRep(t, 0, 〈x,N〉)))) (sepRep(t, 0, 〈x,N〉)) →

λx : t ∈ 0. snd(〈x,N〉) (sepRep(t, 0, 〈x,N〉)) →

λx : t ∈ 0. N (sepRep(t, 0, 〈x,N〉)) = M → . . .

�Moreover, a slight (from the semanti
 point of view) modi�
ation to IZFR,namely making it non-well-founded, results in a system whi
h is not even weakly104



normalizing. A very small fragment is su�
ient for this e�e
t to arise. Let T bean intuitionisti
 set theory 
onsisting of 2 axioms:
• (C) ∀a. a ∈ c↔ a = c

• (D) ∀a. a ∈ d↔ a ∈ c ∧ a ∈ a→ a ∈ a.The 
onstant c denotes a non-well-founded set. The existen
e of d 
an bederived from the separation axiom: d = {a ∈ c | a ∈ a → a ∈ a}. The lambda
al
ulus 
orresponding to T is de�ned just as for IZFR.Lemma 3.2.45 T ⊢ d ∈ cProof It su�
es to show that d = c. Take any e ∈ d, then e ∈ c. On the otherhand, suppose e ∈ c. Sin
e obviously e ∈ e→ e ∈ e, we also get e ∈ d. �Theorem 3.2.46 There is a formula φ and a term M su
h that ⊢T M : φ and Mdoes not weakly normalize.Proof Let N be the lambda term 
orresponding to the proof of Lemma 3.2.45along with the proof tree TN . Take φ = d ∈ d→ d ∈ d. Consider the terms:
O ≡ λx : d ∈ d. snd(dProp(d, c, x)) x M ≡ O (dRep(d, c, 〈N,O〉)).Again, we �rst show that these terms are typable. Let S be the following prooftree, showing that ⊢ O : d ∈ d→ d ∈ d:

x : d ∈ d ⊢ x : d ∈ d
x : d ∈ d ⊢ dProp(d, c, x)) : d ∈ c ∧ d ∈ d→ d ∈ d

x : d ∈ d ⊢ snd(dProp(d, c, x)) : d ∈ d→ d ∈ d x : d ∈ d ⊢ x : d ∈ d

x : d ∈ d ⊢ snd(dProp(d, c, x)) x : d ∈ d

⊢ λx : d ∈ d. snd(dProp(d, c, x)) x : d ∈ d→ d ∈ d

105



Then the following proof tree shows that M is typable:
S

⊢ O : d ∈ d→ d ∈ d

TN
⊢ N : d ∈ c

S
⊢ O : d ∈ d→ d ∈ d

⊢ 〈N,O〉 : d ∈ c ∧ d ∈ d→ d ∈ d

⊢ dRep(d, c, 〈N,O〉) : d ∈ d

⊢ O (dRep(d, c, 〈N,O〉)) : d ∈ dFinally, we exhibit the only redu
tion sequen
e starting from M :
M = O (dRep(d, c, 〈N,O〉)) =

(λx : d ∈ d. snd(dProp(d, c, x)) x) (dRep(d, c, 〈N,O〉)) →

snd(dProp(d, c, dRep(d, c, 〈N,O〉))) (dRep(d, c, 〈N,O〉)) →

snd(〈N,O〉) (dRep(d, c, 〈N,O〉)) →

O (dRep(d, c, 〈N,O〉)) = M → . . .

�Therefore 
onstru
tive set theories dwell on a pre
arious border between nor-malization and la
k of thereof. An ex
iting theoreti
al 
hallenge, whi
h we leaveopen, is to provide a more detailed map of this border.Appli
ationsAs before, we 
an derive the standard properties of 
onstru
tive theories:Corollary 3.2.47 (Disjun
tion Property) If IZFR⊢ φ ∨ ψ, then IZFR⊢ φ orIZFR⊢ ψ.Proof Standard. �To show Numeri
al Existen
e Property, we �rst de�ne an extra
tion fun
tion
F whi
h takes a proof ⊢ M : t ∈ ω and returns a natural number n. F works asfollows:It applies Lemma 3.2.9 to obtain a proof ⊢ N : t = 0 ∨ ∃y ∈ ω. t = S(y). Fthen normalizes N to either inl(O) or inr(O). In the former 
ase, F returns 0.106



In the latter, ⊢ O : ∃y. y ∈ ω ∧ t = S(y). Normalizing O it gets [t1, P ], where
⊢ P : t1 ∈ ω ∧ t = S(t1). Normalizing P it obtains Q su
h that ⊢ Q : t1 ∈ ω. Then
F returns F (⊢ Q : t1 ∈ ω) + 1.To show that F terminates for all its arguments, 
onsider the sequen
e ofterms t, t1, t2, . . . obtained throughout the exe
ution of F . We have IZFR⊢ t ∈ ω,IZFR⊢ t = S(t1), IZFR⊢ t1 = S(t2) and so on. The length of the sequen
e istherefore exa
tly the natural number denoted by t.Corollary 3.2.48 (Numeri
al Existen
e Property) If IZFR⊢ ∃x ∈ ω. φ(x),then there is a natural number n and term t su
h that IZFR⊢ φ(n), where n denotesthe IZFR numeral 
orresponding to n.Proof As before, use the Curry-Howard isomorphism to get a value [t,M ] su
hthat ⊢ [t,M ] : ∃x. x ∈ ω ∧ φ(x). Thus ⊢ M : t ∈ ω ∧ φ(t), so M ↓ 〈M1,M2〉and ⊢ M1 : t ∈ ω. Take n = F (⊢ M1 : t ∈ ω). By pat
hing together the proofsIZFR⊢ t = S(t1), IZFR⊢ t1 = S(t2), . . . ,IZFR⊢ tn = 0 obtained throughout theexe
ution of F , we get IZFR⊢ t = n. By the Leibniz axiom, IZFR⊢ φ(n). �There are also two properties 
hara
teristi
 of 
onstru
tive set theories:Corollary 3.2.49 (Term Existen
e Property) If IZFR⊢ ∃x. φ(x), then thereis a term t su
h that IZFR⊢ φ(t).Proof By the Curry-Howard isomorphism, there is a λZ-term M su
h that ⊢M :

∃x. φ. By normalizing M and applying Canoni
al Forms, we get [t, N ] su
h that
⊢ N : φ(t) and thus by the Curry-Howard isomorphism IZFR⊢ φ(t). �Corollary 3.2.50 (Set Existen
e Property) If IZFR⊢ ∃x. φ(x) and φ(x) isterm-free, then there is a term-free formula ψ(x) su
h that IZFR⊢ ∃!x. φ(x)∧ψ(x).

107



Proof Take t from Term Existen
e Property, so that IZFR⊢ φ(t). We showedbefore that IZFR is a de�nitional extension of its term-free version, so there isa term-free formula ψ(x) de�ning t su
h that IZFR⊢ (∃!x. ψ(x)) ∧ ψ(t). ThenIZFR⊢ ∃!x. φ(x) ∧ ψ(x) 
an be easily derived. �We 
ould now present a 
on
rete example of program extra
tion in IZFR, justas we did for HA and λH . However, su
h an example would be prohibitively large,given the amount of prerequisite development in set theory ne
essary to de�neeven an addition fun
tion. Instead, we show a general way of program extra
tionfrom IZFR, independent of the underlying lambda 
al
ulus and using only DP,NEP and TEP.3.3 Program extra
tionWe now des
ribe a generi
 pro
edure of extra
tion from IZFR proofs. The resultsof this se
tion are also available in [CM06℄. To fa
ilitate the des
ription, we willuse a very simple fragment of type theory, whi
h we 
all TT 0.The types of TT 0 are generated by the following abstra
t grammar.
τ ::= ∗ | Pφ | nat | bool | (τ, τ) | τ + τ | τ → τWe asso
iate with ea
h type τ of TT 0, a set of its elements, whi
h are �nitisti
obje
ts. The set of elements of τ is denoted by El(τ) and de�ned by stru
turalindu
tion on τ :

• El(∗) = {∗}.
• El(Pφ) is the set of all IZFR proofs of formula φ.
• El(nat) = N, the set of natural numbers.
• El(bool) 
ontains two obje
ts: true, false.108



• M ∈ El((τ1, τ2)) is the set 
onsisting of all pairs (M,N) su
h that M is in
El(τ1) and N is in El(τ2).

• M ∈ El(τ1 + τ2) i� either M = inl(M1) and M1 ∈ El(τ1) or M = inr(M1)and M1 ∈ El(τ2).
• M ∈ El(τ1 → τ2) i� M is a method whi
h given any element of El(τ1)returns an element of El(τ2).In the last 
lause, we use an abstra
t notion of �method�. It will not be ne
essaryto formalize it, but for the interested reader, all �methods� we use are fun
tionsprovably re
ursive in ZF + Con(ZF ). This is be
ause the normalization theorem
an be formalized given a model of IZFC and ZF is equi
onsistent with IZFC [Fri73℄.The notation M : τ means that M ∈ El(τ).We 
all a TT 0 type pure if it does not 
ontain ∗ and Pφ. There is a naturalmapping of pure types TT 0 to sets τ → [[τ ]], de�ned as follows:
• [[nat]] = N.
• [[bool]] = 2.
• [[(τ, σ)]] = [[τ ]] × [[σ]].
• [[τ + σ]] = [[τ ]] + [[σ]], the disjoint union of [[τ ]] and [[σ]].
• [[τ → σ]] = [[τ ]] → [[σ]].If a set (represented by an IZFR term) is in a 
odomain of the map above, we 
allit type-like. If a set A is type-like, then there is a unique pure type τ su
h that

[[τ ]] = A. We denote this type Type(A).Before we pro
eed further, let us extend TT 0 with a new type Qτ , where τ is anypure type of TT 0. The members of El(Qτ ) are pairs (t,P) su
h that P ⊢ t ∈ [[τ ]](P is an IZFR proof of t ∈ [[τ ]]). Note that any natural number n 
an be inje
tedinto Qnat. 109



We �rst de�ne a helper fun
tion T , whi
h takes a pure type τ and returnsanother type. Intuitively, T (τ) is the type of the extra
t from a statement ∃x. x ∈

[[τ ]]. T is de�ned by indu
tion on τ :
• T (bool) = bool.
• T (nat) = nat.
• T ((τ, σ)) = (T (τ), T (σ))

• T (τ + σ) = T (τ) + T (σ).
• T (τ → σ) = Qτ → T (σ) (in order to utilize an IZFR fun
tion from [[τ ]] to

[[σ]] we need to supply an element of a set [[τ ]], that is an element of Qτ )Now we assign to ea
h formula φ of IZFR a TT 0 type φ, whi
h intuitivelydes
ribes the 
omputational 
ontent of an IZFR proof of φ. We will use the type ∗to mark parts of the proofs we are not interested in. We do it by indu
tion on φ:
• a ∈ b = ∗.
• a = b = ∗ (atomi
 formulas 
arry no useful 
omputational 
ontent).
• φ1 ∨ φ2 = φ1 + φ2.
• φ1 ∧ φ2 = (φ1, φ2).
• φ1 → φ2 = Pφ1

→ φ2.
• ∃a ∈ A. φ1 = (T (Type(A)), φ1), if A is type-like.
• ∃a ∈ A. φ1 = ∗, if A is not type-like.
• ∃a. φ1 = ∗.
• ∀a ∈ A. φ1 = QType(A) → φ1, if A is type-like.
• ∀a ∈ A. φ1 = ∗, if A is not type-like.
• ∀a. φ1 = ∗. 110



The de�nition is tailored for the developments in Se
tion 5, but it 
an easilybe extended to allow meaningful extra
tion from a larger 
lass of formulas, forexample we 
ould extra
t a term from ∃a. φ1 using TEP. For now, we presentsome natural examples of our translation in a
tion:1. ∃x ∈ N. x = x = 〈nat, ∗〉.2. ∀x ∈ N∃y ∈ N. φ = Qnat → 〈nat, φ〉.3. ∀f ∈ N → N∃x ∈ N. f(x) = 0 = Qnat→nat → 〈nat, ∗〉.The extra ∗ 
an be easily dis
arded from types (and extra
ts).Lemma 3.3.1 For any term t, whi
h is not type-like, φ[a := t] = φ.Proof Straightforward indu
tion on φ. �Lemma 3.3.2 (IZFR) (∃a ∈ 2. φ(a)) i� φ(0) ∨ φ(1).Proof Suppose there is a ∈ 2 su
h that φ(a). Then either a = 0 or a = 1. In theformer 
ase φ(0), in the latter φ(1). In any 
ase φ(0) ∨ φ(1). �We are now ready to des
ribe the extra
tion fun
tion E, whi
h takes an IZFRproof P of a formula φ and returns an obje
t of TT 0 type φ. We do it by indu
tionon φ, 
he
king on the way that the returned obje
t is of type φ. Re
all thatDP, TEP and NEP denote Disjun
tion, Term and Numeri
al Existen
e Property,respe
tively. Case φ of:
• a ∈ b � return ∗. We have ∗ : ∗.
• a = b � return ∗. We have ∗ : ∗, too.
• φ1 ∨ φ2. Apply DP to P to get a proof P1 of either φ1 or φ2. In the former
ase return inl(E(P1)), in the latter return inr(E(P1)). By the indu
tionhypothesis, E(P1) : φ1 (or E(P1) : φ2), so E(P) : φ follows.111



• φ1 ∧ φ2. Then there are proofs P1 and P2 su
h that P1 ⊢ φ1 and P2 ⊢ φ2.Return a pair (E(P1), E(P2)). By the indu
tion hypothesis, E(P1) : φ1 and
E(P2) : φ2, so (E(P1), E(P2)) : φ1 ∧ φ2.

• φ1 → φ2. Return a fun
tion G whi
h takes an IZFR proof Q of φ1, applies
P to Q (using the modus-ponens rule of the �rst-order logi
) to get a proof
R of φ2 and returns E(R). By the indu
tion hypothesis, any su
h E(R) isin El(φ2), so G : Pφ1

→ φ2.
• ∃a ∈ A. φ1(a), where A is type-like. Let T = Type(A). We pro
eed byindu
tion on T , 
ase T of:� bool. By Lemma 3.3.2, we have φ1(0)∨φ1(1). Apply DP to get a proof

Q of either φ1(0) or φ1(1). Let b be false or true, respe
tively. Return apair (b, E(Q)). By the indu
tion hypothesis, E(Q) : φ1([[b]]). By Lemma3.3.1, E(Q) : φ1.� nat. Apply NEP to P to get a natural number n and a proof Q of φ1(n).Return a pair (n,E(Q)). By the indu
tion hypothesis, E(Q) : φ1(n),by Lemma 3.3.1, E(Q) : φ1, so (n,E(Q)) : (nat, φ1).� (τ, σ). Constru
t a proof Q of ∃a1 ∈ [[τ ]]∃a2 ∈ [[σ]]. a = 〈a1, a2〉 ∧ φ1.Let M = E(Q). By the indu
tion hypothesis M is a pair 〈M1,M2〉su
h that M1 : T (τ) and M2 : ∃a2 ∈ [[σ]]. a = 〈a1, a2〉 ∧ φ1. There-fore M2 is a pair 〈M21,M22〉, M21 : T (σ) and M22 : a = 〈a1, a2〉 ∧ φ1.Therefore M22 is a pair 〈N,O〉, where O : φ1. Therefore 〈M1,M21〉 :

T ((τ, σ)), so 〈〈M1,M21〉, O〉 : (T ((τ, σ)), φ1) and we are justi�ed to re-turn 〈〈M1,M21〉, O〉.� τ + σ. Constru
t a proof Q of (∃a1 ∈ [[τ ]]. φ1) ∨ (∃a1 ∈ [[σ]]. φ1). ApplyDP to get the proof Q1 of (without loss of generality) ∃a1 ∈ [[τ ]]. φ1. Let112



M = E(Q1). By the indu
tion hypothesis, M = 〈M1,M2〉, where M1 :

T (τ) andM2 : φ1. Return 〈inl(M1),M2〉, whi
h is of type (T (τ+σ), φ1).� τ → σ. Use TEP to get a term f su
h that (f ∈ [[τ ]] → [[σ]]) ∧ φ1(f).Constru
t proofs Q1 of ∀x ∈ [[τ ]]∃y ∈ [[σ]].f(x) = y and Q2 of φ1(f).By the indu
tion hypothesis and Lemma 3.3.1, E(Q2) : φ1. Let Gbe a fun
tion whi
h works as follows: G takes a pair t,R su
h that
R ⊢ t ∈ [[τ ]], applies Q1 to t,R to get a proof R1 of ∃y ∈ [[σ]]. f(t) = yand 
alls E(R1) to get a term M . By the indu
tion hypothesis, M :

∃y ∈ [[σ]]. f(t) = y, so M = 〈M1,M2〉, where M1 : T (σ). G returns
M1. Our extra
tion pro
edure E(P) returns 〈G,E(Q2)〉. The type of
〈G,E(Q2〉) is 〈Qτ → T (σ), φ1〉 whi
h is equal to 〈T (τ → σ), φ1〉.

• ∃a ∈ A. φ1(a), where A is not type-like. Return ∗.
• ∃a. φ1(a), ∀a. φ1(a). Return ∗.
• ∀a ∈ A. φ1(a), where A is type-like. Return a fun
tion G whi
h takes anelement (t,Q) of QType(A), applies P to t and Q to get a proof R of φ1(t), andreturns E(R). By the indu
tion hypothesis and Lemma 3.3.1, E(R) : φ1, so
G : QType(A) → φ1.

• ∀a ∈ A. φ1(a), where A is not type-like. Return ∗.We have des
ribed a general method of extra
ting programs from IZFR proofs.The salient feature of the method is that the only information it utilizes aboutIZFR is that it possesses DP, NEP and TEP. Moreover, it 
an easily be seen thatforegoing the 
apability of higher-order program extra
tion, we 
ould use onlyDP and NEP. The method 
an therefore be applied to provide the extra
tionme
hanism from any 
onstru
tive theory with these properties, for example CZF[Rat05a℄. 113



3.4 Histori
al 
ontextWhile Brouwer 
reated the philosophy of intuitionism, it was Arend Heyting whoformalized IPC and IFOL (against the spirit of Brouwer's view of mathemati
s, wemight add). Heyting Arithmeti
 was de�ned not mu
h later [Hey31℄. Troelstra'sbook [Tro73℄ gives an ex
ellent overview of resear
h on 
onstru
tive arithmeti
s.For the des
ription of 
onstru
tivism and various 
onstru
tive formal systems, were
ommend [Bee85℄ and [TvD88℄. Gödel's System T [Göd58℄ exhibited 
omputa-tional 
ontent of arithmeti
 in a style 
lose to modern lambda 
al
uli.Realizability originated with Kleene's paper [Kle45℄, where he applied the te
h-nique to HA. Sin
e then, it has been generalized and applied to a variety of systems[Tro98℄. The most impressive appli
ation from our point of view, developed byDavid M
Carty [M
C84℄, is of 
ourse set theory.The Curry-Howard isomorphism 
an be tra
ed ba
k to the remark of Curry[CFC58℄ whi
h we 
ited in the introdu
tion to this 
hapter. However, quoting[SU06℄: �Brouwer - Heyting - Kolmogorov - S
hön�nkel - Curry - Meredith - Kleene- Feys - Gödel - Läu
hli - Kreisel - Tait - Lawvere - Howard - de Bruijn - S
ott- Martin-Löf - Girard - Reynolds - Stenlund - Constable - Coquand - Huet - . . .isomorphism might be a more appropriate name, still not in
luding all the 
ontri-butions.�. We strongly re
ommend [SU06℄ as a textbook and a sour
e of furtherreferen
es regarding the isomorphism.IZF in its version with Repla
ement was introdu
ed by Myhill [Myh73℄. Inthat paper he showed DP, NEP, TEP and SEP for the theory, using a 
ompli-
ated, non
onstru
tive method. Not mu
h later, Friedman showed that IZFC isequi
onsistent with ZFC [Fri73℄ and that it has the same set of provably re
ursivefun
tions [Fri78℄. In a joint paper with �£edrov [FS85℄, they showed that IZFRis weaker that IZFC ; the exa
t relation between these theories is still unknown.114



M
Carty, a student of Dana S
ott, wrote his thesis [M
C84℄, summarized ni
elyby Lipton [Lip95℄, in 1985. A good des
ription of the results up to 1985 
an befound in [Bee85, �85℄. After that, the resear
h on IZF slowed down. Before our �rstpaper [Mo
06a℄ appeared, further resear
h on 
onstru
tive set theories was 
on
en-trated on weaker subtheories, su
h as A
zel's CZF [A
z78, AR01℄ or Intuitionisti
Kripke-Platek [Lub02℄. One notable ex
eption was Lubarsky's investigation of in-tuitionisti
 L [Lub93℄. Re
ently, Rathjen [Rat06℄ used realizability-with-truth toshow DP and NEP for extensions of IZFC with various 
hoi
e prin
iples.Several normalization results for impredi
ative 
onstru
tive set theories mu
hweaker than IZFR exist. Bailin [Bai88℄ proved strong normalization of a 
onstru
-tive set theory without the indu
tion and repla
ement axioms. Miquel interpreteda theory of similar strength in a Pure Type System [Miq04℄. In [Miq03℄ he also de-�ned a strongly normalizing lambda 
al
ulus with types based on Fω.2, 
apable ofinterpreting IZFC without the ∈-indu
tion axiom. This result was later extended� Dowek and Miquel [DM06℄ interpreted a version of 
onstru
tive Zermelo settheory in a strongly normalizing dedu
tion-modulo system.Krivine [LK01℄ de�ned realizability using lambda 
al
ulus for 
lassi
al set the-ory 
onservative over ZF. The types for the 
al
ulus were de�ned. However, itseems that the types 
orrespond more to the truth in the realizability model thanto provable statements in the theory. Moreover, the 
al
ulus does not even weaklynormalize.

