
DOUBLE JUMP INVERSIONS AND STRONG MINIMAL

COVERS IN THE TURING DEGREES

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Yuval Gabay

August 2004

c© 2004 Yuval Gabay

ALL RIGHTS RESERVED

DOUBLE JUMP INVERSIONS AND STRONG MINIMAL

COVERS IN THE TURING DEGREES

Yuval Gabay, Ph.D.

Cornell University 2004

Decidability problems for (fragments of) the theory of the structure D of Turing

degrees, form a wide and interesting class, much of which is yet unsolved. Lachlan

showed in 1968 that the first order theory of D with the Turing reducibility relation

is undecidable. Later results concerned the decidability (or undecidability) of

fragments of this theory, and of other theories obtained by extending the language

(e.g. with 0 or with the Turing jump operator). Proofs of these results often hinge

on the ability to embed certain classes of structures (lattices, jump-hierarchies,

etc.) in certain ways, into the structure of Turing degrees. The first part of the

dissertation presents two results which concern embeddings onto initial segments

of D with known double jumps, in other words a double jump inversion of certain

degree structures onto initial segments. These results may prove to be useful

tools in uncovering decidability results for (fragments of) the theory of the Turing

degrees in languages containing the double jump operator.

The second part of the dissertation relates to the problem of characterizing

the Turing degrees which have a strong minimal cover, an issue first raised by

Spector in 1956. Ishmukhametov solved the problem for the recursively enumerable

degrees, by showing that those which have a strong minimal cover are exactly the

r.e. weakly recursive degrees. Here we show that this characterization fails outside

the r.e. degrees, and also construct a minimal degree below 0′ which is not weakly

recursive, thereby answering a question from Ishmukhametov’s paper.

BIOGRAPHICAL SKETCH

Yuval Gabay was born in the third person in Jerusalem, Israel. After graduating

from the Hebrew University High School in 1992, he served in the Israeli Defense

Forces for three years. He then attended the Hebrew University of Jerusalem,

graduating with honors in 1998 with a B.Sc. in Mathematics and a B.Sc. in Com-

puter Science. In 2002 he received an M.Sc. in Computer Science from Cornell

University. He accepted a post-doctoral offer from the Mathematics Department

at the Ben-Gurion University of the Negev in Beer-Sheva, Israel, starting October

2004. He firmly believes that eggplants were never meant to be food.

iii

In memory of my mother.

iv

ACKNOWLEDGMENTS

One could argue that it is impossible to thank, or even list, all those who have

made it possible, indeed inevitable, that I go down the road which has led me to

a successful completion of this dissertation. One could say that such a list would

have to include every person whom I ever had any contact with, as well as every

person whom they ever had any contact with (prior to the time of their contact

with me), and so on. Had any of these contacts failed to exist in the way that it

did, one could explain, the chain of influences may have been irreparably broken.

Thus for example, Chapter 4 could be attributed to the police officer who once

caught me speeding, Chapter 5 may be claimed by the aunt of my high school

janitor, and her cat’s veterinarian could be responsible for the Introduction. This

paragraph, however, is unmistakably and entirely my fault.

I thank my parents above all. My father infected me with an insatiable curiosity

about the inner workings of the universe. My numerous and fascinating childhood

visits to his labs at the Hebrew University have made the pleasant grounds of the

Givat Ram campus a second home to me. My mother, a philosopher at heart,

exposed me to the tremendous joy of thinking. She is responsible for the eagerness

with which I have developed my skill of clear and unconstrained thought, a bare

necessity of mathematical research. It saddens me that she did not live to see this

document and to celebrate her significant part in its authorship. I thank both my

sisters for their love and care, and for not letting my being their family get in the

way of their being my friends.

I thank my advisor, Richard Shore, whom I cannot thank enough. Infinitely

patient, Richard has guided me with calm and confidence through the precarious

labyrinth of being a graduate student, having faith in my abilities even when I did

v

not. Richard has been an inspiring teacher, both on the professional level and on

the personal one. At this point I still do not know if I want to be a mathematician,

but because of Richard I know that I can.

I thank Dexter Kozen and Anil Nerode, members of my special committee. It

has been a pleasure to know them and to get a taste of their mathematical interests

and abilities. I only wish I had spent more of my time at Cornell interacting

with both of them. I thank Juris Hartmanis, whose Complexity Theory course I

thoroughly enjoyed first as a student and then (not as thoroughly) as a teaching

assistant. The brief conversations we have had were positive and helpful, and I

consider his acquaintance a privilege.

Finally, I thank my friends, whom there is no need to name. For you were there,

and are still, every step of the way, willing to listen to my ramblings concerning

mathematics, my love for it and my frequent frustration with it (your personal

preference notwithstanding). Of all mentioned here, you are the only ones of

whom I ask to continue performing your seemingly ungratifying role. If not for

others, this work would surely have not been written. If not for you it may have

been written, but surely not by me.

vi

Table Of Contents

1 Introduction 1

1.1 Double Jump Inversion . 2

1.2 Strong Minimal Covers . 3

2 Basic Definitions and Notation 6

2.1 Recursion Theory . 6

2.2 Strings and Trees . 8

3 Finite Distributive Lattices 12

3.1 Introduction . 12

3.2 The Main Construction . 15

3.3 The Results . 21

4 Countable Linear Orders 26

4.1 Introduction . 26

4.2 The Main Construction . 29

4.3 The Results . 34

5 Degrees r.e.a. in 0′′ 36

5.1 Introduction . 36

5.2 The Construction . 38

vii

5.3 Limitations . 40

6 A Non-Weakly Recursive Minimal With a Strong Minimal Cover 42

6.1 Introduction . 42

6.2 The Construction . 44

7 A Non-Weakly Recursive Minimal Below 0′ 50

7.1 Introduction . 50

7.2 The Construction . 51

8 Very Weakly Recursive Degrees 55

9 Constructing a Non-Join 60

Bibliography 64

viii

Chapter 1

Introduction

The most significant part of Recursion Theory has always been the study of the

structure D of Turing Degrees. This study has two main interests. One is of

algebraic nature, asking local and global questions about the existence of certain

formations of degrees. The second interest is logical, concentrating on computable

complexity results for the theory (or sub-theories) of D (or substructures of it),

in various languages. These two interests are strongly related. Most decidability

results are based on algebraic findings, usually the existence of embeddings of

certain structures into D. The earliest such result was Lachlan’s proof of the

undecidability of Th(D,≤) [Lac68], which is based on the embeddability of any

countable distributive lattice as an initial segment of D (the embeddability of finite

distributive lattices suffices, see [Ler83, VI.4.6]). It was shown independently by

Shore [Sho78] and Lerman (see [Ler83, VII.4.4]) that Th∀∃(D,≤) is decidable. This

result is based on the embeddability of any finite lattice as an initial segment of

D and extension of embedding results. Later results concern the decidability of

fragments of the theory of D with added operators, such as lattice operators and

the Turing jump (as the jump operator has been recently shown to be definable in

Th(D,≤) [SS99], these language expansions affect only the complexity of theory

fragments, not that of the whole theory).