115



CHAPTER 4BEYOND IZFIn this se
tion we investigate some extensions to IZFR. The �rst one, ina

essi-ble sets, extends the theory with a 
apability of providing 
onstru
tive set-theoreti
semanti
s for popular 
onstru
tive theorem provers based on type theory. These
ond one extends the logi
 of IZFR with features 
hara
teristi
 of dependent settheories. The results of this 
hapter 
an also be found in [Mo
06b℄ and [Mo
07℄,respe
tively.4.1 Ina

essible setsSin
e the advent of the Curry-Howard isomorphism, many systems exploitingthe isomorphism, with program extra
tion 
apability, have been built. They in-
lude Agda/Alfa [Coq, Hal℄, Coq [The04℄, Lego [LP92℄, Minlog [BBS+98℄, Nuprl[CAB+86℄ � to name a few. Some are quite powerful � for example Coq 
an in-terpret an intuitionisti
 version of Zermelo's set theory [Wer97℄. With su
h powerat hand, these systems have the potential of be
oming very useful tools.There is, however, one problem they all share, namely their foundational basis.In order to use Coq or Nuprl, one has to master the ways of types, a settingquite di�erent from set theory, the standard framework for doing mathemati
s.A new
omer to this world, presented even with Π and Σ types emulating familiaruniversal and existential quanti�ers, is likely to be
ome 
onfused. The fa
t that the
onsisten
y of the systems is usually justi�ed by a normalization theorem in oneform or other, does not make matters easier. Even when set-theoreti
 semanti
sis provided, it does not help mu
h, given that the translation of �the stamement
∀x : nat, φ(x) is provable� is �the set Πn∈N[[φ[x := nn]]] is inhabited�, instead of theexpe
ted �for all x ∈ N, φ(x) holds�. The systems whi
h are not based on type116



theory share the problem of unfamiliar foundations. This is a serious short
omingpreventing the systems from be
oming widely used, as the initial barrier to 
rossis set quite high.The work presented in the previous 
hapter 
an be seen as a �rst step toprovide a solution to this problem, as IZFR enables extra
tion of programs fromproofs, while using the standard, natural language of set theory. However, eventhough IZFR is quite powerful, it is un
lear if it is as strong as type theoriesunderlying the systems of Coq and LEGO, Cal
ulus of Indu
tive Constru
tions(CIC) and Extended Cal
ulus of Constru
tions (ECC), as all known set-theoreti
alinterpretations of these theories use ω-many strongly ina

essible 
ardinals [Wer97,A
z99℄.We therefore extend IZFR to in
orporate ω-many ina

essible sets, whi
h we
all IZFRω. Our axiomatization uses an indu
tive de�nition of ina

essible sets.IZFRω extended with ex
luded middle is equivalent to ZF with ω-many strongina

essible 
ardinals.In a 
onstru
tive setting ina

essible sets perform a similar fun
tion to stronglyina

essible 
ardinals in the 
lassi
al world and universes in type theories. Theyare �large� sets/types, 
losed under 
ertain operations ensuring that they give riseto models of set/type theories. The 
losure 
onditions largely 
oin
ide in bothworlds and an ina

essible 
an be used to provide a set-theoreti
 intepretation of auniverse [Wer97, A
z99℄. Both CIC and ECC have ω-many universes. By results ofA
zel [A
z99℄, IZFRω is strong enough to interpret ECC. It is reasonable to expe
tthat CIC 
ould be interpreted too, as the indu
tive types in CIC need to satisfypositivity 
onditions, and su�
iently strong indu
tive de�nitions are available inIZFRω due to the presen
e of the Power Set and unrestri
ted Separation axioms.Indeed, Werner's set-theoreti
 interpretation [Wer97℄ of a large fragment of CIC117



uses only the existen
e of indu
tively-de�ned sets in the set-theoreti
 universe tointerpret indu
tively-de�ned types.Our normalization result makes it possible to extra
t programs from proofs.Thus IZFRω has all the proof-theoreti
 power of LEGO and likely Coq, uses familiarset-theoreti
 language and enables program extra
tion from proofs. This makes itan attra
tive basis for a powerful and easy to use theorem prover.To extend IZFR with ina

essible sets, we add a family of axioms (INACi)for i > 0. We 
all the resulting theory IZFRω. The axiom (INACi) asserts theexisten
e of the i-th ina

essible set, denoted by a new 
onstant symbol Vi, and isde�ned as follows:
(INACi) ∀c. c ∈I Vi ↔ φi1(c, Vi) ∧ ∀d. φi2(d) → c ∈ dFollowing the 
onventions set up for IZFR, φINACi

(c) is φi1(c, Vi)∧∀d. φi2(d) → c ∈ d.The formula φi1(c, d) intuitively sets up 
onditions for c being a member of Vi, while
φi2(d) says what it means for d to be ina

essible. To streamline the de�nition, weset V0 to denote ω.De�nition 4.1.1 The formula φi1(c, Vi) for i > 0 is a disjun
tion of the following�ve 
lauses:1. c = Vi−12. there is a ∈ Vi su
h that c ∈ a.3. there is a ∈ Vi su
h that c is a union of a.4. there is a ∈ Vi su
h that c is a power set of a.5. there is a ∈ Vi su
h that c is a fun
tion from a to Vi.De�nition 4.1.2 The formula φi2(d) for i > 0 is a 
onjun
tion of the following�ve 
lauses: 118



1. Vi−1 ∈ d.2. ∀e, f. e ∈ d ∧ f ∈ e→ f ∈ d.3. ∀e ∈ d.
⋃
e ∈ d.4. ∀e ∈ d. P (e) ∈ d.5. ∀e ∈ d. ∀f ∈ e→ d. f ∈ d, where e→ d denotes the set of all fun
tions from

e to d.Brie�y, the i-th ina

essible set is the smallest transitive set 
ontaining Vi−1as an element and 
losed under unions, power sets and taking fun
tions from itselements into itself. As in 
ase of IZFR, we 
an derive the ∈I -free version of theaxiom:Lemma 4.1.3 ∀c. c ∈ Vi ↔ φi1(c, Vi) ∧ ∀d. φi2(d) → c ∈ d.Proof The right-to-left dire
tion is immediate. For the left-to-right dire
tion, sup-pose c ∈ Vi. Then there is e ∈I Vi su
h that c = e. First we show that φi1(C, Vi)holds. We have �ve possible situations:
• e = Vi−1. Then also c = Vi−1.
• There is a ∈ Vi su
h that e ∈ a. By the Leibniz axiom, c ∈ a as well.
• There is a ∈ Vi su
h that e is a union of a. Then also c =

⋃
a.

• There is a ∈ Vi su
h that e is a power set of a. Then also c = P (a).
• There is a ∈ Vi su
h that e is a fun
tion from a to Vi. This means that forall x ∈ a there is exa
tly one y ∈ Vi su
h that (x, y) ∈ e and for all z ∈ ethere is x ∈ a and y ∈ Vi su
h that z = (x, y). By c = e and Extensionalitywe also have for all x ∈ a there is exa
tly one y ∈ Vi su
h that (x, y) ∈ c. If
z ∈ c, then also z ∈ e, so we get x and y su
h that z = (x, y), whi
h showsthe 
laim. 119



For the se
ond part of the 
laim, note that if e is a member of every set d satisfying
φi2(d), then by the Leibniz axiom so is c. This ends the proof. �It is easy to see that IZFRω+ EM is equivalent to ZF with ω-many stronglyina

essible 
ardinals. For a theory T , letM(T ) denote a senten
e �T has a model�.To show that the set Vi de�ned by (INACi) behaves as an ina

essible set in IZFRωwe prove:Theorem 4.1.4 (IZFRω) For all i > 0, Vi |=IZFR+M(IZFR) + M(IZFR+ M(IZFR))+ . . . (i times).Proof By Clause 2 in the De�nition 4.1.1, V1 is transitive, so the equality andmembership relations are absolute. Clause 1 gives us ω ∈ V1 and sin
e its de�nitionis ∆0, V1 |=(INF). Clauses 3 and 4 provide the (UNION) and (POWER) axioms.Transitivity then gives (SEP) and (PAIR), while Clause 5, thanks to Lemma 3.2.12,gives (REPLφ). The existen
e of the empty set follows by (INF) and (SEP). Forthe Indu
tion axiom, we need to show:
∀~f ∈ Vi. (∀a ∈ Vi. (∀b ∈ Vi. b ∈ a→ φVi(b, ~f)) → φVi(a, ~f)) → ∀a ∈ Vi. φ

Vi(a, ~f)Take any ~F ∈ Vi. It su�
es to show that:
(∀a. a ∈ Vi → (∀b. b ∈ Vi → b ∈ a→ φVi(b, ~F )) → φVi(a, ~F )) → ∀a. a ∈ Vi → φVi(a, ~F )This is equivalent to:
(∀a. (∀b. b ∈ a→ b ∈ Vi → φVi(b, ~F )) → a ∈ Vi → φVi(a, ~F )) → ∀a. a ∈ Vi → φVi(a, ~F )But this is the instan
e of the indu
tion axiom for the formula a ∈ Vi → φVi(a, ~f).Thus V1 |=IZFR. Sin
e V1 ∈ V2, V2 |= IZFR+ M(IZFR). Sin
e V2 ∈ V3,
V3 |=IZFR+ M(IZFR+ M(IZFR)). Pro
eeding in this manner by indu
tion we getthe 
laim. �120



We now extend λZ to the 
al
ulus λZω 
orresponding to IZFRω. The new termsare:
inaciProp(t,M) | inaciRep(t,M),together with the obvious redu
tion rule:
inaciProp(t, inaciRep(t,M)) →MThus, ina

essibles �t neatly in the framework of Prop and Rep terms. It is easyto see that the proofs of all properties proved for IZFR and λZ transfer un
hangedto IZFRω and λZω. We therefore pass without further ado to the de�nition ofrealizability. The 
al
ulus λZω and realizers are de�ned just as for IZFR.As IZFR has ω-many ina

essibles, it is not surprising that we need to workin a meta-theory with ω-many ina

essibles. We denote the i-th ina

esible by Γiand 
hoose them so that Γi ∈ Γi+1.We need to extend the de�nition of realizability by the meaning of ina

essibleterms. We set [[Vi]]ρ ≡ Ui, where Ui is de�ned as follows. Re
all �rst that theaxiom (INACi) has the following form:

(INACi) ∀c. c ∈I Vi ↔ φi1(c, Vi) ∧ ∀d. φi2(d) → c ∈ d.We de�ne a monotoni
 operator F on sets as:
F (A) = A∪{(inaciRep(N), C) ∈ λZωvc×V

λ
Γi
|N 
ρ φ

i
1(C,A)∧∀d. φi2(d) → C ∈ d}.We set Ui to be the smallest �xpoint of F . Formally, Ui is generated by thefollowing trans�nite indu
tive de�nition on ordinals:

Ui,γ = F (
⋃

β<γ

Ui,β) Ui =
⋃

γ∈ORDUi,γSin
e F adds only elements from λZωvc × V λ
Γi
, any element of Ui is in λZωvc × V λ

Γi
,so Ui ∈ V λ

Γi+1
. 121



The proof that the resulting realizability relation is not 
ir
ular must be slightlymodi�ed. We need one extra de�nition:De�nition 4.1.5 Let M(N) denote the set of all multisets over N. Formally, amember A of M(N) is a fun
tion from N to N, returning for any n the number of
opies of n in A. We impose the standard well-founded ordering on M(N). Re
allfrom De�nition 3.2.25 that Occ(Vi, x) is the number of o

uren
es of Vi in x. Wede�ne a fun
tion V taking terms and formulas into M(N): V (x) for any number
i returns Occ(Vi, x), for x being either a term or a formula.Lemma 4.1.6 The de�nition of realizability is well-founded.Proof Use the measure fun
tion m whi
h takes a 
lause in the de�nition andreturns an element of M(N) × N

3 with the lexi
ographi
al order:
m(M 
ρ φ) = (V (φ), Occ(ω, φ), FS(φ), �stru
tural 
omplexity of φ�)

m([[t]]ρ) = (V (t), Occ(ω, t), FS(t), 0)Then the measure of the de�niendum is always greater than the measure of thede�niens � in the 
lauses for formulas the stru
tural 
omplexity goes down, whilethe rest of parameters do not grow larger. In the de�nition of [[Vi]]ρ, one Vi disap-pears repla
ed by two Vi−1's. In the de�nition of [[ω]]ρ, one ω disappears. Finally,in the de�nition of [[tA(~u)]]ρ, the topmost tA disappears, while no new Vi's and ω'sappear. �We need a few more te
hni
al lemmas to rea
h Lemma 4.1.14. They amount totedious 
omputations of ranks, ne
essary to show the new 
ase in Lemma 4.1.14.First, we �x one extra realizer:Lemma 4.1.7 There is a realizer lei su
h that lei 
ρ ∀a, b, c. a ∈ c∧a = b → b ∈ c.Proof Follows by Lemmas 3.2.5, 3.2.13 and Theorem 3.2.41. �122



Lemma 4.1.8 λrk(C) ≤ rk(C+) + ω.Proof If (M,A) ∈ C, then M 
ρ A ∈I C. We have inRep([∅, 〈M, eqRefl ∅〉]) 
ρ

A ∈ C, so (inRep([∅〈M, eqRefl ∅〉]), A) ∈ C+. The extra ω is there to deal withpossible di�
ulties with �nite C's, as we do not know a priori the rank of set-theoreti
 en
oding of inRep([∅, 〈M, eqRefl ∅〉]. �Lemma 4.1.9 If N 
ρ ∀x ∈ A. φ then for all (O,X) ∈ A+, N ↓ λa. N1 and
N1[a := ∅] ↓ λx. N2 and N2[x := O] 
ρ φ[x := X]. Also, if N 
ρ ∃x ∈ A. φ thenthere is (O,X) ∈ A+ su
h that N ↓ [∅, N1], N1 ↓ 〈O,N2〉 and N2 
ρ φ[x := X].Proof If N 
ρ ∀x ∈ A. φ then N ↓ λa. N1 and for allX, N1[a := ∅] 
ρ X ∈ A→ φ,so N1[a := ∅] ↓ λx. N2 and for all O su
h that O 
ρ X ∈ A, N2[x := O] 
ρ φ[x :=

X]. This implies that for all X, for all O, if O 
ρ X ∈ A, then N ↓ λa. N1,
N1[a := ∅] ↓ λx. N2 and N2[x := O] 
ρ φ[x := X], whi
h proves the �rst part ofthe 
laim.If N 
ρ ∃x ∈ A. φ, then N ↓ [∅, N1] and there is X su
h that N1 ↓ 〈O,N2〉,
O 
ρ X ∈ A and N2 
ρ φ[x := X], so there is (O,X) ∈ A+ su
h that N ↓ [∅, N1],
N1 ↓ 〈O,N2〉 and N2 
ρ φ[x := X]. �Lemma 4.1.10 Suppose A ∈ Ui and N 
ρ�C is a fun
tion from A into Vi�. Then
C ∈ V λ

Γi
.Proof First let us write formally the statement �C is a fun
tion from A into Vi�.This means �for all x ∈ A there is exa
tly one y ∈ Vi su
h that (x, y) ∈ C and forall z ∈ C there is x ∈ A and y ∈ Vi su
h that z = (x, y)�. Thus N ↓ 〈N1, N2〉,

N1 
ρ ∀x ∈ A∃!y ∈ Vi. (x, y) ∈ C and N2 
ρ ∀z ∈ C∃x ∈ A∃y ∈ Vi. z = (x, y).So N1 
ρ ∀x ∈ A∃y ∈ Vi. (x, y) ∈ C ∧ ∀z. (x, z) ∈ C → z = y. By Lemma 4.1.9,for all (O,X) ∈ A+ there is (P, Y ) ∈ U+
i su
h that φ(O,X, P, Y ) holds, where123



φ(O,X, P, Y ) is de�ned as:
φ(O,X, P, Y ) ≡ (N1 ↓ λa. N11) ∧ (N11[a := ∅] ↓ λx. N12) ∧

(N12[x := O] ↓ [∅, N13]) ∧ (N13 ↓ 〈P,Q〉) ∧ (Q ↓ 〈Q1, Q2〉) ∧

(Q1 
ρ (X, Y ) ∈ C) ∧ (Q2 
ρ ∀z. (X, z) ∈ C → z = Y )Let ψ(O,X, P, Y ) be de�ned as:
ψ(O,X, P, Y ) ≡ ∃Q1, Q2. (Q1 
ρ (X, Y ) ∈ C) ∧ (Q2 
ρ ∀z. (X, z) ∈ C → z = Y )Obviously, if φ(O,X, P, Y ) then ψ(O,X, P, Y ). So for all (O,X) ∈ A+ there is
(P, Y ) ∈ U+

i su
h that ψ(O,X, P, Y ) holds.De�ne a fun
tion F whi
h takes (O,X) ∈ A+ and returns the set {(P, Y ) ∈

U+
i | ψ(O,X, P, Y )}. Suppose (P1, Y1), (P2, Y2) ∈ F ((O,X)). Then there are

Q11, Q12, Q21 su
h that Q11 
ρ (X, Y1) ∈ C, Q12 
ρ ∀z. (X, z) ∈ C → z = Y1,
Q21 
ρ (X, Y2) ∈ C. By Lemma 4.1.9, Q12 ↓ λa. R1, R1[a := ∅] ↓ λx. R2 and
R2[x := Q21] 
ρ Y2 = Y1. Sin
e eqSymm ∅ ∅ R2[x := Q21] 
ρ Y1 = Y2, by Lemma3.2.32 the λ-ranks of Y1, Y2 are the same and, sin
e any su
h (P, Y ) is a memberof U+

i , they are smaller than Γi. Also, for any (O,X) ∈ A+, F (O,X) is inhabited.Furthermore, de�ne a fun
tion G from A+ to Γi, whi
h takes (O,X) ∈ A+and returns ⋃
{λrk((P, Y )) | (P, Y ) ∈ F (O,X) ∧ ψ(O,X, P, Y )}. Then for any

(O,X) ∈ A+, G(O,X) is an ordinal smaller than Γi and if (P, Y ) ∈ U+
i and

ψ(O,X, P, Y ), then (P, Y ) ∈ V λ
G(O,X). Moreover, as Γi is ina

essible, G ∈ R(Γi),where R(Γi) denotes the Γi-th element of the standard 
umulative hierar
hy.Therefore ⋃

ran(G) is also an ordinal smaller than Γi. We de�ne an ordinal βto be max(λrk(A),
⋃
ran(G)).Now take any (M,B) ∈ C+, so M 
ρ B ∈ C. Then, by the de�nition of N2and Lemma 4.1.9 there is (O,X) ∈ A+ and (O1, Z) ∈ U+

i su
h that N2 ↓ λa. N21,
N21[a := ∅] ↓ λx. N22, N22[x := M ] ↓ [∅, N23], N23 ↓ 〈O,N24〉, N24 ↓ [∅, N25],124



N25 ↓ 〈O1, R〉 and R 
ρ B = (X,Z). Let M1 = lei ∅ ∅ ∅ 〈M,R〉, then M1 
ρ

(X,Z) ∈ C. Take any element (P, Y ) ∈ F (O,X) and a

ompanying Q1, Q2. Then
Q2 ↓ λa. Q3, Q3[a := ∅] ↓ λx. Q4 and Q4[x := M1] 
ρ Z = Y . By Lemma3.2.32, λrk(Z) ≤ λrk(Y ) and thus λrk(Z) ≤ β. Sin
e (O,X) ∈ A+, λrk(X) ≤ β,too. By Lemma 3.2.36, λrk(B) ≤ β + 2. By Lemma 4.1.8, rk(B) ≤ β + ω, so
rk(C+) ≤ β + ω + 1. By Lemma 4.1.8 again, λrk(C) ≤ β + 2ω. Sin
e β + 2ω isstill smaller than Γi, we get the 
laim. �Lemma 4.1.11 If M 
ρ A ∈ Ui,γ, then M 
ρ A ∈ Vi.Proof If M 
ρ A ∈ Ui,γ , then M ↓ inRep(N), N ↓ [∅, O], O ↓ 〈O1, O2〉 and thereis C su
h that O1 ↓ v, (v, C) ∈ Ui,γ , O2 
ρ C = A. Then also (v, C) ∈ Ui, so
O1 
ρ C ∈I Vi, so also M 
ρ A ∈ Vi. �Lemma 4.1.12 If N 
ρ ψi(C,Ui,γ), where ψi is one of the �ve 
lauses de�ning
φi1(C,Ui,γ) in the De�nition 4.1.1, then N 
ρ ψi(C, Vi).Proof There are �ve 
ases to 
onsider:

• N 
ρ C = Vi−1. This 
ase is trivial.
• N 
ρ ∃a. a ∈ Ui,γ∧c ∈ a. Then there is A su
h that N ↓ [∅, O], O ↓ 〈O1, O2〉,
O1 
ρ A ∈ Ui,γ , O2 
ρ C ∈ A. By Lemma 4.1.11, O1 
ρ A ∈ Vi, so also
N 
ρ ∃a. a ∈ Vi ∧ c ∈ a.

• N 
ρ ∃a. a ∈ Ui,γ ∧ c =
⋃
a. Then there is A su
h that N ↓ [∅, O],

O ↓ 〈O1, O2〉, O1 
ρ A ∈ Ui,γ, O2 
ρ C =
⋃
A. Thus by Lemma 4.1.11

O1 
ρ A ∈ Vi and we get the 
laim in the same way as in the previous 
ase.
• N 
ρ ∃a. a ∈ Ui,γ ∧ C = P (a). Similar to the previous 
ase.
• N 
ρ ∃a. a ∈ Ui,γ ∧ C ∈ a → Ui,γ. Then there is A su
h that N ↓ [∅, O],
O ↓ 〈O1, O2〉, O1 
ρ A ∈ Ui,γ, O2 
ρ “C is a fun
tion from A into Ui,γ�.125



By Lemma 4.1.11, O1 
ρ A ∈ Vi. Expanding the se
ond part, we have
O2 ↓ 〈P1, P2〉, P1 
ρ ∀x ∈ A∃!y ∈ Ui,γ. (x, y) ∈ C and P2 
ρ ∀z ∈ C∃x ∈

A∃y ∈ Ui,γ . z = (x, y). We will ta
kle P1 and P2 separately.� For P1, we have for all X, P1 ↓ λa. P11, P11[a := ∅] ↓ λx. Q and for all
R 
ρ X ∈ A there is Y su
h that Q[x := R] ↓ [∅, Q0], Q0 ↓ 〈Q1, Q2〉,
Q1 
ρ Y ∈ Ui,γ and Q2 
ρ (X, Y ) ∈ C ∧ ∀z. (X, z) ∈ C → z = Y . ByLemma 4.1.11 we also have Q1 
ρ Y ∈ Vi, so also P1 
ρ ∀x ∈ a∃!y. y ∈

Vi ∧ (x, y) ∈ C.� For P2, we have for all Z, P2 ↓ λa. P11, P11[a := ∅] ↓ λx. Q andfor all R 
ρ Z ∈ C there are X, Y su
h that Q[x := R] ↓ [t1, Q0],
Q0 ↓ 〈Q1, Q2〉 and Q1 
ρ X ∈ A. Moreover, Q2 ↓ [∅, S0], S0 ↓ 〈S1, S2〉and S1 
ρ Y ∈ Ui,γ. By Lemma 4.1.11 we also have S1 
ρ Y ∈ Vi, soalso P2 
ρ ∀z ∈ C → ∃x ∈ A∃y ∈ Vi. z = (x, y).Therefore also O2 
ρ �C is a fun
tion from A into Vi� and in the end N 
ρ

∃a. a ∈ Vi ∧ C ∈ a→ Vi. �Corollary 4.1.13 If M 
ρ φ
i
1(C,Ui,γ), then M 
ρ φ

i
1(C, Vi).Now we 
an prove the new 
ase in the main Lemma:Lemma 4.1.14 (M,C) ∈ [[tA(~u)]]ρ i� M = axRep(N) and N 
ρ φA(C,

−−→
[[u]]ρ).Proof We �rst show the left-to-right dire
tion. Suppose (M,A) ∈ Ui, then M =

inaciRep(N). We must have N 
ρ φ
i
1(A,Ui,γ)∧∀d. φ

i
2(d) → A ∈ d for some ordinal

γ. Then N ↓ 〈N1, N2〉, N1 
ρ φ
i
1(A,Ui,γ), N2 
ρ ∀d. φi2(d) → A ∈ d. Corollary4.1.13 gives us N1 
ρ φ

i
1(A, Vi), so N 
ρ φ

i
1(A, Vi) ∧ ∀d. φi2(d) → A ∈ d, whi
h iswhat we want.

126



For the right-to-left dire
tion, suppose N 
ρ φ
i
1(C, Vi) ∧ ∀d. φi2(d) → C ∈ d.We need to show that (inaciRep(N), C) ∈ Ui. By the de�nition of Ui it su�
es toshow that C ∈ VΓi

. We have N ↓ 〈N1, N2〉 and N1 
ρ �C is equal to Vi−1 or thereis A ∈ Vi su
h that C is a powerset/union/member of A, or C is a fun
tion from
A into Vi.�. The proof splits into 
orresponding �ve 
ases. The �rst four are easyto prove using Lemma 3.2.32 and the de�nition of the ordinal γ in the 
lause 4 inthe de�nition of realizability. The last one follows by Lemma 4.1.10. �The normalization theorem is proved in exa
tly the same way as for IZFR.The same applies to the properties DP, NEP, EP and TEP. Our developments inSe
tion 3.3 thus provide a me
hanism to extra
t programs from IZFRω proofs. Wehave therefore de�ned an impredi
ative 
onstru
tive set theory with ina

essiblesets, with program extra
tion 
apability, whi
h at the same time 
an be used toprovide semanti
s for important type theories su
h as the Cal
ulus of Indu
tiveConstru
tions. These developments demonstrate the power and adaptability of ourapproa
h; note how little was needed from the 
on
eptual point of view to extendour framework for IZFR to IZFRω. A natural question, whi
h we leave open, iswhether it 
an be extended with even stronger axioms, su
h as the existen
e of aMahlo set.4.2 Dependent set theoryIn the introdu
tion, we stated that type theories form a basis for 
omputation andthat they are used extensively in 
omputer s
ien
e. In the previous se
tion, weremarked on the problem of understanding type theories. What is so di�
ult tounderstand about them is that the underlying logi
s are very di�erent from all thelogi
s we presented so far in this thesis.One parti
ular di�eren
e, present in all type theories used in pra
ti
e, is the127



treatment of quanti�ers, justi�ed in the end by the BHK interpretation. Re
allthat in IFOL and λH , the typing rules regulating quanti�ers are:
Γ ⊢M : φ

Γ ⊢ λa. M : ∀a. φ
a /∈ FVF (Γ)

Γ ⊢M : ∀a. φ

Γ ⊢M t : φ[a := t]

Γ ⊢M : φ[a := t]

Γ ⊢ [t,M ] : ∃a. φ

Γ ⊢M : ∃a. φ Γ, x : φ ⊢ N : ψ

Γ ⊢ let [a, x : φ] := M in N : ψ
a /∈ FVF (Γ, ψ)The 
orresponding 
lauses in the BHK interpretation are:

• The 
onstru
tion of ∃a. φ 
onsists of an obje
t t and a 
onstru
tion of φ[a :=

t].
• The 
onstru
tion of ∀a. φ is a method whi
h transforms any obje
t t to a
onstru
tion of φ[a := t].While the typing rules above do realize the interpretation, a di�erent reading ofthe interpretation is possible. If a 
onstru
tion of ∃a. φ 
onsists of an obje
t t anda 
onstru
tion of φ[a := t], maybe it should be possible to put our hands on thisobje
t and the 
orresponding 
onstru
tion. Thus, we 
an 
onstru
t alternativerules for the existential quanti�er:

Γ ⊢M : φ[a := t]

Γ ⊢ [t,M ] : ∃a. φ

Γ ⊢M : ∃a. φ

Γ ⊢ πa.φ2 (M) : φ[a := πa.φ1 (M)]Note the di�eren
e. There are new obje
t terms in the logi
: πa.φ1 (M), providingwitnesses to existential statements. Thus in parti
ular su
h a theory automati
allypossesses TEP, as πa.φ1 (M) witnesses any formula ∃a. φ su
h that ⊢M : ∃a. φ.However, some questions must be addressed. For example, what exa
tly is aformula in su
h a system? Note that now proof terms 
an appear in formulas.Thus formulas 
an depend on proofs; this is the reason why type theories whi
hin
lude this interpretation of the existential quanti�er are 
alled dependent typetheories. 128



As a dependent theory 
an be seen as an extension of �rst-order logi
 withproof terms (the standard rules for the existential quanti�er are derivable in typetheories), natural questions arise: 
an we extend a set theory to in
lude dependentfeatures? And would su
h an extension be of any use?In this se
tion, we provide answers to these questions. More spe
i�
ally, weextend IZFR and λZ to in
orporate several features typi
al of type theories �dependent impli
ations, 
onjun
tions and what we 
all restri
ted Σ-types. We 
allthe resulting �dependent� set theory IZFD and the underlying lambda 
al
ulus λD.There are several attra
tive properties of IZFD. First of all, λD still normalizes.We use a strong version of the Axiom of Choi
e to provide the interpretation ofnew set terms. The normalization result makes it possible to extra
t programsfrom IZFD proofs, as explained in Se
tion 3.3.Se
ond, we show that the 
ombination of dependent features in the logi
 andRepla
ement axiom signi�
antly in
reases the power of a set theory, by provingthat IZFD 
an prove the axioms of IZF with Colle
tion (IZFC). As known sin
ethe results of Friedman and �£edrov [FS85℄, Repla
ement and Colle
tion are notequivalent in the 
onstru
tive setting. While the proof-theoreti
 power of IZFCequals that of ZFC [Fri73℄, IZFR is weaker: it has less provably re
ursive fun
tions[FS85℄. It is 
onje
tured in [FS85℄ that its 
onsisten
y 
an be proved in ZF.Moreover, Colle
tion is a very useful tool in the development of mathemati
s in
onstru
tive set theories; most notably in the treatment of indu
tive de�nitions[AR01, Rat05b℄. Thus, IZFD is a remarkably strong set theory, having the proof-theoreti
 power of ZFC and all the bene�ts of Colle
tion at its disposal.The importan
e of 
onsisten
y results in this area 
annot be overestimated, astheories tend to dwell 
lose to in
onsisten
y. This is one reason for the restri
tionof Σ-types we adopt, whi
h amounts to disallowing the standard redu
tion rule129



π1([t,M ]) → t. Although IZFD with unrestri
ted Σ-types enjoys useful proof-theoreti
 properties, su
h as Subje
t Redu
tion, we show that it is also in
onsistent.We pro
eed to present IZFD. However, as 
ommon with dependent theories,a separate presentation of formulas, terms and lambda terms is impossible. IZFDis one large lambda 
al
ulus with types, whose judgments in
lude provable state-ments, valid terms and formulas.4.2.1 IZFDThe theory IZFD is a dependent version of IZFR. It arises by extending the 
on-stru
tive �rst-order logi
 of IZFR with dependent features. As any detailed a

ountof a theory based on dependent logi
 involves a large amount of syntax, we postponethe formal treatment to the next se
tion and �rst des
ribe the theory informally.Intuitively, the axioms of IZFD are: Empty Set, Pairing, In�nity, Power Set,
∈-Indu
tion and dependent Separation and Repla
ement. The underlying logi
is an extension of IFOL by dependent impli
ations, 
onjun
tions and restri
ted
Σ-types. Formally, IZFD does not have any axioms in the traditional sense; it isa logi
 powerful enough to derive all the formulas listed in Figure 4.1. However,these formulas are helpful in de�ning and understanding IZFD.As in IZFR, the axioms (IN) and (EQ) along with the intensional membershipsymbol ∈I form a ba
kbone of the Leibniz (∀~f, a, b. a = b→ φ(a, ~f) → φ(b, ~f)) andExtensionality (∀a, b. (∀c. c ∈ a ↔ c ∈ b) → a = b) axioms, whi
h are derivablein our axiomatization. Similarly, IZFD 
an prove all the axioms with ∈I repla
edby ∈. A 
loser look at the 
orresponding proofs in Se
tion 3.2 reveals that thesestatements are true only for �rst-order formulas. See the dis
ussion in Se
tion4.2.2.The underlying logi
 in
ludes dependent impli
ations and 
onju
tions, denoted130



• (IN) ∀a, b. a ∈ b↔ ∃c. c ∈I b ∧ a = c

• (EQ) ∀a, b. a = b↔ ∀d. (d ∈I a→ d ∈ b) ∧ (d ∈I b→ d ∈ a)

• (EMPTY) ∀c. c ∈I ∅ ↔ ⊥

• (PAIR) ∀a, b∀c. c ∈I {a, b} ↔ c = a ∨ c = b

• (INF) ∀c. c ∈I ω ↔ c = 0 ∨ ∃b ∈ ω. c = S(b)

• (SEP
p,a, ~f. φ)) ∀~f, a∀c. c ∈I Sa, ~f. φ(a, ~f) ↔ (p : c ∈ a) ∧ φ[a := c]

• (UNION) ∀a∀c. c ∈I ⋃
a↔ ∃b ∈ a. c ∈ b

• (POWER) ∀a∀c. c ∈I P (a) ↔ ∀b. b ∈ c→ b ∈ a

• (REPL
p,a,b, ~f. φ

) ∀~f, a∀c. c ∈I R
p,a,b ~f. φ

(a, ~f) ↔ (∀x. (p : x ∈ a) →
∃!y. φ[a, b := x, y]) ∧ (∃x. (p : x ∈ a) ∧ φ[a, b := x, c])

• (IND
φ(a, ~f)) ∀~f. (∀a. (∀b. (b ∈I a) → φ(b, ~f)) → φ(a, ~f)) → ∀a. φ(a, ~f)Figure 4.1: The axioms of IZFDby (p : φ) → ψ and (p : φ)∧ψ. These 
an be found in the Separation and Repla
e-ment axioms. Their parameterizing formulas 
an depend on proofs, denoted by p.Intuitively, in IZFD proofs are a valid subje
t of dis
ourse. This is the main fea-ture whi
h distinguishes the axioms of IZFD from traditional axiomatizations. Inparti
ular, note that the axioms of IZFR are pre
isely what remains if the s
hemasare restri
ted to purely �rst-order formulas.4.2.2 The terms of λDThe terms of λD are divided into three synta
ti
 
ategories, en
ompassing proofterms, set terms and formulas, respe
tively. We will generally use lettersM,N,O, Pfor proof terms, s, t, u for set terms, φ, ψ, ϑ for formulas and T, S for arbitraryterms. Thus, whenever one of these symbols is en
ountered in the text, the readershould assume that it has been generated by the 
orresponding part of the gram-mar. There are two kinds of variables. The �rst one, denoted by letters p, q, x, y, z,as usual 
orresponds to the propositional impli
ations. The se
ond one, denoted131



usually by letters a, b, c, intuitively 
orresponds to the �rst-order quanti�
ation.We 
all them proof and set variables, respe
tively. The following abstra
t grammarde�nes the terms of λD. The �rst part generates the proof terms:
M ::= x | M N | λa. M | λx : φ. M | inl(M) | inr(M) |

fst(M) | snd(M) | [t,M ] | M t | 〈M,N〉 |

case(M,x : φ. N, x : ψ. O) | magic(M) | πa.φ2 (M)

ind
a, ~f. φ(a, ~f)(M,~t)

inProp(t, u,M) | inRep(t, u,M)

eqProp(t, u,M) | eqRep(t, u,M)

pairProp(t, u1, u2,M) | pairRep(t, u1, u2,M)

unionProp(t, u,M) | unionRep(t, u,M)

sep
p,a, ~f.φ

Prop(t, u, ~u,M) | sep
p,a, ~f.φ

Rep(t, u, ~u,M)

powerProp(t, u,M) | powerRep(t, u,M)

infProp(t,M) | infRep(t,M)

repl
p,a,b, ~f.φ

Prop(t, u, ~u,M) | repl
p,a,b, ~f.φ

Rep(t, u, ~u,M)As before, we adopt the 
onvention of using axRep and axProp terms to ta
itlymean all Rep and Prop terms, for ax being one of in, eq, pair, union, sep, power,
inf and repl.The se
ond part of the grammar generates the set terms:

t ::= a | πa.φ1 (M) | ∅ | {t1, t2} | ω | P (t) |
⋃

t |

S
p,a, ~f.φ

(t,~t) | R
p,a,b, ~f.φ

(t,~t)

132



The term Sp,a, ~f.φ(t,~t) intuitively 
orresponds to the set {(p : a ∈ t) | φ}. ThetermR
p,a,b, ~f.φ

(t,~t) intuitively 
orresponds to the set {y | (∀(p : x ∈ t)∃!y. φ[a, b, ~f :=

x, y,~t]) ∧ (∃p : x ∈ t. φ[a, b, ~f := x, y,~t])}. The term πa.φ1 (M) 
an be thought of asa dependent version of the Hilbert's epsilon operator ǫa. φ. These intuitions arejusti�ed by the typing system in Se
tion 4.2.2.The third part generates the formulas of IZFD:
φ ::= ⊥ | (x : φ) → ψ | (x : φ) ∧ ψ | φ ∨ ψ | ∀a. φ | ∃a. φThe formulas (x : φ) → ψ and (x : φ)∧ψ are dependent versions of impli
ationand 
onjun
tion. The variable x binds in ψ, whi
h 
an mention x (inside of πa.φ1terms). Traditional formulas φ → ψ and φ ∧ ψ are de�ned as abbreviations for