1

2

This dissertation deals with two issues of the algebraic kind. The first, with

an eye toward decidability results for fragments of the theory of D with languages

containing the double jump operator, concerns the embeddability of certain struc-

tures as initial segments of D with prespecified double jumps. The second issue

dealt with is the problem of characterizing the Turing degrees which have strong

minimal covers.

1.1 Double Jump Inversion

While there is relatively little work concerning the inversion specifically of the

double jump, much has been said about single jump inversion. The most basic

jump inversion theorem is due to Friedberg.

Theorem 1.1.1. [Fri57] a ≥ 0′ iff there exists a degree c such that c′ = a.

Later results, such as the Sacks Inversion [Sac63] or the Cooper Inversion

[Coo73] put further requirements on the given degree and on the produced, in-

verted degree (see Theorems 5.1.1 and 5.1.2). However, the proofs of these theo-

rems are very elaborate, and other similar problems are still in need of a solution.

For instance, finite partial orders of degrees above 0′ can be jump inverted [Sho88,

1.8], but there is no known general method for inverting lattices (or even upper

semi-lattices). The results we bring here attempt to suggest that double jump

inversion is much more natural and flexible than its single jump counterpart.

In Chapter 3 we show that certain finite lattices of degrees (distributive ones

in particular) above 0′′ can be double jump inverted to initial segments of D. In

Chapter 4 we show a similar result for countable linear orderings recursive in 0′′

(Simpson [Sim77] has proven this for orders of type ω).

In Chapter 5 we directly (double jump) invert any degree r.e. in and above 0′′

to a minimal degree below 0′′. From this it follows that the degrees r.e. in and

3

above 0′′ are exactly the jumps of minimal degrees below 0′. To contrast, not all

degrees r.e. in and above 0′ are jumps of minimal degrees below 0′, as all such

jumps must be low over 0′ (that is, having 0′′ as their jump). Moreover, even the

degrees r.e. in and low over 0′ cannot all be inverted to minimal degrees below 0′

[DLS96].

We conclude this part by showing, as a corollary of Shore’s Non-Inversion

Theorem [Sho88, 1.2], that this inversion result for degrees r.e. in and above 0′′

cannot be extended for even the simplest lattices.

1.2 Strong Minimal Covers

A degree b is a strong minimal cover of a degree a below it, if every degree < b is

≤ a. In 1956 Spector constructed a minimal degree, which is by nature a strong

minimal cover of 0, and raised the issue of characterizing those degrees which

possess a strong minimal cover [Spe56]. One should note that relativizing the

minimal degree construction to D(≥ a) gives only a minimal cover of a (i.e. a

degree b > a with no degrees strictly between the two).

Several constructions of degrees with strong minimal covers were presented

over the years. The first serious stab at a characterization was made by Downey,

Jockush and Stob. In [DJS96a] they defined the notion of r.e. array non-recursive

degrees, and later extended it to D in general [DJS96b].

Definition 1.2.1. A degree a is array non-recursive if for each f ≤wtt K there is

a function g recursive in a such that g(n) ≥ f(n) for infinitely many n.

In other words, a is a.n.r. if no function weak-truth-table recursive in 0′ dom-

inates all g ≤T a. This clearly implies that the class of a.n.r. degrees is upward

closed. This definition has other interesting equivalents which we will not go into

here.

4

Theorem 1.2.2. [DJS96b] Let a be array non-recursive.

(i) a is the supremum of two 1-generic a.n.r. degrees which form a minimal pair.

(ii) If c > a then there is a degree b < c such that a ∨ b = c.

By (i), a.n.r. degrees cannot be strong minimal covers. By (ii), they cannot

have strong minimal covers (alternatively, one could argue that a strong minimal

cover of an a.n.r. degree would be a.n.r. by upward closure, thereby contradicting

(i)).

The second half of the characterization came, for the r.e. degrees, in a 1999

paper by Ishmukhametov [Ish99]. He defined the class of weakly recursive degrees

(see Definition 6.1.2), argued that it is complementary to the class of a.n.r. degrees

in the r.e. degrees, and then proved that all weakly recursive degrees possess strong

minimal covers, concluding

Theorem 1.2.3. If a is recursively enumerable, it has a strong minimal cover iff

it is weakly recursive.

In Chapter 6 we construct a minimal degree which is not weakly recursive, but

has a strong minimal cover, showing that the characterization in Theorem 1.2.3

does not hold outside the realm of r.e. degrees. This is also done independently in

[KHNS] (where the weakly recursive degrees are called r.e.-traceable).

In Chapter 7 we construct a minimal degree below 0′ which is not weakly

recursive, thereby showing that the a.n.r. and weakly recursive classes are not

complementary in the degrees below 0′ (note that a minimal degree is not a.n.r. by

1.2.2(i)). This answers an open question in [Ish99].

In Chapter 8 we define the seemingly broader class of very weakly recursive

degrees, and show that those possess a strong minimal cover as well, by a slight

5

modification of Ishmukhametov’s argument. At this time we do not know if there

are very weakly recursive degrees which are not weakly recursive.

Chapter 9 has no new results. It describes a direct construction of a degree a for

which the statement 1.2.2(ii) does not hold. This is a product of a failed attempt

to produce a counterpart to Theorem 6.2.1, by constructing a degree which is not

a.n.r., yet does not have a strong minimal cover. Nonetheless, we have chosen

to include it, since we feel it may prove useful in the future, either in this or in

other research routes, such as the characterization of the class of cuppable degrees

(i.e. degrees for which 1.2.2(ii) does hold).

Chapter 2

Basic Definitions and Notation

2.1 Recursion Theory

The e-th partial recursive function with oracle A ⊆ ω will be denoted ϕAe . The

same function, computed for only s steps, will be denoted ϕAe,s. We write ϕAe (x)↓ or

ϕAe (x)↑ to mean the function is defined or undefined on an input x ∈ ω, respectively

(and similarly for ϕAe,s).

We write ϕAe ' ϕAi to mean

∀x ∈ ω ϕAe (x)↓= ϕAi (x) ∨ (ϕAe (x)↑ ∧ϕAi (x)↑).

We write ϕAe = B to mean that for all x ∈ ω, (x /∈ B → ϕAe (x)↓= 0) ∧ (x ∈ B →

ϕAe (x)↓= 1).

Definition 2.1.1. A is (Turing) computable from B if ϕAe = B for some e ∈ ω. In

this case we write A ≤T B.

The relation A ≡T B defined as A ≤T B ∧ B ≤T A is an equivalence relation

on 2ω, which divides it into countable equivalence classes, the Turing degrees. The

set of Turing degrees is denoted by D, and individual degrees by boldface letters

(a,b, . . .). The Turing degree of a set A is denoted deg(A). The least degree is

6

7

the set of all recursive subsets of ω, denoted 0. We write A <T B to mean that A

is computable from B and they are of distinct Turing degrees.

Definition 2.1.2. For A ⊆ ω, the Turing jump of A is the set

A′ = {e : ϕAe (e)↓}

A <T A
′ and if A ≤T B then A′ ≤T B′. Consequently the Turing jump is well

defined on Turing degrees, which allows us to define the jump of a Turing degree

a = deg(A) as a′ = deg(A′).

The following facts will be used throughout the text, sometimes implicitly.

Theorem 2.1.3. [Ler83, III.2.6] For A ⊆ ω we have

• A ∈ Σ0
n+1 iff A is recursively enumerable in 0(n).

• A ∈ ∆0
n+1 iff A is recursive in 0(n).

Hence, if A is definable by a formula ψ(x) in normal form with n quantifiers,

it is computable from 0(n).

Lemma 2.1.4. [Ler83, IV.3.2] The totality set of A,

Tot(A) = {e : ϕAe is total},

is Turing equivalent to A′′.

Lemma 2.1.5. [Ler83, IV.3.6] Any degree a in a finite initial segment of D is in

GL2, that is a′′ = (a ∨ 0′)′.

We denote by 〈·, ·〉 a fixed recursive bijection between ω × ω and ω. 〈x, y, z〉 is

used to mean 〈x, 〈y, z〉〉, and so on.

8

The set-join of A,B ∈ ω is the set

A⊕B = {〈i, x〉 : (i = 0 ∧ x ∈ A) ∨ (i = 1 ∧ x ∈ B)}

If A ≤T C and B ≤T D then A⊕ B ≤T C ⊕D. This allows us to define the join

of two Turing degrees a = deg(A) and b = deg(B) as a ∨ b = deg(A ⊕ B). This

is the least upper bound of the degrees a and b.

2.2 Strings and Trees

Let B be a non-empty at most countable set.

Definition 2.2.1. A B-string is a member of B≤ω. For a finite B-string σ and a

B-string τ we define:

(i) The length of τ is |τ |. We identify elements of B and strings of length 1.

(ii) If σ ⊆ τ (as functions), we say that σ is an initial segment of τ .

(iii) The concatenation σaτ is the string ρ of length |σ|+ |τ | defined by

ρ(n) =

σ(n) n < |σ|

τ(n− |σ|) |σ| ≤ n < |σ|+ |τ |

(iv) If σ ⊆ τ let τ − σ denote the unique ρ such that σaρ = τ .

(v) If σ ⊆ τ and |ρ| = |σ|, we denote ρa(τ−σ) by the special notation τ [σ → ρ].

We naturally identify a binary string (i.e. a {0, 1}-string) A with the set A−1(1).

Definition 2.2.2. Let A be a B-string and let X ⊆ ω be infinite and enumerated

by m0,m1,m2, . . . in increasing order. X(A) is the B-string C such that C(n) =

9

A(mn) for all n for which this is defined. If X(A1) is compatible with X(A2), we

say that A1 and A2 agree on X.

Note that X(A) is infinite iff A is. Also, if A is infinite, X,Y are recursive and

X ⊆∗ Y (that is, X \ Y is finite) then X(A) ≤T Y (A). In particular, X(A) ≤T

ω(A) = A for all X.

Definition 2.2.3. Let σ, τ be (finite or infinite) Bk-strings (for k > 0), and i < k.

(i) σ[i] is the B-string given by σ[i](n) = σ(n)(i).

(ii) σ and τ are equivalent mod i (σ ≡i τ) if σ[i] = τ [i].

Definition 2.2.4. (i) A B-tree is an injective function T : B<ω → B<ω such

that

σ ⊆ τ ↔ T (σ) ⊆ T (τ)

(ii) Given a B-tree T and an infinite B-string A, we can define the infinite B-

string P =
⋃
σ⊂A T (σ). P is called a path on T , and is sometimes denoted by

T (A) (slightly abusing notation). The set of paths on T is denoted by [T].

(iii) A B-tree T is said to force a property P of infinite B-strings if every path on

T satisfies P . A finite string σ ∈ rg(T) forces P if every path extending σ

on T satisfies P .

Definition 2.2.5. For B-trees S and T , S is a subtree of T (S ⊆ T) if the range

of S is contained in the range of T . Note that in this case [S] ⊆ [T] as well.

Let S, T be B-trees. The composition R = T ◦ S is injective, and for all

σ, τ ∈ B<ω we have

σ ⊆ τ ⇐⇒ S(σ) ⊆ S(τ) ⇐⇒ R(σ) = T (S(σ)) ⊆ T (S(τ)) = R(τ).

10

Hence R is a B-tree, and is called the product of T and S (denoted T ·S or simply

TS).

If S ⊆ T , the composition R = T−1 ◦S is well defined and injective, and for all

σ, τ ∈ B<ω we have

σ ⊆ τ ⇐⇒ T (R(σ)) = S(σ) ⊆ S(τ) = T (R(τ)) ⇐⇒ R(σ) ⊆ R(τ).

Hence R is a B-tree, and is called the quotient of S by T (denoted S/T).

Proposition 2.2.6. Let R, S, T be B-trees. Tid denotes the identity B-tree.

(i) T · (S ·R) = (T · S) ·R.

(ii) T/T = Tid and T/Tid = Tid · T = T · Tid = T .

(iii) If S ⊆ T then T · (S/T) = S.

(iv) If S ⊆ T then S ·R ⊆ T , and (S ·R)/T = (S/T) ·R.

(v) If T ⊆ R · S then T ⊆ R, T/R ⊆ S and (T/R)/S = T/(R · S).

(vi) If S ⊆ T then R · S ⊆ R · T and (R · S)/(R · T) = S/T .

Proof. Immediate from the definitions.

For a finite B-string σ, let Eσ be the tree defined by Eσ(τ) = σa τ . If T is a

B-tree then T · Eσ is an extension subtree of T (denoted Ext(T, σ) in Lerman).

Since B is at most countable, we allow ourselves to identify B-strings with their

codes (in some fixed Gödel numbering). In this light, a tree T is a numerical

function, and has a Turing degree.

Furthermore, when we talk about operators on recursive trees, we implicitly

(and sometimes explicitly) refer to corresponding functions on recursive indices

of trees (even though these are not unique). For example, there is a (recursive!)

11

function f·(s, t) which maps a pair of recursive indices for trees S, T to a recursive

index for S · T . We will frequently write S · T to mean f·(s, t).

Finally we address an important application of these tree operations.

Definition 2.2.7. Two B-tree extensions T ′ ⊆ T and S ′ ⊆ S are equivalent if

T ′/T = S ′/S.

Informally speaking, the extensions are equivalent if T ′(σ) is on the same place

on T as S ′(σ) is on S (for all strings σ). The tree operations let us construct

equivalent extensions with ease.

Proposition 2.2.8. If T ′ ⊆ T is a B-tree extension and S is a B-tree, then the

tree

S ′ = S · (T ′/T)

is an extension of S, equivalent to T ′ ⊆ T .

Proof. By Proposition 2.2.6 (v) we have that S ′ ⊆ S and

(S ′/S)/(T ′/T) = S ′/(S · (T ′/T)) = S ′/S ′ = Tid.

Chapter 3

Finite Distributive Lattices

In this chapter we focus on embedding certain lattices as initial segments with

given double jumps. Most of the introductory material is taken from Chapter IV

of [Ler83]. In section 2 we present the main construction, and in section 3 we prove

the results that are based on it.

3.1 Introduction

In the following, L = (L,≤,∨,∧) is a finite lattice, where L = {u0, . . . , un}, and

the distinct bottom and top elements of L are u0 and un, respectively. Also,

h : L → D is an u.s.l. homomorphism (i.e. a map preserving the lattice weak order

relation and the join function).