(x : φ) → ψ and (x : φ) ∧ ψ, where x is fresh.De�nition 4.2.1 A lambda term is a term generated by the �rst part of the gram-mar. A set term is a term generated by the se
ond part of the grammar. A formulais a term generated by the third part of the grammar.The free variables of a term M are denoted by FV (M). The de�nition of
FV (M), as well as the de�nition of the (
apture-avoiding) substitution, followsthe grammar in a natural way, taking into a

ount the formulas appearing insubs
ripts and supers
ripts of terms. We show two representative 
ases of thede�nition:

FV (πa.φ1 (M)) = (FV (φ) \ {a}) ∪ FV (M)

FV (sep
p,a, ~f.φ

Rep(u, ~u,M)) = (FV (φ) \ {p, a, ~f}) ∪

FV (u) ∪ FV (~u) ∪ FV (M)The redu
tion relation, denoted by →, is deterministi
 and de�ned on lambda133



terms. It arises from the following redu
tion rules and evaluation 
ontexts:
(λx : φ. M) N →M [x := N ] (λa. M) t→M [a := t]

fst(〈M,N〉) →M snd(〈M,N〉) → N πa.φ2 ([t,M ]) →M

case(inl(M), x : φ. N, x : ψ. O) → N [x := M ]

case(inr(M), x : φ. N, x : ψ. O) → O[x := M ]

axProp(t, ~u, axRep(t, ~u,M)) →M

inda, ~f . φ(M,~t) → λc. M c (λb.λx : b ∈I c. inda, ~f. φ(M,~t) b)The evaluation 
ontexts still des
ribe 
all-by-need (lazy) evaluation order:
[◦] ::= fst([◦]) | snd([◦]) | case([◦], x : φ. N, x : ψ. O) |

πa.φ2 ([◦]) | axProp(t, ~u, [◦]) | [◦] M | magic([◦])The standard redu
tion rule πa.φ1 ([t,M ]) → t is not present. The reasons forthis omission will be
ome 
lear in Se
tion 4.2.2.The set of λD-values will be denoted by λDv. In the de�nition, t, ~u, φ,M,Nare arbitrary terms.
V ::= λa. M | λx : φ. M | inr(M) | inl(M) | [t,M ] | 〈M,N〉 | axRep(t, ~u,M)We now introdu
e a type system for λD. Contexts, denoted by Γ, are �nitesequen
es of pairs (z, T ), where z is a variable and T is either a formula or a string

Set. The domain of a 
ontext Γ = z1 : T1, . . ., zn : Tn, denoted by dom(Γ), isthe sequen
e z1, . . ., zn, treated as set when 
onvenient. There are three kinds oftyping judgments:
• Γ ⊢ t : Set, read as �t is a set term in the 
ontext Γ�.
• Γ ⊢ φ : Form, read as �φ is a formula in the 
ontext Γ�.
• Γ ⊢M : φ, read as: �M is a proof of the formula φ in the 
ontext Γ�.134



We therefore in
orporate the de�nition of terms and formulas in the typing system.This is ne
essary in order to ensure that the arguments of πa.φ1 (M) terms are validproofs of ∃a. φ. We start with rules for terms:
Γ, a : Set ⊢ a : Set

a /∈ dom(Γ)

Γ ⊢ ~u : Set
Γ ⊢ tA(~u) : Set

Γ ⊢ t,~t : Set Γ, a, ~f : Set, p : a ∈ t ⊢ φ : Form

Γ ⊢ S
p,a, ~f. φ

(t,~t) : Set

Γ ⊢ t,~t : Set Γ, a, b, ~f : Set, p : a ∈ t ⊢ φ : Form

Γ ⊢ R
p,a,b, ~f. φ

(t,~t) : SetFurthermore, we de�ne the formulas:
Γ ⊢ φ : Form

Γ, x : φ ⊢ x : φ
x /∈ dom(Γ)

Γ ⊢ ⊥ : Form
Γ ⊢ t : Set Γ ⊢ u : Set

Γ ⊢ t ◦ u : Form
◦ ∈ {∈I ,=,∈}

Γ ⊢ φ : Form Γ ⊢ ψ : Form

Γ ⊢ φ ∨ ψ : Form

Γ ⊢ φ : Form Γ, x : φ ⊢ ψ : Form

Γ ⊢ (x : φ) ◦ ψ : Form
◦ ∈ {→,∧}

Γ, a : Set ⊢ φ : Form

Γ ⊢ Qa. φ : Form
Q ∈ {∀, ∃}And �nally, we de�ne the proofs. First, the rules governing the dependent logi
. Weneed to in
orporate Weakening into the formal system, as it is no longer provable.

Γ ⊢ S : T
Γ, a : Set ⊢ S : T

a /∈ dom(Γ)
Γ ⊢ S : T Γ ⊢ φ : Form

Γ, x : φ ⊢ S : T
x /∈ dom(Γ)

Γ, x : φ ⊢M : ψ

Γ ⊢ λx : φ. M : (x : φ) → ψ

Γ, a : Set ⊢M : φ

Γ ⊢ λa. M : ∀a. φ

Γ ⊢M : (x : φ) → ψ Γ ⊢ N : φ

Γ ⊢M N : ψ[x := N ]

Γ ⊢M : ∀a. φ Γ ⊢ t : Set

Γ ⊢M t : φ[a := t]

Γ ⊢M : φ Γ ⊢ N : ψ[x := M ]

Γ ⊢ 〈M,N〉 : (x : φ) ∧ ψ

Γ ⊢M : (x : φ) ∧ ψ

Γ ⊢ fst(M) : φ

Γ ⊢M : (x : φ) ∧ ψ

Γ ⊢ snd(M) : ψ[x := fst(M)]135



Γ ⊢ t : Set Γ ⊢M : φ[x := t]

Γ ⊢ [t,M ] : ∃a. φ

Γ ⊢M : ∃a. φ

Γ ⊢ πa.φ1 (M) : Set

Γ ⊢M : ∃a. φ

Γ ⊢ πa.φ2 (M) : φ[a := πa.φ1 (M)]

Γ ⊢M : φ

Γ ⊢ inl(M) : φ ∨ ψ

Γ ⊢M : ψ

Γ ⊢ inr(M) : φ ∨ ψ

Γ ⊢M : φ ∨ ψ Γ, x : φ ⊢ N : ϑ Γ, x : ψ ⊢ O : ϑ

Γ ⊢ case(M,x : φ. N, x : ψ. O) : ϑ

Γ ⊢M : ⊥
Γ ⊢ magic(M) : φSe
ond, we present the rules 
orresponding to set theory.

Γ ⊢M : ∀c. (∀b. b ∈ c→ φ[a, ~f := b,~t]) → φ[a, ~f := c,~t] Γ ⊢ ~t : Set

Γ ⊢ inda, ~f. φ(M,~t) : ∀a. φ[~f := ~t]

Γ ⊢M : φA(t, ~u) Γ ⊢ t, ~u : Set

Γ ⊢ axRep(t, ~u,M) : t ∈I tA(~u)

Γ ⊢M : t ∈I tA(~u)

Γ ⊢ axProp(t, ~u,M) : φA(t, ~u)

Γ ⊢M : ∃c. c ∈I u ∧ t = c

Γ ⊢ inRep(t, u,M) : t ∈ u
Γ ⊢M : t ∈ u

Γ ⊢ inProp(t, u,M) : ∃c. c ∈I u ∧ t = c

Γ ⊢M : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)

Γ ⊢ eqRep(t, u,M) : t = u

Γ ⊢M : t = u
Γ ⊢ eqProp(t, u,M) : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)We write Γ ⊢ T : S, when this judgment 
an be derived using the typing rules.The theory IZFD arises from the typing system, by 
onsidering the formulas φ su
hthat ⊢M : φ for some term M , to be provable in IZFD.Most of the rules are standard. The typing system in
orporates the de�nitionof formulas and terms of set theory. The term πa.φ1 
an be thought of as a version ofthe Hilbert's epsilon operator, as it provides a witness to any provable existentialquanti�er. For example, if ⊢ M : ∃a. a = P (ω), then πa.φ1 (M) is �the� A su
hthat A = P (ω): ⊢ πa.φ2 (M) : πa.φ1 (M) = P (ω). In fa
t, a dependent version of theHilbert's axiom is provable, as it is easy to see that ⊢ λx : ∃a. φ. πa.φ2 (x) : (x :

∃a. φ) → φ[a := πa.φ1 (x)]. 136



Non-extensionality of πa.φ1 operator.The πa.φ1 operator is non-extensional � from the fa
ts that M : ∃a. φ, N : ∃a. ψand O : ∀a. φ ↔ ψ we 
annot derive πa.φ1 (M) = πa.ψ1 (N). For this reason, thereare instan
es of the Leibniz axiom not provable in IZFD, su
h as (∗) a = b →

π
c.φ(a)
1 (M) ∈ e→ π

c.φ(b)
1 (M) ∈ e. However, IZFD does show ∀a, b. a = b → φ(a) →

φ(b) for all formulas not mentioning πa.φ1 terms. Moreover, the formula (*) doesnot 
orrespond to reasoning in mathemati
al pra
ti
e. We hope to investigate thistopi
 further in the future.Although IZFD might seem formidable at the �rst sight, we remark that its
omplexity does not surpass that of other formal systems intended for general use[The04, Muz93, Kre02℄.Sadly, IZFD does not possess the ni
e proof-theoreti
 properties we are so usedto. In parti
ular, Subje
t Redu
tion and Progress do not hold. The reasons aremostly explained below � an extension of IZFD making it possible to prove thestandard properties makes the theory in
onsistent.Unrestri
ted Sigma-typesRe
all that =→ denotes the smallest equivalen
e relation extending →. There aretwo natural rules missing from λD: the redu
tion rule πa.φ1 ([t,M ]) → t and thetyping rule:
Γ ⊢M : ψ

Γ ⊢M : φ
φ =→ φ (∗)Let IZFΣ

D denote IZFD extended with these rules. Unlike IZFD, IZFΣ
D enjoys ni
eproof-theoreti
 properties, su
h as Subje
t Redu
tion. However, as the followingtheorem shows, it also su�ers the property of being in
onsistent.Theorem 4.2.2 IZFΣ

D is in
onsistent. 137



Proof Re
all �rst that in set theories, 0 = ∅, 1 = {∅}. For the informal proof,
onsider the set B = {x ∈ 1 | ∃a. a = a}. We 
an show that for any p proving
x ∈ B, there is exa
tly one y whi
h witnesses the formula ∃a. a = a, namely theset A used for proving p. Formally, we set y = πa. a=a1 (snd(sep∃a. a=aProp(x, 1, p))).By the Repla
ement axiom, all these y's 
an be 
olle
ted in one set C. Now takeany set D and use it to show that ∃a. a = a and furthermore that 0 ∈ B. Applying(*) to the y 
orresponding to this proof, we easily �nd that D ∈ C. Therefore C
ontains all sets and thus is a subje
t to the Russell's paradox.1For the formal proof, we only present the relevant terms and provable judg-ments. Let eqRefl denote the term 
orresponding to the proof of ∀a. a = a, let
0in1 denote the term 
orresponding to the proof of 0 ∈ 1 and let russ denote theproof term 
orresponding to the proof of ∀a. (∀b. b ∈ a) → ⊥. The terms areprobably best read in a bottom-up fashion.

B ≡ S∃a. a=a(1)

t ≡ πa. a=a1 (snd(sep∃a. a=aProp(x, 1, p)))

M ≡ 〈eqRefl t, λz. λq : z = t. q〉

N ≡ λx. λp : x ∈ B. [t,M ]

⊢ N : ∀x. (p : x ∈ B) → ∃!y. y = t

C ≡ Rp,x,y. y=t(B)

P ≡ sep∃a. a=aRep(0, 1, 〈0in1, [a, eqRefl a]〉)

a : Set ⊢ P : 0 ∈ B

Q ≡ λa. replp,x,y. y=tRep(a,B, 〈N, [0, 〈P, eqRefl a〉]〉

⊢ Q : ∀a. a ∈ C

⊢ russ C Q : ⊥ �1Russell's paradox is not ne
essary to derive 
ontradi
tion, as ∈-indu
tion together with C ∈ Cis also 
ontradi
tory. 138



4.2.3 RealizabilityAs we mentioned earlier, we need to use a strong version of the Axiom of Choi
eto de�ne the realizability relation. Let ZFO be the Zermelo-Fraenkel set the-ory extended with the binary relational symbol < and the axiom stating that <well-orders the universe. In this se
tion we work in ZFO. Although ZFO mightseem ex
essive as a metatheory for the purpose of proving normalization of a 
on-stru
tive system, we remark that with a bit more e�ort and slightly more obs
urepresentation, we 
ould 
arry out the proof in ZF (relativizing all statements to L,a naturally well-ordered universe). Moreover, we 
onje
ture that the proof 
ouldbe formalized in IZFD. Thus, if the 
onje
ture is true, IZFD is 
apable of self-validating itself. The reason for our belief in the 
onje
ture is that the followingde�nition, 
ru
ial for the interpretation of πa.φ1 (M) terms, essentially de�nes the
πa.φ1 (M) term in the �rst-order set-theoreti
 setting:De�nition 4.2.3 If φ(a) is a ZFO formula, then �the �rst a su
h that φ� is de�nedto be:

• The empty set, if there is no A su
h that φ(A).
• The smallest set A in the ordering < su
h that φ(A) holds, otherwise.As usually, we employ the erasure map from λD to λD. The redu
tions are still�rst-order ignorant, so we repla
e the �rst-order terms by ∅. The map is de�nedindu
tively on all terms in an obvious way. We show several representative 
ases:

x = x a = ∅ M N = M N (λa. M) = λa. M

πa.φ1 (M) = ∅ (tA(~u)) = ∅ λx : φ. M = λx. M139



πa.φ2 (M) = πa.φ2 (M) axRep(t, ~u,M) = axRep(M)De�nition 4.2.4 A realizer is any 
losed term of λD.The standard Lemma 
ontinues to hold:Lemma 4.2.5 If M normalizes, then so does M .We pro
eed to de�ne the realizability relation M 
ρ φ, read as �M realizes φ�,where M is a realizer and φ 
omes from the extended language L de�ned below.The 
lass of λ-names is de�ned as usual:De�nition 4.2.6 A set A is a λ-name i� A is a set of pairs (v, B) su
h that
v ∈ λDvc and B is a λ-name.De�nition 4.2.7 The 
lass of λ-names is denoted by V λ.As usual, we now extend the language of IZFD to en
ompass the λ-names.We also restri
t the formulas by allowing only realizers R as arguments of πa.φ1 ([◦])terms. We 
all the resulting 
lass-sized language L. Thus, the grammar is extendedand modi�ed by:

t ::= A | πa.φ1 (R) | . . .From now on until the end of this se
tion, symbolsM,N,O, P range ex
lusivelyover realizers, letters a, b, c vary over set variables in the language, letters A,B,Cvary over λ-names, letters φ, ψ over formulas in L. Environments are �nite partialfun
tions from set variables to V λ.De�nition 4.2.8 For any formula φ of L, any set term t of L and ρ de�ned onall free variables of φ and t, we de�ne by metalevel indu
tion a realizability relation
M 
ρ φ in an environment ρ and a meaning of a term [[t]]ρ in an environment ρ.We show the new 
ases in the de�nition 
ompared with IZFR:140



• [[πa.φ1 (M)]]ρ is the �rst A su
h that M ↓ [∅, N ] and N 
ρ φ[a := A].
• [[tA(~u)]]ρ ≡ {(axRep(∅,~∅, N), B) ∈ R× V λ

γ | N 
ρ φA(B, [[~u]]ρ)}. The ordinal
γ is de�ned below.

• M 
ρ (x : φ) ∧ ψ ≡M ↓ 〈M1,M2〉 ∧ (M1 
ρ φ) ∧ (M2 
ρ ψ[x := M1])

• M 
ρ (x : φ) → ψ ≡ (M ↓ λx. M1) ∧ ∀N. (N 
ρ φ) → (M1[x := N ] 
ρ

ψ[x := N ])The de�nition of the ordinal γ in item 4 stays exa
tly the same for all terms,apart from the Repla
ement term, where the de�nition is slightly 
hanged: Let
~α =

−−−−−−→
λrk([[u]]ρ) and let ~α = (α1, . . ., αn). Case tA(~u) of:
• R

p,a,b, ~f. φ
(u, ~u). To make the a

ount 
learer, we set:

φ(M,A,B, ~F ) ≡ φ[p, a, b, ~f := M,A,B, ~F ]Let G = {(N1, (N21, B)) ∈ λDc × [[u]]+ρ | ∃d ∈ V λ. ψ(N1, N21, B, d)}, where
ψ(N1, N21, B, d) ≡ (N1 ↓ λa. N11) ∧ (N11[a := ∅] ↓ λx. O) ∧ (O[x := N21] ↓

[∅, O1]) ∧ O1 
ρ φ(N21, B, d,
−−→
[[u]]ρ) ∧ ∀e. φ(N21, B, e,

−−→
[[u]]ρ) → e = d). Thenfor all g ∈ G there is D and (N1, (N21, B)) su
h that g = (N1, (N21, B)) and

ψ(N1, N21, B,D). Use Colle
tion to 
olle
t these D's in one set H , so that forall g ∈ G there is D ∈ H su
h that the property holds. Apply Repla
ementto H to get the set of λ-ranks of sets in H . Then β ≡
⋃
H is an ordinal andfor any D ∈ H , λrk(D) < β. Therefore for all g ∈ G there is D ∈ V λ

β and
(N1, (N21, B)) su
h that g = (N1, (N21, B)) and ψ(N1, N21, B,D) holds. Set
γ = β + 1.It is easy to see that this de�nition of realizability is also well-founded. Thestandard lemmas 
ontinue to hold: 141



Lemma 4.2.9 [[t[a := s]]]ρ = [[t[a := [[s]]ρ]]]ρ = [[t]]ρ[a:=[[s]]ρ] and M 
ρ φ[a := s] i�
M 
ρ φ[a := [[s]]ρ] i� M 
ρ[a:=[[s]]ρ] φ.Proof We show the new 
ase, that is t = πb.φ1 (M). In this situation, [[t[a :=

s]]]ρ = [[π
b.φ[a:=s]
1 (M [a := s])]]ρ. Sin
e M is a realizer, M [a := s] = M . This isthus the �rst A su
h that M ↓ [∅, N ] and N 
ρ φ[a := s][b := A]. Furthermore

[[t[a := [[s]]ρ]]]ρ = [[π
b.φ[a:=[[s]]ρ]
1 (M)]]ρ, whi
h is the �rst A su
h that M ↓ [∅, N ] and

N 
ρ φ[a := [[s]]ρ][b := A]. By the indu
tion hypothesis for φ, this is equivalentto N 
ρ φ[a := s][b := A]. Finally, [[t]]ρ[a:=[[s]]ρ] = [[πb.φ1 (M)]]ρ[a:=[[s]]ρ], whi
h isthe �rst A su
h that M ↓ [∅, N ] and N 
ρ[a:=[[s]]ρ] φ[b := A]. By the indu
tionhypothesis for φ, this is equivalent to N 
ρ φ[b := A][a := s], whi
h is equivalentto N 
ρ φ[a := s][b := A]. �The standard lemmas 
ontinue to hold:Lemma 4.2.10 If (M 
ρ φ) then M ↓.Lemma 4.2.11 If M →∗ M ′ then M ′

ρ φ i� M 
ρ φ.Realizability is also invariant with respe
t to redu
tions of lambda terms inside ofset terms and formulas:Lemma 4.2.12 If M →∗ N , then [[t[x := M ]]]ρ = [[t[x := N ]]]ρ and O 
ρ φ[x :=

M ] i� O 
ρ φ[x := N ].Proof Straightforward indu
tion on the de�nition of realizability. �Our keystone in the normalization proof is proved similarly as before:Lemma 4.2.13 (M,C) ∈ [[tA(~u)]]ρ i� M = axRep(N) and N 
ρ φA(C,
−−→
[[u]]ρ).Proof We only show the right-to-left part for the two terms where the proof di�ersfrom the proof of Lemma 3.2.38. Suppose N 
ρ φA(A,

−−→
[[u]]ρ) and M = axRep(N).142



To show that (M,A) ∈ [[tA(~u)]]ρ, we need to show that A ∈ V λ
γ . Let ~α =

−−−−−−→
λrk([[u]]ρ).Case tA(~u) of:

• S
p,a, ~f. φ

(u, ~u). Suppose N 
ρ p : A ∈ [[u]]ρ ∧ φ[a, ~f := A,
−−→
[[u]]ρ). Then N ↓

〈N1, N2〉 and N1 
ρ A ∈ [[u]]ρ. Lemma 3.2.32 shows the 
laim.
• Rp,a,b, ~f. φ(u, ~u). As before, to make the a

ount 
learer, we set:

φ(M,A,B, ~F ) ≡ φ[p, a, b, ~f := M,A,B, ~F ]SupposeN 
ρ (∀p : x ∈ [[u]]ρ∃!y. φ(p, x, y,
−−→
[[u]]ρ))∧∃p : x ∈ [[u]]ρ. φ(p, x, A,

−−→
[[u]]ρ).Then N ↓ 〈N1, N2〉 and N2 
ρ ∃x. (p : x ∈ [[u]]ρ) ∧ φ(p, x, A, ~[[u]]ρ). Thus

N2 ↓ [∅, N20] and there is B su
h that N20 ↓ 〈N21, N22〉 and N21 
ρ B ∈ [[u]]ρand N22 
ρ φ(N21, B, A,
−−→
[[u]]ρ). We also have N1 
ρ ∀x. (p : x ∈ [[u]]ρ) →

∃!y. φ(p, x, y,
−−→
[[u]]ρ), so N1 ↓ λa. N11 and for all C, N11[a := ∅] ↓ λx. O andfor all P 
ρ C ∈ [[u]]ρ, O[x := P ] 
ρ ∃!y. φ(P,C, y,

−−→
[[u]]ρ). So taking C = B,and P = N21, there is D su
h that N1 ↓ λa. N11, N11[a := ∅] ↓ λx. O,

O[x := N21] ↓ [∅, O1] and O1 
ρ φ(N21, B,D,
−−→
[[u]]ρ) ∧ ∀e. φ(N21, B, e,

−−→
[[u]]ρ) →

e = D. Therefore (N1, (N21, B)) ∈ G from the de�nition of γ, so thereis D ∈ V λ
γ su
h that N1 ↓ λa. N11, N11 ↓ λx.O, O[x := N21] ↓ [∅, O1] and

O1 
ρ φ(N21, B,D,
−−→
[[u]]ρ)∧∀e. φ(N21, B, e,

−−→
[[u]]ρ) → e = D. So O1 ↓ 〈O11, O12〉and O12 
ρ ∀e. φ(N21, B, e,

−−→
[[u]]ρ) → e = D. Therefore, O12 ↓ λa. Q,

Q[a := ∅] ↓ λx. Q1 and Q1[x := N22] 
ρ A = D. By Lemma 3.2.32,
A ∈ V λ

γ . �4.2.4 NormalizationWe are now ready to prove that λD normalizes, thus enabling program extra
tionfrom IZFD proofs. The environments in this se
tion are �nite partial fun
tionswhi
h map set variables to V λ and proof variables to realizers. As usual, any su
h143



environment 
an be used as a realizability environment by ignoring the mappingof proof variables.De�nition 4.2.14 For any term T with free proof variables x1, . . ., xn and ρ de-�ned on x1, . . ., xn, T [ρ] denotes T [x1 := ρ(xi), . . ., xn := ρ(xn)].De�nition 4.2.15 For a sequent Γ ⊢ M : φ, ρ |= Γ means that ρ is de�ned on
dom(Γ), for all (ai, Set) ∈ dom(Γ), ρ(ai) ∈ V λ and for all (xi, φi) ∈ Γ, ρ(xi) 
ρ

φi[ρ].Theorem 4.2.16 (Normalization) If Γ ⊢ O : ϑ then for all ρ |= Γ, O[ρ] 
ρ ϑ[ρ].Proof We pro
eed by metalevel indu
tion on Γ ⊢ O : ϑ. As usual, we write O′ todenote O[ρ], where ρ is 
lear from the 
ontext. Note �rst that O′ is a realizer. Weonly show the new 
ases in the proof. Case Γ ⊢ O : ϑ of:
•

Γ ⊢M : ∃a. φ

Γ ⊢ πa.φ2 (M) : φ[a := πa.φ1 (M)]Take any ρ |= Γ. Note that (φ[a := πa.φ1 (M)])′ = φ′[a := πa.φ
′

1 (M ′)]. Bythe indu
tion hypothesis, M ′

ρ ∃a. φ′, so M ′ ↓ [∅, N ] and there is some

A su
h that N 
ρ φ
′[a := A]. Furthermore, [[πa.φ

′

1 (M ′)]]ρ is the �rst A su
hthat M ′ ↓ [∅, Q] and Q 
ρ φ
′[a := A], so also N 
ρ φ

′[a := [[πa.φ
′

1 (M ′)]]ρ]. ByLemma 4.2.9, N 
ρ φ
′[a := πa.φ

′

1 (M ′)]. Sin
e πa.φ′2 (M ′) →∗ N , by Lemma4.2.11 πa.φ′2 (M ′) 
ρ φ
′[a := πa.φ

′

1 (M ′)], whi
h shows the 
laim.
•

Γ ⊢M : φ Γ ⊢ N : ψ[x := M ]

Γ ⊢ 〈M,N〉 : (x : φ) ∧ ψTake any ρ |= Γ. By the indu
tion hypothesis, M ′

ρ φ

′ and N ′

ρ ψ

′[x :=

M ′], whi
h is pre
isely what needs to be shown.144



•
Γ ⊢M : (x : φ) ∧ ψ

Γ ⊢ fst(M) : φThe proof is the same as in 
ase of λZ.
•

Γ ⊢M : (x : φ) ∧ ψ

Γ ⊢ snd(M) : ψ[x := fst(M)]Take any ρ |= Γ. By the indu
tion hypothesis, M ′ ↓ 〈M1,M2〉 and M2 
ρ

ψ′[x := M1]. As snd(M ′) →∗ M2, by Lemma 4.2.11 it su�
es to show that
M2 
ρ (ψ[x := fst(M)])′, whi
h is equivalent to M2 
ρ ψ

′[x := fst(M ′)].Sin
e fst(M ′) →∗ M1 and (ψ[x := fst(M)])′ = ψ′[x := fst(M ′)], Lemma4.2.12 shows the 
laim.
•

Γ ⊢M : (x : φ) → ψ Γ ⊢ N : φ

Γ ⊢M N : ψ[x := N ]Take any ρ |= Γ. By the indu
tion hypothesis, for some φ1, M ′ ↓ λx. M1,
N ′


ρ φ
′ and for all P 
ρ φ

′, M1[x := P ] 
ρ ψ
′[x := P ]. Thus in parti
ular

M1[x := N ′] 
ρ ψ
′[x := N ′]. As (M N)′ = M ′ N ′ →∗ (λx. M1) N

′ →

M1[x := N ′] and (ψ[x := N ])′ = ψ′[x := N ′], Lemma 4.2.11 shows the 
laim.
•

Γ, x : φ ⊢M : ψ

Γ ⊢ λx : φ. M : (x : φ) → ψTake any ρ |= Γ. We need to show that for any N 
ρ φ
′, M ′[x := N ] 
ρ

ψ′[x := N ]. Take any su
h N . Sin
e ρ[x := N ] |= Γ, x : φ, by the indu
tionhypothesis M [ρ[x := N ]] 
ρ ψ[ρ[x := N ]]. It is easy to see that this isequivalent to M ′[x := N ] 
ρ ψ
′[x := N ]. �Corollary 4.2.17 (Normalization) If ⊢M : φ, then M ′ ↓ and thus also M ↓.Corollary 4.2.18 IZFD is 
onsistent. 145



As we mentioned, λD does not have the Subje
t Redu
tion property. Thus,IZFD does not ne
essarily have any of the usual properties: DP, NEP and TEP.This is the pri
e we pay for avoiding in
onsisten
y of unrestri
ted Σ-types. Thebene�ts are presented in the following se
tion.4.2.5 The properties of λDIn this se
tion, we relate IZFD and its 
lassi
al 
ounterpart to well-known �rst-order set theories.Theorem 4.2.19 IZFD proves IZFC.Proof The pre
ise formulation of the 
laim is: if IZFC⊢ φ, then for some term M ,IZFD ⊢ M : φ. We formulate IZFC as IZFR extended with the Colle
tion axioms
hema:
∀~f. ∀a. (∀x ∈ a∃y. φ) → ∃b. ∀x ∈ a∃y ∈ b. φTo show that IZFD interprets IZFR, we �rst need to prove that it interprets therules of IFOL. Most of them are present in the type system of λD as spe
ial
ases when dependen
ies are not used. The only missing rule is elimination of theexistential quanti�er.

Γ ⊢ ∃a. φ Γ ⊢ ∀a. φ→ ψ

Γ ⊢ ψ
a /∈ FV (ψ)It is easy to show that in IZFD the following rule is admissible, that is if assump-tions are derivable, then so is the 
on
lusion:

Γ ⊢M : ∃a. φ Γ ⊢ N : ∀a. φ→ ψ

Γ ⊢ N (πa.φ1 (M)) (πa.φ2 (M)) : ψ
a /∈ FV (ψ)Se
ond, we need to provide the interpretation of IZFR terms in IZFD and showthat they satisfy the respe
tive axioms. This is straightforward, as it su�
es to146



add extraneous binders for Separation and Repla
ement terms. For example, weinterpret {x ∈ a | φ} as {p : x ∈ a | φ}, where p is fresh.The only nontrivial thing left is the interpretation of the Colle
tion axiom.Intuitively, it follows from Repla
ement, as using dependent impli
ation and πa.φ1terms, we 
an transform a proof p of ∀x ∈ a∃y. φ into ∀q : x ∈ a∃!y. φ ∧ y =

πa.φ1 (p x q). Formally, we exhibit the proof terms. To in
rease readability, wedisplay ∀x. (p : x ∈ a) → φ as ∀p : x ∈ a. φ, ∃x. (p : x ∈ a) ∧ φ as ∃p : x ∈ a. φand R
p,x,y, ~f. φ

(t,~t) as {y | (∀p : x ∈ t∃!y. φ[~f := ~t]) ∧ (∃p : x ∈ a. φ[~f := ~t])}.
M1 ≡ 〈πy.φ2 (p x q), eqRefl πy.φ1 (p x q)〉

⊢M1 : ψ

M2 ≡ λz. λr : φ[y := z] ∧ z = πy.φ1 (p x q). snd(r)

⊢M2 : ∀z. φ[y := z] ∧ z = πy.φ1 (p x q) → z = πy.φ1 (p x q)

M3 ≡ λq : x ∈ a. [πy.φ1 (p x q), 〈M1,M2〉]

⊢M3 : ∀q : x ∈ a∃!y. ψ

M4 ≡ [x, 〈q, 〈πy.φ2 (p x q), eqRefl πy.φ1 (p x q)〉〉]

⊢M4 : ∃q : x ∈ a. ψ

M5 ≡ replq,x,y,̃f.ψRep(πy.φ1 (p x q), a, ~f , 〈M3,M4〉)

⊢M5 : πy.φ1 (p x q) ∈ t

M6 ≡ λx. λq : x ∈ a. [πy.φ1 (p x q), 〈M5, π
y.φ
2 (p x q)〉]

⊢M6 : ∀x ∈ a. ∃y ∈ t. φ

ψ ≡ φ ∧ y = πy.φ1 (p x q)

t ≡ {y | (∀q : x ∈ a∃!y. ψ) ∧ ∃q : x ∈ a. ψ}

N ≡ λ~f. λp : ∀x ∈ a∃y. φ. [t,M6]

⊢ N : ∀~f. (∀x ∈ a∃y. φ) → ∃b. ∀x ∈ a∃y ∈ b. φ �

147



Therefore, by the results of [FS85℄, the proof-theoreti
 strength of IZFD equalsthat of ZFC.We now 
onsider a 
lassi
al version of IZFD. Let ZFD be IZFD extended withthe ex
luded middle axiom EM. We show that ZFD is 
onsistent. For this purpose,take a formulation of ZFO with set terms, su
h as IZFR + EM + �the universe iswell-ordered by <�. De�ne an erasure map on formulas and set terms of λD, whi
hreturns formulas and set terms of ZFO. The representative 
ases of the de�nitionfollow, where ιa.φ denotes �the �rst a su
h that φ�:
a = a πa.φ1 (M) = ιa.φ ∅ = ∅ {t1, t2} = {t1, t2} ω = ω

(p : φ) → ψ = φ→ ψ Sp,a, ~f.φ(t,~t) = {a ∈ t | φ(a,~t)}

R
p,a,b, ~f.φ

(t,~t) = {y | ∀x ∈ ~t∃!y. φ(x, y,~t) ∧ ∃x ∈ ~t. φ(x, y,~t)}With the map at hand, we 
an easily prove by indu
tion on the proof the
onsisten
y result:Theorem 4.2.20 If ZFD⊢ t : Set, then t is a term of ZFO. If ZFD⊢ M : φ, thenZFO ⊢ φ. Thus ZFD is 
onsistent.Theorem 4.2.21 ZFD interprets ZF.Proof By Theorem 4.2.19, IZFD interprets IZFC . Sin
e ZF=IZFC + EM, the 
laimfollows. �4.2.6 Program extra
tionThe program extra
tion method we des
ribed in Se
tion 3.3 is based on DP, NEPand TEP. Given that IZFD does not possess Subje
t Redu
tion property, we 
annotuse our standard tools to prove these properties for IZFD. However, it is easy toderive them for the realizability model, in the sense we are about to de�ne.148



De�nition 4.2.22 The formula φ is true in the realizability model if there is arealizer M su
h that M 
∅ φ.We write V λ |= φ, when φ is true in the realizability model.Lemma 4.2.23 V λ has the DP, NEP and TEP properties.Proof The 
laim amounts to repla
ing provability in the standard formulations byrealizability.To see that DP holds, assume V λ |= φ ∨ ψ. Then there is a realizer M su
hthat M 
∅ φ ∨ ψ, so either M ↓ inl(N) and N 
∅ φ or M ↓ inr(N) and N 
∅ ψ.In the former 
ase V λ |= φ, in the latter V λ |= ψ.NEP is proved in exa
tly the same manner � mirroring the proof for theprevious lambda 
al
uli we des
ribed. For TEP, assume V λ |= ∃a. φ. Thenthere is a realizer M su
h that M 
∅ ∃a. φ, so πa.φ2 (M) 
∅ φ[a := πa.φ1 (M)], so
V λ |= φ[a := πa.φ1 (M)]. �Thus, using te
hniques from Se
tion 3.3, we 
an extra
t programs from IZFDproofs via the realizability model. If IZFD⊢ M : φ then also M 
ρ φ, for ap-propriate ρ and we 
an now apply Lemma 4.2.23 to obtain ne
essary properties.The downside of this approa
h, 
ompared to our previous developments, is thatthe extra
ted programs are 
orre
t with respe
t to the realizability model, in-stead of the original theory. Thus, if we extra
t a natural number n from a proofIZFD⊢ M : ∃a ∈ ω. φ, then we 
an only assert that V λ |= φ[a := nn]. Thisdistin
tion would likely be of no signi�
ant 
on
ern in appli
ations, as thanks toTheorem 4.2.16 we know that the truth in the realizability world is 
onsistent withstatements provable in IZFD. Moreover, it is easy to make the problem disappear,by axiomatizing Subje
t Redu
tion in IZFD, that is adding the rule:

Γ ⊢ N : φ

Γ ⊢M : φ
(M → N) ∨ (N → M)149



This is a
tually the approa
h adopted in Nuprl.4.2.7 Con
lusionWe presented a 
ombination of two worlds we investigate � sets and types. Byadding features typi
al for dependent type theories to the �rst-order logi
 under-lying IZFR, we gained new 
apabilities and proof-theoreti
 strength. The pri
e wepay is the loss of Subje
t Redu
tion property, attra
tive from the theoreti
al pointof view. Given Theorem 4.2.2, it is un
lear if there is a simple method to restorethe property ba
k.4.3 Histori
al 
ontextIna

essible sets, 
alled 
ardinals in a 
lassi
al setting, are the �rst �large� obje
ts,whose existen
e 
annot be proved in ZF/IZF. [Kan03℄ provides a detailed a

ountof �Higher In�nite� in the world of sets. In the 
onstru
tive 
ontext, powerfullarge set axioms (in
luding the existen
e of 
lass-many ina

essibles) were addedto IZFC by Friedman and �£edrov [FS84℄. The notion of an ina

essible set theyuse di�ers from ours, as their ina

essibles must also model the Colle
tion axiom.We do not know if these two notions 
oin
ide. Both DP and NEP were shown forthe resulting theories, but we do not think that SEP and TEP 
ould be provedwith their te
hnique.Ina

essible sets were also investigated in the 
ontext of weaker, predi
ativeCZF. Crosilla and Rathjen [CR02℄ showed that the power of ina

essible set axiomsmight be 
losely linked to the ∈-indu
tion axiom. They proved that ina

essiblesets added to CZF with ∈-indu
tion taken away do not add any proof-theoreti
alpower. 150



There is a signi�
ant amount of resear
h on 
onne
tions between type and settheories. A
zel [A
z78, A
z82, A
z86, A
z99℄ des
ribed mutual interpretations ofvariants of CZF and Martin-Löf type theory. Werner [Wer97℄ did the same thingfor Zermelo set theory and Cal
ulus of Constru
tions. Miquel [Miq03, Miq04℄ in-vestigated embeddings of impredi
ative set theories without ∈-indu
tion axioms
hema in type theories. Howe [How96℄ investigated an extension of the set theo-reti
 universe with type-theoreti
al 
onstru
ts in order to validate the type theoryof Nuprl.Modi�
ations of logi
 underlying set theory were investigated before. Agerholmand Gordon [AG95, Gor96℄ studied 
lassi
al higher-order set theory HOL-ST. Theydid not �nd a 
lear advantage of HOL-ST over �rst-order ZF. A map theory [Gru92℄provides a uni�ed framework for sets and 
omputation. An ongoing resear
h onalgebrai
 set theory [MP02℄ investigates set theories based on 
ategory theory.There are also set theories based on linear logi
s [Shi94, Ter04℄.