Definition 3.1.1. A finite homogeneous lattice table for L is a set Θ of functions

from {0, . . . , n} to ω, such that

(i) ∀α, β ∈ Θ(α ≡0 β) (equivalence mod 0 of Θ-strings of length 1)

(ii) ∀i, j ≤ n(ui ≤ uj ↔ ∀α, β ∈ Θ(α ≡j β → α ≡i β))

(iii) ∀i, j, k ≤ n(ui ∨ uj = uk ↔ ∀α, β ∈ Θ(α ≡k β ↔ α ≡i β ∧ α ≡j β))

12

13

(iv) ∀i, j, k ≤ n(ui ∧ uj = uk ↔ ∀α, β ∈ Θ(α ≡k β ↔

∃s ∈ ω ∃γ0, . . . , γs ∈ Θ(α = γ0 ≡i γ1 ≡j γ2 ≡i · · · ≡j γs = β)))

(v) For all α0, α1, β0, β1 ∈ Θ, if ∀i ≤ n(α0 ≡i α1 → β0 ≡i β1), then there is a

function f : Θ→ Θ such that f(α0) = β0, f(α1) = β1, and for all α, β ∈ Θ,

∀i ≤ n(α ≡i β → f(α) ≡i f(β)).

We are concerned here only with finite lattices which have a finite homogeneous

lattice table. In the following, assume that Θ is such a table for L. Embeddings

of L into D will be given by infinite Θ-strings.

Definition 3.1.2. An infinite Θ-string A codes a map g : L → D if for all i ≤ n

g(ui) = deg(A[i]) ∨ g(u0).

A map g : L → D is Θ-representable if there exists a Θ-string that codes it.

Every Θ-string codes a u.s.l. homomorphism g with g(u0) = 0 (this is essentially

the Homomorphism Lemma, [Ler83, IV.1.4]). In order to make g an embedding

onto an initial segment, we construct the string as a path on uniform Θ-trees

forcing certain conditions.

Definition 3.1.3. A Θ-tree T is uniform if

(i) |σ| = |τ | ↔ |T (σ)| = |T (τ)|

(ii) σ ≡i τ ↔ T (σ) ≡i T (τ)

(iii) |σ| = |τ | → ∀α ∈ Θ T (σaα)− T (σ) = T (τaα)− T (τ)

Note that condition (iii) implies

(iii’) |σ| = |τ | → ∀ρ ∈ Θ<ω T (σaρ)− T (σ) = T (τaρ)− T (τ)

14

by induction on the length of ρ. Also note that if S, T are recursive uniform trees

then so are S · T and S/T (when defined).

Definition 3.1.4. Let e ∈ ω, i, j ≤ n and let T be a Θ-tree.

(i) T decides e-totality if either ϕPe is total for all P ∈ [T] or ϕPe is not total for

all P ∈ [T]. T forces e-totality, e-partiality in the first, resp. second, case.

(ii) T is 〈e, i, j〉-differentiating if for all P ∈ [T], ϕP
[j]

e 6= P [i].

(iii) T is e-splitting if there exists i ≤ n such that for all P ∈ [T] with ϕPe total,

we have ϕPe ≡T P [i].

Clause (iii) differs from the definition of e-splitting in [Ler83], but is shown to

follow from it by the Computation Lemma [Ler83, IV.3.3]. Hence, the justification

of the following Lemma is not affected.

Lemma 3.1.5. There is a total function f : ω × ω → ω, computable in 0′′, such

that if T is (a recursive index for) a uniform Θ-tree then

(i) if r = 〈1, e〉 then f(r, T) is (a recursive index for) a uniform subtree of T

which decides e-totality;

(ii) if ui 6≤ uj and r = 〈2, e, i, j〉 then f(r, T) is a uniform subtree of T which is

〈e, i, j〉-differentiating;

(iii) if r = 〈3, e〉 then f(r, T) is a uniform subtree of T which is e-splitting;

(iv) for all other values of r, f(r, T) = T .

Proof. The constructions needed to define f are described in the proofs of Lem-

mas 2.13, 2.15 and 3.12 in [Ler83, IV]. One should note that the constructions

are uniform in 0′′, as the different cases in each are defined by two quantifier

statements.

15

3.2 The Main Construction

In order to get an embedding of L onto an initial segment of D, Lerman applies

f of Lemma 3.1.5 repeatedly to force all of the totality, differentiating and mini-

mality requirements. The goal in this chapter is to code certain degrees into this

construction, in a way which would make these degrees the double jumps of the

degrees in the initial segment. Rather than explicitly coding any given degrees, we

perform every possible coding simultaneously, by branching into separate forcing

extensions after each application of f . This creates a tree of trees, as stated by

the following Lemma.

Lemma 3.2.1. There is a uniform Θ-tree T̂ , computable in 0′′, such that every

P ∈ [T̂] codes an embedding of L onto an initial segment of D. Furthermore, for

any such path P = T̂ (A) and any i ≤ n

P [i]′′ ≡T P [i] ∨ 0′′ ≡T A[i] ∨ 0′′

Proof. Let f be as in Lemma 3.1.5. We define recursive uniform Θ-trees Tσ for

every finite Θ-string σ, such that

(i) Tσaα ⊆ TσEα

(ii) Tσaα ⊆ f(|σ|, T) for some recursive tree T

(iii) if |σ1| = |σ2| and |ρ1| = |ρ2| then the strings χd = Tσd(ρd) (d = 1, 2) are of

equal length, and for all i ≤ n

χ1 ≡i χ2 ⇐⇒ σ1aρ1 ≡i σ2aρ2

(iv) if |σ1| = |σ2| then Tσ1(ρaρ
′)− Tσ1(ρ) = Tσ2(ρaρ

′)− Tσ2(ρ).

16

Each tree Tσ is the forcing condition which is obtained by coding σ into Ler-

man’s original construction. Property (i) ensures that these conditions are distinct,

while property (ii) ensures that the next application of f has taken place. Condi-

tions (iii) and (iv) provide a kind of uniformity for T̂ , which will make the coding

work.

Let T∅ = Tid. Suppose Tσ has been defined for all σ of length k. Let {τj}mj=1

list all Θ-strings of length k + 1, and let τj = σj aαj with |σj| = k and αj ∈ Θ.

Let T ′τj = TσjEαj . We go by subinduction on j:

T ∗τ1 = f(k, T ′τ1), T ∗τj+1
= f(k, T ′τj+1

(T ∗τj/T
′
τj

)).

For all 1 ≤ j ≤ m now let

Tτj = T ′τj(T
∗
τm/T

′
τm).

The idea is simple and rather straightforward. We want to find conditions Tτj which

force the current requirement, and are all equivalent extensions (in the sense of

Definition 2.2.7) of the conditions T ′τj , respectively. To do this, we apply f to

the first one, then find the equivalent extension to the second and apply f again,

and so on. Finally, we take the final extension, and set the trees Tτj to be the

corresponding extensions equivalent to it.

We now formally prove that these extensions are as required. The trees are all

uniform recursive, since this quality is preserved by f and by tree multiplication

and division. We now show that the properties above hold by induction, assuming

the notation of the construction.