151



CHAPTER 5PROGRAM-EXTRACTING SEMANTICSWe will now present an appli
ation of the frameworks we set up in the previous
hapter. Namely, we show that standard set-theoreti
 semanti
s for simple typetheories using our IZFR 
an be used as a basis for program extra
ting 
apability.Chur
h's Higher-Order logi
 [Chu40℄ has been remarkably su

essful at 
ap-turing the intuitive reasoning of mathemati
ians. It was distilled from Prin
ipiaMathemati
a, and is sometimes 
alled the Simple Theory of Types based on thatlega
y. It in
orporates the lambda 
al
ulus as its notation for fun
tions, in
ludingpropositional fun
tions, thus interfa
ing well with 
omputer s
ien
e.One of the reasons Higher-Order logi
 is su

essful is that its axiomati
 basis isvery small, and it has a 
lean set-theoreti
 semanti
s at a low level of the 
ummula-tive hierar
hy of sets (up to ω+ω) and 
an thus be formalized in a small fragmentof ZFC set theory . This means it interfa
es well with standard mathemati
s andprovides a strong basis for trust. Moreover, the set theory semanti
s is the basisfor many extensions of the 
ore logi
; for example, it is straightforward to addarrays, re
ursive data types, and re
ords to the logi
.Chur
h's theory is the logi
al basis of two of the most su

essful intera
tiveprovers used in hardware and software veri�
ation, HOL and PVS. This is due inpart to the two 
hara
teristi
s mentioned above in addition to its elegant automa-tion based on Milner's ta
ti
 me
hanism and its elegant formulation in the MLmetalanguage.Until re
ently, one of the few drawba
ks of HOL was that its logi
al basedid not allow a way to express a 
onstru
tive subset of the logi
. This issue was
onsidered by Harrison for HOL-light [Har96℄, and re
ently Berghofer implementeda 
onstru
tive version of HOL in the Isabelle implementation [Ber04, BN02℄ in152



large part to enable the extra
tion of programs from 
onstru
tive proofs. Thisraises the question of �nding a semanti
s for HOL that justi�es this intuitivelysound extra
tion.The standard justi�
ation for program extra
tion is based on logi
s that em-bedded extra
tion deeply into their semanti
s; this is the 
ase for the Cal
ulus ofIndu
tive Constru
tions (CIC) [CPM90, BC04℄, Minlog [BBS+98℄, ComputationalType Theory (CTT) [ABC+06, CAB+86℄ or the 
losely related Intuitionisti
 TypeTheory (ITT) [ML82, NPS90℄. The me
hanism of extra
tion is built deeply intothe logi
 and the provers based on it, e.g. Agda [ACN90℄ is based on ITT, Coq[The04℄ on CIC, MetaPRL [HNC+03℄ and Nuprl [ACE+00℄ on CTT.In this se
tion we show that there is a way to provide a 
lean set-theoreti
semanti
s for HOL and at the same stroke use it to semanti
ally justify programextra
tion. The idea is to �rst fa
tor HOL into its 
onstru
tive 
ore, say Con-stru
tive HOL, plus the axioms of ex
luded middle and 
hoi
e. The semanti
s forthis language 
an be given in ZFC set theory, and in this semanti
s, IZFR providesthe semanti
s for Constru
tive HOL. We will furthermore use our developments inSe
tion 3.3, to provide a program extra
tion from CHOL proofs via the semanti
s.Our set-theoreti
 semanti
s for HOL has the following properties:
• It is as simple as the standard semanti
s, presented in Gordon and Melham's[GM93℄.
• It works in 
onstru
tive set-theory.
• It provides a semanti
al basis for program extra
tion.
• It 
an be applied to the 
onstru
tive version of HOL re
ently implementedin Isabelle-HOL as a means of using 
onstru
tive HOL proofs as programs.This 
hapter is organized as follows. In se
tion 5.1 we present a 
onstru
tiveversion of HOL. In se
tion 5.2 we de�ne set-theoreti
 semanti
s. We show how to153



use the semanti
s for program extra
tion in se
tion 5.3.5.1 Higher-order logi
In this se
tion, we present higher-order logi
 in detail. There are two synta
ti

ategories: terms and types. The types are generated by the following abstra
tgrammar:
τ ::= nat | bool | prop | τ → τ | (τ, τ)The distin
tion between bool and prop 
orresponds to the distin
tion between thetwo-element type and the type of propositions in type theory, or between the two-element obje
t and the subobje
t 
lassi�er in 
ategory theory or, as we shall see,between 2 and the set of all subsets of 1 in 
onstru
tive set theory.The terms of HOL are generated by the following abstra
t grammar:

t ::= xτ | cτ | (tτ→σ uτ )σ | (λxτ . tσ)τ→σ | (tτ , sσ)(τ,σ)Thus ea
h term tα in HOL is annotated with a type α, whi
h we 
all the typeof t. We will often skip annotating of terms with types, this pra
ti
e should notlead to 
onfusion, as the impli
it type system is very simple. Terms of type propare 
alled formulas.The free variables of a term t are denoted by FV (t) and de�ned as usual. We
onsider α-equivalent terms equal.De�nition 5.1.1 A formula is a term of type prop.Our version of HOL has a set of built-in 
onstants. To in
rease readability, wewrite c : τ instead of cτ to provide the information about the type of c. If the typeof a 
onstant involves α, it is a 
onstant s
hema, there is one 
onstant for ea
htype τ substituted for α. There are thus 
onstants =bool, =nat and so on.
⊥ : prop ⊤ : prop =α: (α, α) → prop154



⇒: (prop, prop) → prop ∧ : (prop, prop) → prop ∨ : (prop, prop) → prop

∀α : (α → prop) → prop ∃α : (α → prop) → prop εα : (α→ prop) → α

0 : nat S : nat → nat false : bool true : boolWe present the proof rules for HOL in a sequent-based natural dedu
tion style.A sequent is a pair (Γ, t), where Γ is a list of formulas and t is a formula. Freevariables of a 
ontext are the free variables of all its formulas. A sequent (Γ, t)is written as Γ ⊢ t. We write binary 
onstants (equality, impli
ation, et
.) usingin�x notation. We use standard abbreviations for quanti�ers: ∀a : τ. φ abbreviates
∀τ (λaτ . φ), similarly with ∃a : τ. φ. The proof rules for HOL are:

Γ ⊢ t
t ∈ Γ

Γ ⊢ t = t
Γ ⊢ t = s

Γ ⊢ λxτ . t = λxτ . s
xτ /∈ FV (Γ)

Γ ⊢ t Γ ⊢ s
Γ ⊢ t ∧ s

Γ ⊢ t ∧ s
Γ ⊢ t

Γ ⊢ t ∧ s
Γ ⊢ s Γ ⊢ ⊤

Γ ⊢ t
Γ ⊢ t ∨ s

Γ ⊢ s
Γ ⊢ t ∨ s

Γ ⊢ t ∨ s Γ, t ⊢ u Γ, s ⊢ u
Γ ⊢ u

Γ, t ⊢ s
Γ ⊢ t→ s

Γ ⊢ s→ t Γ ⊢ s
Γ ⊢ t

Γ ⊢ s = u Γ ⊢ t[u]

Γ ⊢ t[s]

Γ ⊢ fα→prop tα
Γ ⊢ ∃α(fα→prop)

Γ ⊢ ∃α(fα→prop) Γ, fα→prop xα ⊢ u

Γ ⊢ u
xα newFinally, we list HOL axioms.1. (FALSE) ⊥ = ∀b : prop. b.2. (FALSENOTTRUE) false = true → ⊥.3. (BETA) (λxτ . tσ)sτ = tσ[xτ := sτ ].4. (ETA) (λxτ . fτ→σ xτ ) = fτ→σ.5. (FORALL) ∀α = λPα→prop. (P = λxα. ⊤).6. (P3) ∀n : nat. (0 = S(n)) → ⊥.7. (P4) ∀n,m : nat. S(n) = S(m) → n = m.155



8. (P5) ∀P : nat → prop. P (0)∧(∀n : nat. P (n) → P (S(n))) → ∀n : nat. P (n).9. (BOOL) ∀x : bool. (x = false) ∨ (x = true).10. (EM) ∀x : prop. (x = ⊥) ∨ (x = ⊤).11. (CHOICE) ∀P : α→ prop. ∀x : α. P x→ P (ε(α→prop)→α(P )).Our 
hoi
e of rules and axioms is redundant. Propositional 
onne
tives, forexample, 
ould be de�ned in terms of quanti�ers and bool. However, we believethat this makes the a

ount of the semanti
s 
learer and shows how easy it is tode�ne a sound semanti
s for su
h system.The theory CHOL (Constru
tive HOL) arises by taking away from HOL axioms(CHOICE) and (EM).We write ⊢H φ and ⊢C φ to denote that HOL and CHOL, respe
tively, proves
φ. We will generally use letters P,Q to denote proof trees. A notation P ⊢C φmeans that P is a proof tree in CHOL of φ.5.2 Semanti
sIn this se
tion, we will de�ne set-theoreti
 semanti
s for HOL and CHOL. We startby �xing several de�nitions and proving several easy lemmas in 
onstru
tive settheory.5.2.1 Set theoryThe set-theoreti
 semanti
s needs a small part of the 
umulative hierar
hy � Rω+ωis su�
ient to 
arry out all the 
onstru
tions. The Axiom of Choi
e is ne
essaryin order to de�ne the meaning of the ε 
onstant. For this purpose, C will denote

156



a1 blatantly non-
onstru
tive fun
tion su
h that for any X, Y ∈ Rω+ω, if X isnon-empty, then C(X, Y ) ∈ X, and if X is empty then C(X, Y ) = Y .Re
all that in the world of set theory, 0 = ∅, 1 = {0} and 2 = {0, 1}. Classi
ally
P (1), the set of all subsets of 1, is equal to 2. This is not the 
ase 
onstru
tively;there is no uniform way of transforming an arbitrary subset A of 1 into an elementof 2.Lemma 5.2.1 If P (1) = 2, then for any φ, φ or ¬φ.Proof Suppose P (1) = 2 and take a formula φ. Consider A = {_ ∈ 1 | φ} and
B = {_ ∈ 1 | ¬φ}. Sin
e A ∪ B ∈ P (1), A ∪ B ∈ 2, so either A ∪ B = 0 or
A∪B = 1. In the former 
ase, 0 /∈ A and 0 /∈ B. Now, if φ, then 0 ∈ A and if ¬φ,then 0 ∈ B, therefore we have both φ and ¬φ, whi
h is impossible. This means2.that A ∪ B = 1. Therefore 0 ∈ A ∪ B, so either 0 ∈ A in whi
h 
ase φ, or 0 ∈ Bin whi
h 
ase ¬φ. So either φ or ¬φ. �The following helpful lemma, however, does hold in a 
onstru
tive world:Lemma 5.2.2 If A ∈ P (1), then A = 1 i� 0 ∈ A.Proof Left-to-right dire
tion is immediate. For the right-to-left dire
tion, we have
A ⊆ 1 and need to show that 1 ⊆ A. Suppose B ∈ 1, then B = 0, but 0 ∈ A, so
B ∈ A. �Let us also de�ne pre
isely the fun
tion appli
ation operation in set theory. Weborrow the de�nition from A
zel [A
z99℄.

App(f, x) = {z | ∃y. z ∈ y ∧ (x, y) ∈ f}The advantage of using this de�nition over an intuitive one (�the unique y su
hthat (x, y) ∈ f �) is that it is de�ned for all sets f and x. Partiality of App would1Note that if we want to pinpoint C, we need to assume more than AC, as the existen
e of ade�nable 
hoi
e fun
tion for Rω+ω is not provable in ZFC.2We are using here a bit uninintuitive intuitionisti
 tautology : (((φ ∨ ψ) ∧ ¬φ) → ψ)157



entail serious problems in 
onstru
tive settings � see [Mo
07℄ for des
ription ofsome of the problems.This de�nition is equivalent to the standard one when f is a fun
tion:Lemma 5.2.3 If f is a fun
tion from A to B and x ∈ A, then App(f, x) is theunique y su
h that (x, y) ∈ f .Proof Let y be the unique element of B su
h that (x, y) ∈ f . If z ∈ App(f, x) thenthere is y′ su
h that z ∈ y′ and (x, y′) ∈ f . Sin
e y′ = y, z ∈ y. For the otherdire
tion, if z ∈ y, then obviously z ∈ App(f, x). �From now on, the notation f(x) means App(f, x). We will use the lambdanotation in set theory to de�ne fun
tions: λx ∈ A. B(x) means {(x,B(x)) | x ∈ A}.5.2.2 The de�nition of the semanti
sWe �rst de�ne a meaning [[τ ]] of a type τ by stru
tural indu
tion on τ .
• [[nat]] = N.
• [[bool]] = 2.
• [[prop]] = P (1).
• [[(τ, σ)]] = [[τ ]] × [[σ]], where A × B denotes the 
artesian produ
t of sets Aand B.
• [[τ1 → τ2]] = [[τ1]] → [[τ2]], where A → B denotes the set of all fun
tions from
A to B.The meaning of a 
onstant cα is denoted by [[cα]] and is de�ned as follows.

• [[=α]] = λ(x1, x2) ∈ ([[α]] × [[α]]). {x ∈ 1 | x1 = x2}.
• [[→]] = λ(b1, b2) ∈ [[prop]] × [[prop]]. {x ∈ 1 | x ∈ b1 → x ∈ b2}.158



• [[∨]] = λ(b1, b2) ∈ [[prop]] × [[prop]]. b1 ∪ b2.
• [[∧]] = λ(b1, b2) ∈ [[prop]] × [[prop]]. b1 ∩ b2.
• [[false]] = [[⊥]] = 0.
• [[true]] = [[⊤]] = 1.
• [[∀α]] = λf ∈ [[α]] → [[prop]].

⋂
a∈[[α]] f(a).

• [[∃α]] = λf ∈ [[α]] → [[prop]].
⋃
a∈[[α]] f(a).

• [[εα]] = λP ∈ [[α]] → [[prop]]. C(P−1(1), [[α]]).
• [[0]] = 0.
• [[S]] = λn ∈ N. n+ 1.The standard semanti
s, presented for example by Gordon and Melham [GM93℄,uses a truth table approa
h � an impli
ation φ→ ψ is false i� φ is true and ψ isfalse et
. It is easy to see that with ex
luded middle, our semanti
s is equivalentto the standard one.3To present the rest of the semanti
s, we need to introdu
e environments. Anenvironment is a partial fun
tion from HOL variables to sets su
h that ρ(xτ ) ∈ [[τ ]].We will use the symbol ρ ex
lusively for environments. The meaning [[t]]ρ of a term

t is parameterized by an environment ρ and de�ned by stru
tural indu
tion on t:
• [[cτ ]]ρ = [[cτ ]].
• [[xτ ]]ρ = ρ(xτ ).
• [[s u]]ρ = App([[s]]ρ, [[u]]ρ).
• [[λxτ . u]] = {(a, [[u]]ρ[xτ :=a]) | a ∈ [[τ ]]}.
• [[(s, u)]]ρ = ([[s]]ρ, [[u]]ρ).3For the interested reader, our de�nition of the meaning of logi
al 
onstants is essentially a
ombination of the fa
t that any 
omplete latti
e with pseudo-
omplements is a model for higher-order logi
 and that P (1) is a 
omplete latti
e with pseudo-
omplement de�ned in the 
lause for

⇒. See [RS63℄ for more information about these notions.159



5.2.3 PropertiesThere are several standard properties of the semanti
s we have de�ned. The fol-lowing two lemmas are proved by indu
tion on t:Lemma 5.2.4 (Substitution lemma) For any terms t, s and environments ρ,
[[t]]ρ[x:=[[s]]ρ] = [[t[x := s]]]ρ.Proof By indu
tion on t. Case t of:

• c � the 
laim is obvious.
• x. Then [[x]]ρ[x:=[[s]]ρ] = [[s]]ρ = [[[x := s]]]ρ.
• u v. Then [[u v]]ρ[x:=[[s]]] = App([[u]]ρ[x:=[[s]]ρ], [[v]]ρ[x:=[[s]]ρ]). By the indu
tionhypothesis, this is equal to App([[u[x := s]]]ρ, [[v[x := s]]]ρ) = [[u[x := s] v[x :=

s]]]ρ = [[t[x := s]]]ρ.
• (u, v). Similar to the previous 
ase.
• λyτ . u. Without loss of generality we may assume that y 6= x. Then

[[t]]ρ[x:=s] = {(a, [[u]]ρ[x:=[[s]]ρ][y:=a] | a ∈ [[τ ]]}. By the indu
tion hypothesis,this is equal to {(a, [[u[x := s]]]ρ[y:=a]) | a ∈ [[τ ]]} = [[(λyτ . u[x := s])]]ρ =

[[t[x := s]]]ρ. �Lemma 5.2.5 For any ρ, [[tα]]ρ ∈ [[α]].Proof We pro
eed by indu
tion on t. Case t of:
• x. The 
laim follows by properties of environments.
• cτ . We pro
eed by 
ase analysis of c. We show the interesting 
ases.� ∀α. The type of c is (α → prop) → prop. We need to show that if f isa fun
tion from [[α]] to P (1), then ⋂

a∈[[α]] f(a) is in P (1). But for any
a ∈ [[α]], f(a) ∈ P (1), and P (1) is 
losed under interse
tions.160



� ∃α. Similar, follows by the fa
t that P (1) is 
losed under unions.� εα. The type of c is (α→ prop) → prop. Take any fun
tion P from [[α]]to P (1). Then P−1(1) ⊆ [[α]], so the 
laim follows by the de�nition of
C. �In parti
ular, this implies that for any formula t, [[t]] ⊆ 1. So if we want toprove that [[t]] = 1, then by Lemma 5.2.2 it su�
es to show that 0 ∈ [[t]].5.2.4 SoundnessThe soundness theorem establishes validity of the proof rules and axioms withrespe
t to the semanti
s.De�nition 5.2.6 ρ |= Γ ⊢ t means that ρ is de�ned for xτ ∈ FV (Γ) ∪ FV (t).By the de�nition of environments, if ρ |= Γ ⊢ t, then for all xτ ∈ FV (Γ)∪FV (t),

ρ(xτ ) ∈ [[τ ]].De�nition 5.2.7 We write [[Γ]]ρ = 1 if [[t1]]ρ = 1, . . ., [[tn]]ρ = 1, where Γ =

t1, t2, . . ., tn.Theorem 5.2.8 (Soundness) If Γ ⊢ t, then for all ρ |= Γ ⊢ t, if [[Γ]]ρ = 1, then
[[t]] = 1.Proof Straightforward indu
tion on Γ ⊢ t. We show some interesting 
ases. Case
Γ ⊢ t of:

•

Γ ⊢ t
t ∈ ΓThe 
laim is trivial. 161



•
Γ ⊢ t = s

Γ ⊢ λxτ . t = λxτ . sTake any ρ |= Γ ⊢ λxτ . t = λxτ . s. We need to show that {(a, [[t]]ρ[xτ :=a]) | a ∈

[[τ ]]} = {(a, [[s]]ρ[xτ :=a]) | a ∈ [[τ ]]}. That is, that for any a ∈ [[τ ]], [[t]]ρ[xτ :=a] =

[[s]]ρ[xτ :=a]. Let ρ′ = ρ[xτ := a]. Sin
e ρ′ |= Γ ⊢ t = s, by the indu
tionhypothesis we get the 
laim.
•

Γ ⊢ t Γ ⊢ s
Γ ⊢ t ∧ sSuppose [[Γ]]ρ = 1. By the indu
tion hypothesis, 0 ∈ [[t]]ρ and 0 ∈ [[s]]ρ, so

0 ∈ [[t]]ρ ∩ [[s]]ρ.
•

Γ ⊢ t ∧ s
Γ ⊢ t

Γ ⊢ t ∧ s
Γ ⊢ sReverse the previous 
ase to get the 
laims.

•
Γ ⊢ t

Γ ⊢ t ∨ s
Γ ⊢ s

Γ ⊢ t ∨ s
Γ ⊢ t ∨ s Γ, t ⊢ u Γ, s ⊢ u

Γ ⊢ uThe �rst two 
ases are easy. For the last one, suppose [[Γ]]ρ = 1. By theindu
tion hypothesis, we know that 0 ∈ [[t]]ρ ∪ [[s]]ρ, so either 0 ∈ [[t]]ρ or
0 ∈ [[s]]ρ. In both 
ases, by the rest of the indu
tion hypothesis, 0 ∈ [[u]]ρ, sowe get the 
laim.