17

(i) This follows directly from the definition, since for all 1 ≤ j ≤ m we have

Tσjaαj = Tτj = T ′τj(T
∗
τm/T

′
τm) ⊆ T ′τj = TσjEαj .

(ii) From the definition of f and T ∗τj+1
it follows that

T ∗τj+1
⊆ T ′τj+1

(T ∗τj/T
′
τj

)

and therefore

T ∗τj+1
/T ′τj+1

⊆ T ∗τj/T
′
τj
.

Hence the quotients T ∗τj/T
′
τj

form a decreasing chain of trees. For any 1 ≤

j ≤ m we then get

Tτj = T ′τj(T
∗
τm/T

′
τm) ⊆ T ′τj(T

∗
τj
/T ′τj) = T ∗τj = f(k, T)

for some recursive T as required.

(iii) Consider strings ρ1, ρ2 of equal length, and 1 ≤ j, l ≤ m. If we let R =

T ∗τm/T
′
τm , then

Tτj(ρ1) = T ′τjR(ρ1) = TσjEαjR(ρ1) = Tσj(αjaR(ρ1))

and similarly

Tτl(ρ2) = Tσl(αlaR(ρ2)).

18

Since R is uniform, we have

|αjaR(ρ1)| = 1 + |R(ρ1)| = 1 + |R(ρ2)| = |αlaR(ρ2)|

=⇒ |Tσj(αjaR(ρ1))| = |Tσl(αlaR(ρ2))|

by the induction hypothesis. By a similar reasoning

Tτj(ρ1) ≡i Tτl(ρ2) ⇐⇒ Tσj(αjaR(ρ1)) ≡i Tσl(αlaR(ρ2))

⇐⇒ σjaαjaR(ρ1) ≡i σlaαlaR(ρ2)

⇐⇒ τjaρ1 ≡i τlaρ2

(since R(ρ1) ≡i R(ρ2) iff ρ1 ≡i ρ2 by uniformity of R).

(iv) Let R, j, l be as above, and set

χ = R(ρ), χ′ = R(ρaρ′)−R(ρ).

Then

Tτj(ρaρ
′)− Tτj(ρ)

= Tσj(αjaR(ρaρ′))− Tσj(αjaR(ρ))

= Tσj(αjaχaχ
′)− Tσj(αjaχ)

= Tσj(αlaχaχ
′)− Tσj(αlaχ) (by uniformity of Tσj , cond. (iii’))

= Tσl(αlaχaχ
′)− Tσl(αlaχ) (by induction hypothesis)

= Tτl(ρaρ
′)− Tτl(ρ).

19

Now let T̂ (σ) = Tσ(∅) for all σ. Property (iii) implies that if |σ| = |τ | then

|T̂ (σ)| = |T̂ (τ)| and for all i ≤ n

T̂ (σ) ≡i T̂ (τ) ↔ σ ≡i τ.

Property (iv) implies that if |σ| = |τ | and α ∈ Θ then

T̂ (σaα)− T̂ (σ) = Tσ(αaρ)− Tσ(∅) = Tτ (αaρ)− Tτ (∅) = T̂ (τaα)− T̂ (τ)

where ρ = R(∅) with R as above. Therefore T̂ is a uniform tree. It is computed

with f as an oracle, hence it is computable in 0′′.

Fix P = T̂ (A) ∈ [T̂]. We show that P codes an embedding of L onto an initial

segment of D. First, note that P ∈ [Tσ] whenever σ ⊂ A. Indeed,

P =
⋃

σ⊆τ⊂A

T̂ (τ) =
⋃

σ⊆τ⊂A

Tτ (∅)

and Tτ ⊆ Tσ for every τ ⊇ σ (by property (i)).

From property (ii) it now follows that for every k ∈ ω there is a recursive tree

T such that P ∈ [f(k, T)]. In particular

(i) If ui 6≤ uj then for every e ∈ ω, P lies on a recursive 〈e, i, j〉-differentiating

tree, and therefore P [i] 6≤T P [j].

(ii) For all e ∈ ω, P lies on a recursive e-splitting tree, and therefore

D(≤ deg(P)) = D(≤ deg(P [n])) ⊆ {P [i] : i ≤ n}.

Thus P codes an embedding of L onto an initial segment of D. It is left to

prove the triple equality in the Lemma. Since a′′ ≥T a ∨ 0′′ for any degree a, it

20

suffices to demonstrate that the inequalities

P [i] ∨ 0′′ ≥T A[i] ∨ 0′′ ≥T P [i]′′

hold for every i ≤ n. The first of the two follows from the uniformity of T̂ . If σ is

a Θ-string of length k, then

σ[i] ⊆ A[i] ⇐⇒ σ ≡i A�k

⇐⇒ T̂ (σ) ≡i T̂ (A�k) ⇐⇒ T̂ (σ)
[i]
⊆ P [i].

Hence, to find A[i] �k (with the given oracle) look for a string σ of length k which

satisfies the last statement, and take σ[i].

For the second inequality, we show how to compute TotP
[i]

using A[i]∨0′′ as an

oracle (this suffices by Lemma 2.1.4). Given e ∈ ω, let e∗ be such that ϕPe∗ ' ϕP
[i]

e

(e∗ can be found in a uniformly recursive manner). Let σ be of length k = 〈1, e∗〉+1

such that σ[i] ⊂ A[i]. Note that both Tσ and TA�k, decide e∗-totality by property

(ii) and the nature of the function f . Now

e ∈ TotP
[i] ⇐⇒ ϕP

[i]

e is total

⇐⇒ ϕPe∗ is total

⇐⇒ TA�k forces e∗-totality ⇐⇒ Tσ forces e∗-totality

where the last equivalence stems from the equality

{X [i] : X ∈ [TA�k]} = {X [i] : X ∈ [Tσ]}

which is a consequence of property (iv) and the equivalence TA�k ≡i σ.

21

3.3 The Results

Each path of T̂ codes an embedding of L onto an initial segment of D. Before we

pay attention to the coding in the paths, we mention their cardinality.

Corollary 3.3.1. If L has a finite homogeneous lattice table, then there are 2ω

many lattice embeddings of L as an initial segment of D.

Proof. For each path P ∈ [T̂], the function hP : ui 7→ deg(P [i]) is such an embed-

ding. Now

2ω ≥ |{hP : P ∈ [T̂]} ≥ |{deg(P [n]) : P ∈ [T̂]} = |{deg(P) : P ∈ [T̂]}| = 2ω

since |[T̂]| = 2ω and Turing equivalence classes are countable.

Now we turn to the main Theorem of this chapter, in its most general form.

Theorem 3.3.2. Suppose L has a finite homogeneous lattice table Θ, and h : L →

D is a Θ-representable u.s.l. homomorphism with h(u0) = 0′′. Then there is an

initial segment C of D and a lattice isomorphism g : L → C such that

g(x)′′ = g(x) ∨ 0′′ = h(x) for all x ∈ L.

Proof. Suppose the Θ-string A codes h. Let P = T̂ (A), g(ui) = deg(P [i]) and

C = rg(g). Then g is an embedding of L onto an initial segment of D, and P codes

it. Furthermore, for all i ≤ n

g(ui)
′′ = g(ui) ∨ 0′′ = deg(A[i]) ∨ 0′′ = deg(A[i]) ∨ h(u0) = h(ui).

22

Next we show that Theorem 3.3.2 always applies to any finite distributive

lattice. We already know ([Ler83, B.1]) that every such lattice has a finite homo-

geneous lattice table, so it remains to show that any homomorphism from such a

lattice is representable with respect to some table. To show this, we follow the con-

struction of the lattice table in [Ler83, B.1], repeated here without the justification.

In the following assume that L is distributive.

Definition 3.3.3. ui 6= u0 is join-irreducible if ui = uj ∨ uk implies i = j or i = k.

Let {uik}k<r be the join-irreducible elements of L, and let B = P{a0, . . . , ar−1}

be the boolean algebra with r atoms (with ∧ and ∨ interpreted as set intersection

and union, respectively). Define g : L → B by

g(ui) = {ak : uik ≤ ui}

Lemma 3.3.4. g is a lattice embedding of L in B.

For every A ⊆ {a0, . . . , ar−1}, define a function αA : B → ω as follows. If

C = {ai1 , . . . , ai|C|} with i1 < · · · < i|C|, then let

αA(C) =
∑
{2|C|−j : aij ∈ A}

Now, for every A as above and i ≤ n, let α∗A(i) = αA(g(ui)). Let

Θ = {α∗A : A ⊆ {a0, . . . , ar−1}}.

Lemma 3.3.5. Θ is a finite homogeneous lattice table for L.

Now we show that all appropriate homomorphisms from L can be coded in Θ.

Lemma 3.3.6. Let L be finite distributive, Θ as described above, and suppose

h : L → D is a u.s.l. homomorphism, with h(u0) = 0′′. Then h is Θ-representable.

23

Proof. Pick sets Ak ∈ h(uik) for all k < r, and define (for all x ∈ ω and k < r)

A(rx+ k) =

α∗{ak} x ∈ Ak

α∗∅ x /∈ Ak

The reason for this choice of lattice elements is that α∗{ak} 6≡ik α
∗
∅, but α∗{ak} ≡j α

∗
∅

whenever uj 6≥ uik .

Fix k < r. First note that for all x ∈ ω

x ∈ Ak ⇐⇒ A(rx+ k) 6≡ik α∗∅

and therefore Ak ≤T A[ik]. To show the converse, note that for all j < r and x ∈ ω

A[ik](rx+ j) =

α∗{aj}(ik) x ∈ Aj

α∗∅(ik) x /∈ Aj

If uij ≤ uik then Aj ≤T Ak. Given Ak we can find whether or not x ∈ Aj,

then find the required value. If uij 6≤ uik then α∗{aj} ≡ik α
∗
∅, and consequently

A[ik](rx+ j) = α∗∅(ik).

To complete the proof, fix ui ∈ L with i > 0. Let J = {j : uij ≤ ui}. Then

h(ui) =
∨
j∈J

h(uij) =
∨
j∈J

deg(Aj) =
∨
j∈J

deg(A[ij]) = deg(A[i]) = deg(A[i]) ∨ h(u0),

and clearly h(u0) = 0′′ = deg(A[0]) ∨ h(u0).

The double-jump inversion of finite distributive lattices now follows.

Theorem 3.3.7. Suppose L is a finite distributive lattice, and h : L → D is an

u.s.l. homomorphism, with h(u0) = 0′′. Then there is an initial segment C of D

24

and a lattice isomorphism g : L → C such that

g(x)′′ = g(x) ∨ 0′′ = h(x) for all x ∈ L.

Proof. Let Θ be as above. Then h is Θ-representable, and the result follows from

Theorem 3.3.2.

Finally, relativization and iteration of the previous two theorems yield the

following results, which may be helpful tools in determining the decidability of

fragments of Th(D, 0,≤,∨,′′).

Theorem 3.3.8. Suppose L has a finite homogeneous lattice table Θ, and h : L →

D is a Θ-representable u.s.l. homomorphism with h(u0) = 0(2n). Then there are

initial segments Ci of D(≥ 0(2i)) and lattice isomorphisms gi : L → Ci for i < n

such that

gi(x)′′ = gi(x) ∨ 0(2i+2) = gi+1(x) for all x ∈ L and i < n− 1, and

gn−1(x)′′ = gn−1(x) ∨ 0(2n) = h(x) for all x ∈ L.

Proof. First relativize Theorem 3.3.2 to 0(2n), to get gn−1 as required. Notice that

gn−1 is Θ-representable by the nature of the proof of Theorem 3.3.2. This allows

relativization to 0(2n−2). Proceed by induction.

Theorem 3.3.9. Suppose Li are finite distributive lattices for i ≤ n, with u.s.l. ho-

momorphisms hi : Li → Li+1 for all i < n. Suppose further that gn : Ln → D is

a u.s.l. isomorphism mapping the bottom element of Ln to 0(2n). Then there are

initial segments Ci of D(≥ 0(2i)) and lattice isomorphisms gi : Li → Ci for i < n

such that

gi(x)′′ = gi(x) ∨ 0(2i+2) = gi+1(hi(x)) for all i < n and x ∈ Li.

25

Proof. This is a fairly straightforward induction on i starting at n− 1, relativizing

Theorem 3.3.7 to 0(2i+2) with gi+1 ◦ hi : Li → D(≥ 0(2i+2)) as the u.s.l. homomor-

phism. Lemma 3.3.6 ensures that the produced embedding gi is representable with

respect to the appropriate lattice table for Li.

If we could demonstrate a similar guarantee of representability in the general

(non-distributive) case, we could generalize this result. This, however, seems more

difficult, if at all possible.

Chapter 4

Countable Linear Orders

The narrative in this chapter is similar to the one in the previous chapter. The

setting here is borrowed from [Eps79, IV-VI]. Section 2 has the main construction

and section 3 has the results.

4.1 Introduction

In the following, L = (ω,≤L) is a countable linear order, computable in 0′′, with

bottom element 0 and top element 1. Let Ln be L restricted to {0, 1, . . . , n}.

As forcing conditions, we use recursive uniform binary trees (i.e. {0, 1}-trees).

The linear order will be represented by a collection of recursive sets, ordered by

inclusion, and the trees will have densely many branchings which differentiate

between distinct sets in the representation. The following definitions make these

notions precise.

Definition 4.1.1. A binary tree T is uniform if for all finite binary strings σ, τ

(i) |σ| = |τ | ↔ |T (σ)| = |T (τ)|

(ii) |σ| = |τ | → ∀i < 2 T (σa i)− T (σ) = T (τa i)− T (τ)

26

27

Definition 4.1.2. Let Xi ⊆ ω be recursive for i ∈ ω.

(i) The sequence X0, . . . , Xn represents Ln if for all i, j ≤ n

i <L j ↔ (Xi ⊂∗ Xj ∧ |Xj \Xi| = ω).

(ii) The sequence X0, X1, . . . represents L if X0, . . . , Xn represents Ln for all

n ∈ ω.

Definition 4.1.3. Recall Definition 2.2.2.