•
Γ, t ⊢ s

Γ ⊢ t⇒ sSuppose [[Γ]]ρ = 1. We need to show that 0 ∈ {x ∈ 1 | x ∈ [[t]]ρ → x ∈ [[s]]ρ}.Sin
e 0 ∈ 1, assume 0 ∈ [[t]]ρ. Then [[Γ, t]]ρ = 1, so by the indu
tion hypothesis
[[s]]ρ = 1 and 0 ∈ [[s]]ρ. 162



•
Γ ⊢ t→ s Γ ⊢ t

Γ ⊢ sSuppose [[Γ]]ρ = 1. By the indu
tion hypothesis, 0 ∈ {x ∈ 1 | x ∈ [[t]]ρ → x ∈

[[s]]ρ} and 0 ∈ [[t]]ρ, so easily 0 ∈ [[s]]ρ.
•

Γ ⊢ s = u Γ ⊢ t[x := u]

Γ ⊢ t[x := s]The proof is straightforward, using the Substitution Lemma. Assume [[Γ]]ρ =

1. By the indu
tion hypothesis, [[s]]ρ = [[u]]ρ and [[t[x := u]]]ρ = 1. So usingthe Substitution Lemma we get [[t[x := u]]]ρ = [[t]]ρ[x:=[[u]]ρ] = [[t]]ρ[x:=[[s]]ρ] =

[[t[x := s]]]ρ.
•

Γ ⊢ f tα
Γ ⊢ ∃α(fα→prop)Assume [[Γ]]ρ = 1. We have to show that 0 ∈

⋃
a∈[[α]][[f ]]ρ(a), that is thatthere is a ∈ [[α]] su
h that 0 ∈ f(a). By Lemma 5.2.5, [[tα]]ρ ∈ [[α]], so taking

a = [[tα]]ρ we get the 
laim by the indu
tion hypothesis.
•

Γ ⊢ ∃α(fα→prop) Γ, f xα ⊢ u

Γ ⊢ u
xα newSuppose [[Γ]]ρ = 1. By the indu
tion hypothesis, there is a ∈ [[α]] su
h that

0 ∈ [[f ]]ρ(a). Let ρ′ = ρ[xα := a]. Then ρ′ |= Γ, f xα ⊢ u, so by the indu
tionhypothesis we get 0 ∈ [[u]]ρ, whi
h is what we want.
•

Γ ⊢ ∀α = (λPα→prop. P = λxα. ⊤)We need to show that [[∀α]]ρ = [[λPα→prop. P = λxα. ⊤]]. First, [[∀α]]ρ = λf ∈

[[α]] → P (1).
⋂
a∈[[α]] f(a). Let us denote this fun
tion in set theory by F .The domain of F is [[α]] → P (1). 163



Se
ond, let G = [[(λPα→prop. P = λxα. ⊤)]]ρ. Then we have G = {(a, [[a =

λxα. ⊤]]ρ[P :=a]) | P ∈ [[α]] → P (1)}. Note that G is also a fun
tion withthe domain [[α]] → P (1). Thus, to show that F = G, it su�
es to showthat for any P ∈ [[α]] → P (1), F (P ) = G(P ). Take any su
h P . We have
F (P ) =

⋂
a∈[[α]] P (a) and G(P ) = {x ∈ 1 | P = λx ∈ [[α]]. 1}. Now b ∈ F (P )i� for all a ∈ [[α]], b ∈ P (a) i� for all a ∈ [[α]], P (a) = 1 i� P = λa ∈ [[α]]. 1,i� b ∈ {z ∈ 1 | P = λa ∈ [[α]]. 1}. �Having veri�ed the soundness of the HOL proof rules, we pro
eed to verify thesoundness of the axioms.Theorem 5.2.9 For any axiom t of HOL and any environment ρ, 0 ∈ [[t]]ρ.Proof We pro
eed axiom by axiom and sket
h the respe
tive proofs.

• (FALSE) [[⊥]]ρ = ∅ =
⋂
a∈P (1) a = [[∀b : prop. b]]ρ. The se
ond equality followsby 0 ∈ P (1).

• (BETA) Follows by the Substitution Lemma. We have [[(λxτ . tσ)sτ ]]ρ =

App([[λxτ . tσ]]ρ, [[sτ ]]ρ) = App({(a, [[t]]ρ[x:=a]) | a ∈ [[τ ]]}, [[sτ ]]ρ) = [[t]]ρ[x:=[[sτ ]]ρ] =(by the Substitution Lemma) = [[t[x := s]]]ρ.
• (ETA) Follows by the fa
t that fun
tions in set theory are represented bytheir graphs. We have:

[[(λxτ . fτ→σ
xτ ]]ρ = {(a, [[f x]]ρ[x:=a]) | a ∈ [[τ ]]} =

{(a, App([[f ]]ρ[x:=a], a)) | a ∈ [[τ ]]} = (sin
e x /∈ FV (f))

{(a, [[f ]]ρ(a)) | a ∈ [[τ ]]} = [[f ]]ρ,sin
e by Lemma 5.2.5, [[f ]]ρ ∈ [[τ ]] → [[σ]] and fun
tions in set theory arerepresented by their graphs. 164



• (FORALL) We have:
[[∀α]]ρ = {(Q,

⋂

a∈[[α]]

Q(a)) | Q ∈ [[α]] → P (1)}Also:
[[(λQα→prop. Q = λxα.⊤)]]ρ = {(Q, {x ∈ 1 |Q = λx ∈ [[α]]. 1}) |Q ∈ [[α]] → P (1)}Take any Q ∈ [[α]] → P (1). It su�
es to show that ⋂

a∈[[α]]Q(a) = {x ∈

1 | Q = λy ∈ [[α]]. 1}. But x ∈
⋂
a∈[[α]]Q(a) i� for all a ∈ [[α]], x ∈ Q(a) and

x = 0. This happens if and only if x = 0 and for all a ∈ [[α]], Q(a) = 1 whi
his equivalent to x ∈ {x ∈ 1 | Q = λy ∈ [[α]]. 1}. The sets in question aretherefore equal.
• The axioms P3, P4, P5 follow by the fa
t that natural numbers satisfy therespe
tive Peano axioms.
• (BOOL) We need to show that [[∀bool. (λxbool. x = false ∨ x = true)]]ρ = 1.Unwinding the de�nition, this is equivalent to ⋂

x∈2({z ∈ 1 | x = 0} ∪ {z ∈

1 | x = 1}) = 1. and furthermore to: for all x ∈ 2, x ∈ {z ∈ 1 | x =

0} ∪ {z ∈ 1 | x = 1}. If x ∈ 2, then either x = 0 or x = 1. In the former
ase, 0 ∈ {z ∈ 1 | x = 0}, in the latter 0 ∈ {z ∈ 1 | x = 1}.
• (EM) We need to show that [[∀prop. (λxprop. x = ⊥∨x = ⊤)]]ρ = 1. Reasoningas in the 
ase of (BOOL), we �nd that this is equivalent to: for all x ∈ P (1),
x ∈ {z ∈ 1 | x = 0} ∪ {z ∈ 1 | x = 1}. Suppose x ∈ P (1). At this point, it isimpossible to pro
eed further 
onstru
tively, all we know is that x is a subsetof 1, whi
h does not provide enough information to de
ide whether x = 0 or
x = 1. However, 
lassi
ally, using the rule of ex
luded middle, P (1) = 2 andwe pro
eed as in the previous 
ase.

• (CHOICE) We need to show that:
[[∀α→prop(λPα→prop. ∀α(λxα. Px⇒ P (ε(α→prop)→α(P ))]] = 1165



We have the following 
hain of equivalen
es:
[[∀α→prop(λPα→prop. ∀α(λxα. Px⇒ P (ε(α→prop)→α(P ))]] = 1 ↔

⋂

P∈[[α]]→2

[[∀α(λxα. Px⇒ P (ε(α→prop)→α(P ))]] = 1 ↔

⋂

P∈[[α]]→2

⋂

x∈[[α]]

[[Px ⇒ P (ε(α→prop)→α(P ))]] = 1 ↔

⋂

P∈[[α]]→2

⋂

x∈[[α]]

[[Px ⇒ P (ε(α→prop)→α(P ))]] = 1 ↔

⋂

P∈[[α]]→2

⋂

x∈[[α]]

{a ∈ 1 | a ∈ P (x) → a ∈ P (C(P−1({1}), [[α]]))} = 1To show this, it su�
es to show that for all P ∈ [[α]] → 2, for all x ∈ [[α]],if 0 ∈ P (x) then 0 ∈ P (C(P−1({1}), [[α]])). Take any P and x. Suppose
0 ∈ P (x). Then P (x) = 1, so x ∈ P−1({1}). Therefore C(P−1({1}), [[α]])) ∈

P−1({1}), so P (C(P−1({1}), [[α]]) = 1, whi
h shows the 
laim. �Corollary 5.2.10 HOL is 
onsistent: it is not the 
ase that ⊢H ⊥.Proof Otherwise we would have [[⊥]] = [[⊤]], that is 0 = 1. �5.3 Extra
tionWe will show that the semanti
s we have de�ned 
an serve as a basis for programextra
tion for proofs. All that is ne
essary for program extra
tion from 
onstru
-tive HOL proofs is provided by the semanti
s and the soundness proof. Therefore,if one wants to provide an extra
tion me
hanism for the 
onstru
tive part of thelogi
, it may be su�
ient to 
arefully de�ne set-theoreti
 semanti
s, prove thesoundness theorem and the extra
tion me
hanism for IZFR would take 
are of therest. We spe
ulate on pra
ti
al uses of this approa
h in se
tion 5.4.As in 
ase of IZFR , we will show how to do extra
tion from a sub
lass of CHOLproofs. The 
hoi
e of the sub
lass is largely arbitrary, our 
hoi
e illustrates the166



method and 
an be easily extended.We say that a CHOL formula is extra
table if it is generated by the followingabstra
t grammar, where τ varies over pure TT 0 types and ⊕ ∈ {∧,∨,→}.
φ ::= ∀x : τ. φ | ∃x : τ. φ | φ⊕ φ | ⊥ | t = t,We will de�ne extra
tion for CHOL proofs of extra
table formulas. By Theo-rem 5.2.9, if CHOL ⊢ φ, then IZFR⊢ 0 ∈ [[φ]]. We need to slightly transform thisIZFR proof in order to 
ome up with a valid input to the extra
tion fun
tion Efrom Se
tion 3.3. To this means, for any extra
table φ (with possibly free vari-ables) we de�ne a formula φ′ su
h that IZFR⊢ 0 ∈ [[φ]] ↔ φ′. The formula φ′ isessentially φ with the type membership information repla
ed by the set member-ship information. We de�ne φ′ by indu
tion on φ. The 
orre
tness follows triviallyin ea
h 
ase. In all the 
ases we work in IZFR. Case φ of:

• ⊥. Then φ′ = 0 ∈ [[⊥]].
• t = s. Then φ′ = 0 ∈ [[t = s]].
• φ1∨φ2. 0 ∈ [[φ1∨φ2]] i� 0 ∈ [[φ1]] or 0 ∈ [[φ2]]. By the indu
tion hypothesis weget φ′

1 and φ′
2 su
h that 0 ∈ [[φ1]] ↔ φ′

1 and 0 ∈ [[φ2]] ↔ φ′
2. Take φ′ = φ′

1∨φ
′
2.

• φ1 ∧ φ2. Then 0 ∈ [[φ]] i� 0 ∈ [[φ1]] and 0 ∈ [[φ2]]. Take φ′
1 and φ′

2 from theindu
tion hypothesis and set φ′ = φ′
1 ∧ φ

′
2.

• φ1 → φ2. Then 0 ∈ [[φ1 → φ2]] i� 0 ∈ {x ∈ 1 | x ∈ [[φ1]] → x ∈ [[φ2]]}i� 0 ∈ [[φ2]] → 0 ∈ [[φ2]]. By the indu
tion hypothesis get φ′
1 su
h that

0 ∈ [[φ1]] ↔ φ′
1 and φ′

2 su
h that 0 ∈ [[φ2]] ↔ φ′
2. Set φ′ = φ′

1 → φ′
2.

• ∀a : τ. φ1. Then 0 ∈ [[φ]] i� for all A ∈ [[τ ]], 0 ∈ App([[λa : τ. φ1]], A) i� forall A ∈ [[τ ]], 0 ∈ App({(x, [[φ1]]ρ[a:=x]) | x ∈ [[τ ]]}, A) i� for all A ∈ [[τ ]] 0 ∈

[[φ1]]ρ[a:=A] i�, by the Substitution Lemma, for all A ∈ [[τ ]], 0 ∈ [[φ1[a := A]]]167



i� for all A ∈ [[τ ]], 0 ∈ [[φ1]]. Take φ′
1 from the indu
tion hypothesis and set

φ′ = ∀a ∈ [[τ ]]. 0 ∈ φ′
1.

• ∃a : τ. φ1. Then 0 ∈ [[φ]] i� A ∈ [[τ ]] i� 0 ∈ [[φ1[a := A]]]. Just as in theprevious 
ase, get φ′
1 from the indu
tion hypothesis and set φ′ = ∃a ∈ [[τ ]]. φ′

1.Now we 
an �nally de�ne the extra
tion pro
ess. Suppose CHOL ⊢ φ, where
φ is extra
table. Using the soundness theorem, 
onstru
t an IZFR proof P that
0 ∈ [[φ]]. Use the de�nition above to get φ′ su
h that IZFR ⊢ 0 ∈ [[φ]] ↔ φ′ andusing P obtain a proof R of φ′. Finally, apply the extra
tion fun
tion E to R toget the 
omputational extra
t.5.4 Con
lusionWe have presented a 
omputational semanti
s for HOL via the standard interpre-tation in intuitionisti
 set theory. The semanti
s is 
lean, simple and agrees withthe standard one.The advantage of this approa
h is that the extra
tion me
hanism is 
ompletelyexternal to Constru
tive HOL. Using only the semanti
s, we 
an take any 
onstru
-tive HOL proof and extra
t from it 
omputational information. No enri
hment ofthe logi
 in the normalizing proof terms is ne
essary.The separation of the extra
tion me
hanism from the logi
 makes the logi
 veryeasily extendable. For example, indu
tive datatypes and subtyping have 
lean set-theoreti
 semanti
s, so 
an easily be added to HOL preserving 
onsisten
y, aswitnessed in PVS. As the semanti
s would work 
onstru
tively, the extra
tionme
hanisms from se
tion 5.3 
ould be easily adapted to in
orporate them. Sim-ilarly, one 
ould de�ne a set-theoreti
 semanti
s for the 
onstru
tive version ofHOL implemented in Isabelle ([Ber04, BN02℄) in the same spirit, with the sameadvantages. 168



The modularity of our approa
h and the fa
t that it is mu
h easier to giveset-theoreti
 semanti
s for the logi
 than to prove normalization, 
ould make thedevelopment of new trustworthy provers with extra
tion 
apabilities mu
h easierand faster.

169



CHAPTER 6CONCLUSIONWe took the reader on a tour between the stati
 world of sets, whi
h formsthe foundation of mathemati
s, and the dynami
 world of types, a possible foun-dation for 
omputer s
ien
e. We showed that these worlds are mu
h 
loser thanit seems. Computation 
an be dis
overed in the world of sets, and type-theoreti
features 
an be added to set theory with signi�
ant advantages. We showed the�rst appli
ations of our results, by showing that standard semanti
s for type the-ories given in 
omputational set theory 
an provide program-extra
tion 
apabilityfrom 
onstru
tive proofs for free.We would like to 
lose this thesis with three open questions. We believe thatanswers to these questions will further our understanding of foundations of math-emati
s and 
omputer s
ien
e.
• Is there a strong 
onsistent dependent set theory with unrestri
ted Σ-types?In a sense, A
zel's interpretation of CZF in Martin-Löf's type theory [A
z78,A
z82, A
z86℄ is su
h a theory. However, it is very weak. Moreover, itsdependent nature is only revealed in the type-theoreti
 model, not in theaxiomatization. We hope for a 
onsisten
y result for a theory 
onstru
tedalong the lines of our IZFD. One instan
e of this question is whether IZFDwith standard, non-dependent Repla
ement and unrestri
ted Σ-types is 
on-sistent.
• Is there a well-behaved lambda 
al
ulus with types whi
h 
an interpret IZFC?Although λD does provide an interpretation, the fa
t that it does not possessthe Subje
t Redu
tion property makes it an unsatisfying theory from a the-oreti
al point of view. The strongest normalizing lambda 
al
uli in existen
ewith the Subje
t Redu
tion property, su
h as CIC and ECC, 
an only in-170



terpret 
onstru
tive Zermelo theory [Wer97, A
z99℄ and their proof-theoreti
strength is smaller than ZF.
• Is there a good 
hara
terization of the border area between normalization,la
k of thereof and in
onsisten
y?On the side of sets, 
ontradi
tions are nowadays not that easy to �nd, apartfrom the Russell's paradox. The land of types is mu
h younger and not aswell-understood. However, although the original type theory of Martin-Löfturned out to be in
onsistent, modern type theories are widely believed to be
onsistent. Our theories live in the border area � almost 
ontradi
tory (λDand IZFD) and almost not normalizing (with the addition of non-well-foundedsets). But what exa
tly tips a type or set theory to lose normalization or
onsisten
y?We are looking forward to seeing answers to these problems.THE END

171



BIBLIOGRAPHY[ABC+06℄ Stuart Allen, Mark Bi
kford, Robert Constable, Ri
hard Eaton,Christoph Kreitz, Lori Lorigo, and Evan Moran. Innovations in 
ompu-tational type theory using Nuprl. Journal of Applied Logi
, 4(4):428�469, 2006.[Abr96℄ J.-R. Abrial. The B-book: assigning programs to meanings. CambridgeUniversity Press, New York, NY, USA, 1996.[ACE+00℄ Stuart Allen, Robert Constable, Ri
hard Eaton, Christoph Kreitz, andLori Lorigo. The Nuprl open logi
al environment. In David M
Allester,editor, Pro
eedings of the 17th International Conferen
e on AutomatedDedu
tion, volume 1831 of Le
ture Notes in Arti�
ial Intelligen
e, pages170�176. Springer Verlag, 2000.[ACN90℄ Lennart Augustsson, Thierry Coquand, and Bengt Nordström. A shortdes
ription of another logi
al framework. In Pro
eedings of the First An-nual Workshop on Logi
al Frameworks, pages 39�42, Sophia-Antipolis,Fran
e, 1990.[A
z78℄ Peter A
zel. The type theoreti
 interpretation of 
onstru
tive set theory.In A. Ma
Intyre, L. Pa
holski, and J. Paris, editors, Logi
 Colloquium'77, pages 55�66. North Holland, 1978.[A
z82℄ Peter A
zel. The type theoreti
 interpretation of 
onstru
tive set the-ory: Choi
e prin
iples. In S.S. Troelstra and D. van Dalen, editors,The L.E.J. Brouwer Centenary Symposium, pages 1�40. North Hol-land, 1982.[A
z86℄ Peter A
zel. The type theoreti
 interpretation of 
onstru
tive set the-ory: Indu
tive de�nitions. In Logi
, Methodology and Philosophy ofS
ien
e VII, pages 17�49. Elsevier S
ien
e Publishers, 1986.[A
z99℄ Peter A
zel. On relating type theories and set theories. In T. Altenkir
h,W. Naras
hewski, and B. Reus, editors, Types for Proofs and Programs:International Workshop, TYPES '98, Kloster Irsee, Germany, Mar
h1998, volume 1657 of LNCS, pages 1�18, 1999.[AG95℄ Sten Agerholm and Mi
hael J. C. Gordon. Experiments with ZF SetTheory in HOL and Isabelle. In Pro
. of the 8th Int. Workshop onHigher Order Logi
 Theorem Proving and Its Appli
ations, pages 32�45, London, UK, 1995. Springer-Verlag.172



[AR01℄ Peter A
zel and Mi
hael Rathjen. Notes on 
onstru
tive set the-ory. Te
hni
al Report 40, Institut Mittag-Le�er (The Royal SwedishA
ademy of S
ien
es), 2000/2001.[Bai88℄ Sidney C. Bailin. A normalization theorem for set theory. J. Symb.Log., 53(3):673�695, 1988.[Bar92℄ Henk P. Barendregt. Handbook of Logi
 in Computer S
ien
e, volume 2,
hapter Lambda Cal
uli with Types, pages 118�310. Oxford UniversityPress, 1992.[BBS+98℄ H. Benl, U. Berger, H. S
hwi
htenberg, et al. Proof theory at work: Pro-gram development in the Minlog system. In W. Bibel and P. G. S
hmitt,editors, Automated Dedu
tion, volume II, pages 41�71. Kluwer, 1998.[BC04℄ Yves Bertot and Pierre Castéran. Intera
tive Theorem Proving and Pro-gram Development; Coq'Art: The Cal
ulus of Indu
tive Constru
tions.Texts in Theoreti
al Computer S
ien
e. Springer-Verlag, 2004.[Bee85℄ Mi
hael J. Beeson. Foundations of Constru
tive Mathemati
s. Springer-Verlag, 1985.[Ber04℄ Stefan Berghofer. Proofs, Programs and Exe
utable Spe
i�
ations inHigher Order Logi
. PhD thesis, Te
hnis
he Universität Mün
hen, 2004.[BN02℄ Stefan Berghofer and Tobias Nipkow. Exe
uting Higher Order Logi
.In P. Callaghan, Z. Luo, J M
Kinna, and R. Polla
k, editors, Typesfor Proofs and Programs: TYPES'2000, volume 2277 of LNCS, pages24�40. Springer-Verlag, 2002.[Bou49℄ N. Bourbaki. Foundations of mathemati
s for the working mathemati-
ian. J. Symb. Log., 14(1):1�8, 1949.[Bou68a℄ N. Bourbaki. Elements of Mathemati
s, Algebra, volume 1. Addison-Wesley, Reading, MA, 1968.[Bou68b℄ N. Bourbaki. Elements of Mathemati
s, Theory of Sets. Addison-Wesley, Reading, MA, 1968.[Bro07℄ L.E.J. Brouwer. Over de Grondslagen der Wiskunde. PhD thesis, 1907.English version in [Hey75℄. 173



[CAB+86℄ Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleave-land, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblo
k,N. P. Mendler, P. Panangaden, James T. Sasaki, and S
ott F. Smith.Implementing Mathemati
s with the Nuprl Proof Development System.Prenti
e-Hall, NJ, 1986.[Can55℄ Georg Cantor. Contributions to the Founding of the Theory of Trans-�nite Numbers. Dover, 1955.[CFC58℄ H. B. Curry, R. Feys, and W. Craig. Combinatory Logi
, Volume I.Studies in Logi
 and the Foundations of Mathemati
s. North-Holland,Amsterdam, 1958.[Chu40℄ Alonzo Chur
h. A formulation of the simple theory of types. TheJournal of Symboli
 Logi
, 5:55�68, 1940.[CM06℄ Robert Constable and Woj
ie
h Mo
zydªowski. Extra
ting Programsfrom Constru
tive HOL Proofs via IZF Set-Theoreti
 Semanti
s. InPro
. 3rd Int. Joint Conf. on Automated Reasoning (IJCAR 2006),volume 4130 of LNCS, pages 162�176. Springer, 2006.[Con71℄ Robert L. Constable. Constru
tive mathemati
s and automati
 pro-gram writers. In Pro
eedings of the IFIP Congress, pages 229�233.North-Holland, 1971.[Con98℄ Robert L. Constable. Types in logi
, mathemati
s and programming.In S. R. Buss, editor, Handbook of Proof Theory, 
hapter X, pages 683�786. Elsevier S
ien
e B.V., 1998.[Coq℄ Catarina Coquand. Agda. Available fromhttp://www.
s.
halmers.se/�
atarina/agda.[CPM90℄ Thierry Coquand and Christine Paulin-Mohring. Indu
tively de�nedtypes, preliminary version. In COLOG '88, International Conferen
eon Computer Logi
, volume 417 of LNCS, pages 50�66. Springer, Berlin,1990.[CR02℄ L. Crosilla and Mi
hael Rathjen. Ina

essible set axioms may have little
onsisten
y strength. Ann. Pure Appl. Logi
, 115(1-3):33�70, 2002.[Cra℄ Mar
el Crabbé. Non-normalisation de174



la théorie de Zermelo. Available fromhttp://www.lofs.u
l.a
.be/log/perso/Crabbe/textes/
ontreexemple.pdf.[dB70℄ N. G. de Bruijn. The mathemati
al language Automath: its usageand some of its extensions. In J. P. Seldin and J. R. Hindley, editors,Symposium on Automati
 Demonstration, volume 125 of Le
ture Notesin Mathemati
s, pages 29�61. Springer-Verlag, 1970.[DM06℄ Gilles Dowek and Alexandre Miquel. Cut elimination for Zermelo's settheory. 2006. Manus
ript, available from the web pages of the authors.[Fef05℄ Solomon Feferman. Predi
ativity. In Stewart Shapiro, editor, The Ox-ford Handbook of the Philosophy of Mathemati
s and Logi
, pages 590�624. Oxford University Press, 2005.[Flo67℄ R. W. Floyd. Assigning meanings to programs. In Pro
eedings AMSSymposium Appl. Math., pages 19�31, Providen
e, RI, 1967.[Fra22℄ A.A. Fraenkel. Zu den Grundlagen der Cantor-Zermelos
hen mengen-lehre. Mathematis
he Annalen, 86:230�237, 1922.[Fre67℄ Gottlob Frege. Begri�ss
hrift, a formula language, modeled upon thatfor arithmeti
 for pure thought. In van Heijenoort [vH67℄, pages 1�82.[Fri73℄ Harvey Friedman. The 
onsisten
y of 
lassi
al set theory relative toa set theory with intuitionisti
 logi
. The Journal of Symboli
 Logi
,pages 315�319, 1973.[Fri78℄ Harvey Friedman. Classi
ally and intuitionisti
ally provably re
ursivefun
tions. In D. S. S
ott and G. H. Muller, editors, Higher Set Theory,volume 699 of Le
ture Notes in Mathemati
s, pages 21�28. Springer-Verlag, 1978.[FS84℄ Harvey Friedman and Andre �S�
edrov. Large sets in intuitionisti
 settheory. Annals of Pure and Applied Logi
, 27:1�24, 1984.[FS85℄ Harvey Friedman and Andre �S�
edrov. The La
k of De�nable Witnessesand Provably Re
ursive Fun
tions in Intuitionisti
 Set Theories. Ad-van
es in Mathemati
s, 57:1�13, 1985.[Gen69℄ Gerhard Gentzen. Investigations into logi
al dedu
tion (1934). In175



M. Szalo, editor, The Colle
ted Paers of Gerhard Gentzen. North-Holland, Amsterdam, 1969.[Gir72℄ Jean-Yves Girard. Interprétation Fon
tionelle et Élimination des Com-pures de l'Arithméti
 d'Ordre Supérieur. PhD thesis, Université ParisVII, 1972.[GM93℄ Mi
hael Gordon and Tom Melham. Introdu
tion to HOL: A TheoremProving Environment for Higher-Order Logi
. Cambridge UniversityPress, Cambridge, 1993.[Göd31℄ Kurt Gödel. Über formal unents
heidbare sätze der prin
ipia math-emati
a und verwandter systeme I. Monatshefte für Mathematik undPhysik, 38:173�198, 1931. English version in [vH67℄.[Göd58℄ Kurt Gödel. Über eine bisher no
h ni
ht benüntze Erweiterung des�niten Standpunktes. Diale
ti
a, 12(3-4):280�287, 1958.[Göd65℄ Kurt Gödel. On intuitionisti
 arithmeti
 and number theory. InM. Davis, editor, The Unde
idable, pages 75�81. Raven Press, 1965.[Gor96℄ Mike Gordon. Set Theory, Higher Order Logi
 or Both? In TPHOLs'96: Pro
. of the 9th Int. Conf. on Theorem Proving in Higher OrderLogi
s, volume 1125 of LNCS, pages 191�202. Springer-Verlag, 1996.[Gru92℄ Klaus Grue. Map theory. Theor. Comput. S
i., 102(1):1�133, 1992.[HA28℄ David Hilbert and Wilhelm A
kermann. Grundzüge der theoretis
henLogik. Springer-Verlag, 1928.[Hal℄ Thomas Hallgren. Alfa. Available fromhttp://www.
s.
halmers.se/�hallgren/Alfa.[Har96℄ John Harrison. HOLLight: A tutorial introdu
tion. In Formal Methodsin Computer-Aided Design (FMCAD'96), volume 1166 of LNCS, pages265�269. Springer, 1996.[Hey31℄ Arend Heyting. Die intuitionistis
he grundlegung der mathematik.Erkenntnis, 2:106�115, 1931.[Hey66℄ A. Heyting. Intuitionism, An Introdu
tion. North-Holland, Amsterdam,1966. 176



[Hey75℄ A. Heyting, editor. L. E. J. Brouwer. Colle
ted Works, volume 1. North-Holland, Amsterdam, 1975. (see On the foundations of mathemati
s11-98.).[HNC+03℄ Jason Hi
key, Aleksey Nogin, Robert L. Constable, Brian E. Aydemir,Eli Barzilay, Yegor Bryukhov, Ri
hard Eaton, Adam Grani
z, AlexeiKopylov, Christoph Kreitz, Vladimir N. Krupski, Lori Lorigo, StephanS
hmitt, Carl Witty, and Xin Yu. MetaPRL � A modular logi
al en-vironment. In David Basin and Burkhart Wol�, editors, Pro
eedingsof the 16th International Conferen
e on Theorem Proving in HigherOrder Logi
s (TPHOLs 2003), volume 2758 of LNCS, pages 287�303.Springer-Verlag, 2003.[Hoa69℄ C. A. R. Hoare. An axiom basis for 
omputer programming. Commu-ni
ations of the ACM, 12(10):576�580,583, 1969.[How80℄ W. Howard. The formulas-as-types notion of 
onstru
tion. In To H.B.Curry: Essays on Combinatory Logi
, Lambda-Cal
ulus and Formal-ism, pages 479�490. A
ademi
 Press, NY, 1980.[How96℄ Douglas J. Howe. Semanti
 foundations for embedding HOL in Nuprl. InMartin Wirsing and Mauri
e Nivat, editors, Algebrai
 Methodology andSoftware Te
hnology, volume 1101 of LNCS, pages 85�101. Springer-Verlag, Berlin, 1996.[Je
03℄ Thomas Je
h. Set Theory. Springer Monographs in Mathemati
s.Springer-Verlag, 3rd revised edition, 2003.[Kan03℄ Akihiro Kanamori. The Higher In�nite: Large Cardinals in Set Theoryfrom Their Beginnings. Springer-Verlag, 2nd edition, 2003.[Kle45℄ S. C. Kleene. On the interpretation of intuitionisti
 number theory.The Journal of Symboli
 Logi
, 10(4):109�124, de
 1945.[Kre02℄ Christoph Kreitz. The Nuprl Proof Development System, Version 5:Referen
e Manual and User's Guide. Department of Computer S
ien
e,Cornell University, De
ember 2002.[Kun80℄ Kenneth Kunen. Set theory: an introdu
tion to independen
e proofs.Elsevier, 1980.[Lau70℄ H. Lau
hli. An abstra
t notion of realizability for whi
h intuitionisti
177



predi
ate 
al
ulus is 
omplete. In Intuitionism and Proof Theory, pages227�34. North-Holland, Amsterdam, 1970.[Lei94℄ Daniel Leivant. Higher order logi
. In D. M. Gabbay, C. J. Hogger,and J. A. Robinson, editors, Handbook of Logi
 in Arti�
ial Intelligen
eand Logi
 Programming, Volume 2: Dedu
tion Methodologies, pages229�321. Clarendon Press, Oxford, 1994.[Lip95℄ Jim Lipton. Realizability, set theory and term extra
tion. In Ph.de Groote, editor, The Curry-Howard Isomorphism, volume 8 ofCahiers du Centre de Logique, pages 257�364. Université Catholiquedu Louvain, 1995.[LK01℄ Jean Louis Krivine. Typed lambda-
al
ulus in 
lassi
al Zermelo-Fraeænkel set theory. Ar
hive for Mathemati
al Logi
, 40(3):189�205,2001.[LP92℄ Z. Luo and R. Polla
k. LEGO proof development system: User's man-ual. Te
hni
al Report ECS-LFCS-92-211, University of Edinburgh,1992.[Lub93℄ Robert S. Lubarsky. Intuitionisti
 L. In John N. Crossley and other,editors, Logi
al Methods. In Honor of Anil Nerode's Sixtieth Birthday.,pages 555�571. Birkhäuser, 1993.[Lub02℄ Robert S. Lubarsky. IKP and Friends. J. Symb. Log., 67(4):1295�1322,2002.[Lub07℄ Robert S. Lubarsky. On the Cau
hy Completeness of the Constru
tiveCau
hy Reals. Ele
tron. Notes Theor. Comput. S
i., 167:225�254, 2007.[M
C84℄ D.C. M
Carty. Realizability and Re
ursive Mathemati
s. D.Phil. Thesis,University of Oxford, 1984.[Miq03℄ Alexandre Miquel. A Strongly Normalising Curry-Howard Correspon-den
e for IZF Set Theory. In Pro
. of 12th Ann. Conf. of the EACSL(CSL 2003), volume 2803 of LNCS, pages 441�454. Springer, 2003.[Miq04℄ Alexandre Miquel. Lambda-Z: Zermelo's Set Theory as a PTS with4 Sorts. In Jean-Christophe Filliâtre, Christine Paulin-Mohring, andBenjamin Werner, editors, TYPES, volume 3839 of Le
ture Notes inComputer S
ien
e, pages 232�251. Springer, 2004.178



[ML73℄ Per Martin-Löf. An intuitionisti
 theory of types: Predi
ative part. InLogi
 Colloquium '73, pages 73�118. North-Holland, Amsterdam, 1973.[ML82℄ Per Martin-Löf. Constru
tive mathemati
s and 
omputer program-ming. In Pro
eedings of the Sixth International Congress for Logi
,Methodology, and Philosophy of S
ien
e, pages 153�175, Amsterdam,1982. North Holland.[Mo
06a℄ Woj
ie
h Mo
zydªowski. Normalization of IZF with Repla
ement. InPro
. 15th Ann. Conf. of the EACSL (CSL 2006), volume 4207 of Le
-ture Notes in Computer S
ien
e. Springer, 2006.[Mo
06b℄ Woj
ie
h Mo
zydªowski. A Normalizing Intuitionisti
 Set Theory withIna

essible Sets. Te
hni
al Report TR2006-2051, Cornell University,2006.[Mo
07℄ Woj
ie
h Mo
zydªowski. A Dependent Set Theory. In Pro
eedings ofthe Twenty-Se
ond Annual IEEE Symposium on Logi
 in ComputerS
ien
e, pages 23�32. LICS, June 2007.[MP02℄ Ieke Moerdijk and Erik Palmgren. Type theories, toposes and 
onstru
-tive set theory: predi
ative aspe
ts of AST. Annals of Pure and AppliedLogi
, 114:155�201, 2002.[Muz93℄ Mi
haª Muzalewski. An Outline of PC Mizar. Foundation of Logi
,Mathemati
s and Informati
s, Mizar User Group, Brussels, 1993.[Myh73℄ John Myhill. Some properties of intuitionisti
 Zermelo-Fraenkel set the-ory. In Cambridge Summer S
hool in Mathemati
al Logi
, volume 29,pages 206�231. Springer, 1973.[NPS90℄ Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming inMartin-Löf's Type Theory. Oxford S
ien
es Publi
ation, Oxford, 1990.[Pea89℄ Giuseppe Peano. Arithmeti
es Prin
ipia, Nova Methodo Exposita.Fratres Bo

a, Turin, 1889.[Pra65℄ D. Prawitz. Natural Dedu
tion. Almquist and Wiksell, Sto
kholm,1965.[Rat04℄ Mi
hael Rathjen. Realizability for Constru
tive Zermelo-Fraenkel settheory. Preprint, 2004. 179



[Rat05a℄ Mi
hael Rathjen. The disjun
tion and related properties for 
onstru
-tive Zermelo-Fraenkel set theory. Journal of Symboli
 Logi
, 70:1233�1254, 2005.[Rat05b℄ Mi
hael Rathjen. Generalized indu
tive de�nitions in 
onstru
tive settheory. In Laura Crosilla and Peter S
huster, editors, From Sets andTypes to Topology and Analysis: Towards Pra
ti
able Foundations forConstru
tive Mathemati
s. Oxford University Press, 2005.[Rat06℄ Mi
hael Rathjen. Metamathemati
al properties of intuitionisti
 set the-ories with 
hoi
e prin
iples. 2006. Manus
ript, available from the webpage of the author.[RS63℄ Helena Rasiowa and Roman Sikorski. The Mathemati
s of Metamath-emati
s. Number 41 in Moanogr�e Matematy
zne. Polish S
ienti�
Publishers, 1963.[S
o70℄ D. S
ott. Constru
tive validity. In D. La
ombe M. Laudelt, editor,Symposium on Automati
 Demonstration, volume 5(3) of Le
ture Notesin Mathemati
s, pages 237�275. Springer-Verlag, New York, 1970.[Shi94℄ Masaru Shirahata. Linear Set Theory. PhD thesis, 1994.[Sim99℄ Stephen G. Simpson. Subsystems of se
ond order arithmeti
. Perspe
-tives in Mathemati
al Logi
. Springer-Verlag, Berlin, 1999.[SU06℄ M.H.B. Sørensen and P. Urzy
zyn. Le
tures on the Curry-Howard Iso-morphism. Elsevier, 2006.[Ter04℄ Kazushige Terui. Light a�ne set theory: A naive set theory of polyno-mial time. Studia Logi
a, 77(1):9�40, 2004.[The04℄ The Coq Development Team. The Coq Proof Assistant Referen
e Man-ual � Version V8.0, April 2004.[Tro73℄ Anne Sjerp Troelstra. Metamathemati
al Investigation of Intuitionisti
Mathemati
s, volume 344 of Le
ture Notes in Mathemati
s. Springer-Verlag, 1973.[Tro98℄ A.S. Troelstra. Realizability. In S.R. Buss, editor, Handbook of ProofTheory, volume 137 of Studies in Logi
 and the Foundations of Mathe-mati
s, pages 407�473. Elsevier, 1998.180



[Tur36℄ Alan M. Turing. On 
omputable numbers, with an appli
ation to theEnts
heidungsproblem. Pro
. London Math. So
., 2(42):230�265, 1936.[TvD88℄ A.S. Troelstra and D. van Dalen. Constru
tivism in Mathemati
s, AnIntrodu
tion, volume I, II. North-Holland, Amsterdam, 1988.[van99℄ D. van Dalen. Mysti
, Geometer, and Intuitionist: The Life of L.E.J.Brouwer. The dawning Revolution., volume I. Oxford University Press,1999.[vH67℄ J. van Heijenoort, editor. From Frege to Gödel: A Sour
e Book inMathemati
al Logi
, 1879�1931. Harvard University Press, Cambridge,MA, 1967.[vO02℄ Jaap van Oosten. Realizability: A histori
al essay. Mathemati
al Stru
-tures in Computer S
ien
e, 12(3):239�263, 2002.[�85℄ Andre �£edrov. Intuitionisti
 set theory. In Harvey Friedman's Resear
hon the Foundations of Mathemati
s, pages 257�284. Elsevier, 1985.[vS90℄ Walter P. van Stigt. Brouwer's Intuitionism. North-Holland, Amster-dam, 1990.[Wer97℄ Benjamin Werner. Sets in types, types in sets. In TACS `97: Pro
. ofthe 3rd Int. Symposium on Theoreti
al Aspe
ts of Computer Software,pages 530�546. Springer-Verlag, 1997.[Zer08℄ Ernst Zermelo. Untersu
hungen über die Grundlagen der MengenlehreI. Mathematis
he Annalen, 65:261�281, 1908. English translation in[vH67℄.

181