(i) Let X ⊆ Y ⊆ ω. A uniform binary tree T is special for X (resp. for −Y , for

X − Y) if there are infinitely many binary strings σ such that T (σa0) and

T (σa1) agree on X (resp. disagree on Y , agree on X and disagree on Y).

(ii) Let Cn = {X0, . . . , Xn} represent Ln. A uniform binary tree T is special for

Cn if it is special for Xi −Xj for all i, j ≤ n such that i <L j. Note that in

this case T · Eσ is special for Cn as well, for every σ.

Definition 4.1.4. Let C = {X0, X1, . . . } be a sequence that represents L. An

infinite binary string P codes an embedding of L onto an initial segment of D with

respect to C if the map i 7→ deg(Xi(P)) is such an embedding.

Note that the map above is necessarily an order homomorphism by the re-

mark following Definition 2.2.2. In order to make it an embedding onto an initial

segment, some requirements need to be forced.

Definition 4.1.5. Let e ∈ ω, T be a binary tree, and Cn represent Ln.

(i) T decides e-totality if either ϕPe is total for all P ∈ [T] or ϕPe is not total for

all P ∈ [T]. T forces e-totality, e-partiality in the first, resp. second case.

28

(ii) T is e-splitting for Cn if there exists i ≤ n such that for all P ∈ [T] with ϕPe

total, we have ϕPe ≡T Xi(P).

The definition of e-splitting in [Eps79] is different, but implies this one by the

Computation Lemma ([Eps79, IV.C]). If the generic path lies on an e-splitting tree

for all e, it will thus code a map onto an initial segment. To make sure that the

map does not collapse anywhere, we can force differentiation as we did in Chapter

3. But it is simpler to rely on the general Diagonalization Lemma ([Eps79, IV.C],

based on Posner’s argument), which we reword as follows.

Lemma 4.1.6. Suppose that the sequence Xi represents L, i <L j, and B is an

infinite binary string. Suppose further that the following is true for all but finitely

many n: that B lies on a uniform binary tree T which is n-splitting and special

for Xi −Xj. Then Xj(B) 6≤T Xi(B).

Finally we state the lemma concerning the effective density of the properties

which we would like to force. As in Chapter 3, it is justified by reviewing the

arguments in the source ([Eps79, V.A, VI.B]) and noticing that the different cases

are defined by two quantifier statements.

Lemma 4.1.7. There is a total function f : ω × ω × ω → ω, computable in 0′′,

such that if Cn is (a recursive index for) a sequence representing Ln and T is (a

recursive index for) a uniform binary tree, special for Cn then f(Cn, e, T) is (a

recursive index for) a uniform subtree of T , special for Cn which decides e-totality

and is e-splitting for Cn.

29

4.2 The Main Construction

We construct a tree of embeddings, as we did in Chapter 3.

Lemma 4.2.1. There is a sequence C representing L and a uniform binary tree T̂ ,

both computable in 0′′, such that every P ∈ [T̂] codes an embedding of L onto an

initial segment of D with respect to C. Furthermore, there is a recursive sequence

{Yi} of disjoint infinite subsets of ω such that for any path P = T̂ (A) and any

i ∈ ω

Xi(P)′′ ≡T Xi(P) ∨ 0′′ ≡T ⊕j≤LiYj(A) ∨ 0′′

Proof. First we fix the sequence {Yi}. Let l : ω → ω \ {0} be recursive such that

(i) l(i) ≤ i+ 1 for all i

(ii) Yi = l−1(i) is infinite for all i > 0

Let f be as in Lemma 4.1.7. We define in stages the sequence C = {X0, X1, . . . }

and recursive uniform trees Tσ for all finite binary strings σ. We use Cn to denote

the partial sequence X0, . . . , Xn. The trees Tσ will satisfy the following properties:

(i) Tσ is special for C|σ|+1

(ii) If |σ| = j then |Tσ(∅)| ≤ min(Xj+1)

(iii) If |σ| = j then Tσ(0) and Tσ(1) disagree on Xl(j), and l(j) is the Lj+1-least

for which this holds.

(iii)∗ If |σ| = j then Tσa0(∅) and Tσa1(∅) disagree on Xl(j), and l(j) is the Lj+1-least

for which this holds.

(iv) Tσad ⊆ TσEd (for d = 0, 1)

30

(v) Tσad ⊆ f(C|σ|+1, |σ|, T) for some recursive tree T

(vi) if |σ1| = |σ2| then |Tσ1(∅)| = |Tσ2(∅)|

(vii) if |σ1| = |σ2| then

Tσ1(ρaρ
′)− Tσ1(ρ) = Tσ2(ρaρ

′)− Tσ2(ρ).

Let X0 = ∅ and X1 = ω. We let T∅ = Tid, and note that it is trivially special for

C1 since any branching agrees on X0 but not on X1. Property (iii) is also fulfilled,

since l(0) = 1. Suppose Tσ has been defined for all σ of length k. Let {τj}mj=1 list

all binary strings of length k+ 1, and let τj = σjadj with |σj| = k and dj < 2.Let

T ′τj = TσjEdj . We go by subinduction on j:

T ∗τ1 = f(Ck+1, k, T
′
τ1

), T ∗τj+1
= f(Ck+1, k, T

′
τj+1

(T ∗τj/T
′
τj

)).

For all 1 ≤ j ≤ m now let

T̃τj = T ′τj(T
∗
τm/T

′
τm).

As in Chapter 3, T̃τj are uniform recursive and satisfy conditions (iv)-(vii) above

(in place of Tτj . Furthermore, it is easily seen that replacing these by T̃τjEσ for

any fixed σ will maintain that.

In order to satisfy property (i), we simply define Xk+2 in a way which would

make the trees T̃τj special for Ck+2. Let a and b be the immediate predecessor and

immediate successor (resp.) of k + 2 in Lk+2. Now, T̃τ1 is special for Ck+1, and in

particular for Xa −Xb, so that the set

Z = {m : |σ| = m → T̃τ1(σa0), T̃τ1(σa1) agree on Xa but not on Xb}

31

is infinite (and clearly recursive). Let m0,m1, . . . be an increasing enumeration of

Z. Let

Z0 = {x : x ∈ Xb \Xa and |T̃τ1(σ)| ≤ x < |T̃τ1(σa0)| where |σ| = m2t, t ∈ ω},

an infinite recursive set. Let X̃k+2 = Xa ∪ Z0. Then Xa ⊆∗ X̃k+2 ⊆∗ Xb and

the differences are infinite. Also, T̃τ1 is special for Xa − X̃k+2 since at any level

m2t it branches in a way which agrees on Xa and disagrees on X̃k+2. By a similar

argument (for levels m2t+1) it is seen to be special for X̃k+2 −Xb. Now note that

for any 1 ≤ j ≤ m and any σ, the tree T̃τjEσ will be special for Xa− X̃k+2 and for

X̃k+2 − Xb, because the branchings in all trees T̃τj are the same (property (vii))

and taking an extension tree will only remove finitely many levels.

For condition (iii), let b = l(k + 1) and a the immediate predecessor of b in

Lk+2. Let r be the least such that T̃τ1(0
r0) and T̃τ1(0

r1) agree on Xa and not on

Xb. Such r exists, since the tree is special for Xa −Xb. Now let Tτj = T̃τjE0r for

all 1 ≤ j ≤ m. This takes care of condition (iii). Condition (iii)∗ is fulfilled as

well, since for any d < 2

Tσjad(∅) = T̃σjad(0
r) = T ′σjad(T

∗
τm/T

′
τm)(0r) = TσjEd(ρ) = Tσj(daρ)

where ρ = (T ∗τm/T
′
τm)(0r). By condition (vii), Tσj(da ρ) − Tσj(d) is the same for

both values of d, and thus the disagreement between the strings Tσjad(∅) is the

same as between the strings Tσj(d). Condition (iii)∗ now follows immediately from

condition (iii).

Finally, let Xk+2 = X̃k+2 \ {0, 1, . . . , |T0k+1(∅)|}. As this is only a finite change,

we still have Xa ⊆∗ Xk+2 ⊆∗ Xb with infinite differences, and Tτj is special for

Xa −Xk+2 and for Xk+2 −Xb, for all 1 ≤ j ≤ m. Therefore Ck+2 represents Lk+2,

32

and the trees Tτj are special for Ck+2. Condition (ii) is now fulfilled by definition

of Xk+2. This completes the induction on k.

Now let T̂ (σ) = Tσ(∅). By an argument analogous to that in Chapter 3, T̂

is uniform. The tree, as well as the sequence C = ∪Ck which represents L, are

recursive in 0′′ since the construction is.

Fix P = T̂ (A) ∈ [T̂]. The requirements forced, together with lemma 4.1.6,

imply that P codes an embedding of L onto an initial segment of D. It is left to

show that

Xi(P) ∨ 0′′ ≥T ⊕j≤LiYj(A) ∨ 0′′ ≥T Xi(P)′′

holds for every i ∈ ω.

To establish the first inequality, it suffices to demonstrate that Xi(P) ∨ 0′′ ≥T

Yi(A) uniformly for all i, since then for all j ≤L i we have

Xi(P) ∨ 0′′ ≥T Xj(P) ∨ 0′′ ≥T Yj(A).

(The reduction on the left is uniform because the sequence {Xi} is uniformly

recursive in 0′′.) We compute the value of Yi(A)(n) given Xi(P) ∨ 0′′. First let

m be the n-th value of Yi, so that Yi(A)(n) = A(m). Note that l(m) = i, and

therefore Tσa0(∅) and Tσa1(∅) disagree on Xi whenever |σ| = m, by property (iii)∗.

Then A(m) = d such that T (σad) agrees with P on Xi above |T (σ)|.

Next we show that ⊕j≤LiYj(A)∨0′′ ≥T Xi(P)′′. To find Xi(P)′′(n), we need to

find whether ϕ
Xi(P)
n is total or not. First let m > 0 be such that ϕ

Xi(P)
n ' ϕPm and

ϕm depends only on oracle values at members of Xi (ϕm first applies Xi to the

oracle, then computes ϕn with the new oracle). We find, by induction on j ≤ m,

a string σ of length j + 1 such that Tσ(∅) agrees with P on Xi. Suppose that we

33

have σ up to length j. If T0ja0(∅) and T0ja1(∅) agree on Xi, let σ(j) = 0 (a value

of 1 would do just as well, of course). Otherwise, T0ja0(∅) and T0ja1(∅) disagree on

Xi. We cannot have i > j + 1, since then by condition (ii)

|T0j+1| ≤ |T0i−1(∅)| ≤ min(Xi),

in contradiction to the disagreement. Thus i ∈ Lj+1, and by condition (iii)∗ we

have l(j) ≤L i (since l(j) is the least in Lj+1 for which there is a disagreement).

Yl(j)(A) is then part of our oracle, and we can find A(j) = Yl(j)(A)(k) (the value of

k depends on l alone). Set σ(j) = A(j). This must be the branching which agrees

with P on Xi, since the tree is uniform. This completes the computation of σ.

Now notice that

n ∈ Xi(P)′′ ⇐⇒ ϕXi(P)
n is total

⇐⇒ ϕPm is total

⇐⇒ TA�(m+1) forces m-totality

⇐⇒ Tσ forces m-totality,

where the last equivalence stems from the equality

{Xi(Q) : Q ∈ [TA�(m+1)]} = {Xi(Q) : Q ∈ [Tσ]}

which is a consequence of property (vii) and the agreement of Tσ(∅) and P = T̂ (A)

on Xi.

34

4.3 The Results

As in Chapter 3, we first conclude

Corollary 4.3.1. There are 2ω many lattice embeddings of L as an initial segment

of D.

On to the main theorem of this section.

Theorem 4.3.2. Let L = (ω,≤) be a countable linear order, computable in 0′′,

with bottom element 0 and top element 1. Let h : L → D be an order homo-

morphism, with h(0) = 0′′. There is an initial segment C of D and an order

isomorphism g : L → C such that

g(i)′′ = g(i) ∨ 0′′ = h(i) for all i ∈ L.

Proof. In view of Lemma 4.2.1, all we need is to define A in such a way that

deg(⊕j≤LiYj(A))∨0′′ = h(i) for all i ∈ w. Pick representatives Ai ∈ h(i) for i > 0,

and let A be such that Yi(A) = Ai for all i ∈ ω (such A is unique, since the sets Yi

form a partition of ω). Now observe that for all i > 0

h(i) = deg(Ai) = deg(Yi(A)) = deg(⊕j≤LiYj(A)) ∨ 0′′

since h(i) ≥ 0′′ for all i > 0 and Ai ≥T Aj uniformly for j ≤L i (the uniformity

follows from the fact that the sequence {Yi} is uniformly recursive.

Now let P = T̂ (A), and set g(i) = deg(Xi(P)). The equality in the theorem

follows for i > 0 by the above, and for i = 0 trivially.

35

We can relativize and iterate to obtain

Theorem 4.3.3. Let L = (ω,≤) be a countable linear order, computable in 0′′,

with bottom element 0 and top element 1. Let h : L → D be an order homomor-

phism, with h(0) = 0(2n). There are initial segments Ck of D(≥ 0(2k)) and order

isomorphisms gk : L → Ck for k < n such that

gk(i)
′′ = gk(i) ∨ 0(2k+2) = gk+1(i) for all i ∈ ω and k < n− 1, and

gn−1(i)
′′ = gn−1(i) ∨ 0(2n) = h(i) for all i ∈ ω.

Proof. This is straightforward. Since L is recursive in 0′′, it is recursive in 0(2k)

for any k > 0.

Chapter 5

Degrees r.e.a. in 0′′

Section 1 deduces the main result from known theorems. Section 2 presents a

direct construction which produces a slight alteration of it. Section 3 explains why

a generalization of the result to non-trivial lattices is problematic.

5.1 Introduction

The following theorem is a relativization of the Sacks Inversion Theorem. The

second one is the Cooper Inversion Theorem.

Theorem 5.1.1. [Sac63] If b is r.e. in and above x′ then there exists a degree c

r.e. in and above x such that c′ = b.

Theorem 5.1.2. [Coo73] If c ≥ 0′ then there exists a minimal degree a such that

a′ = c.

If we take x to be 0′ in Theorem 5.1.1, the two theorems combine to produce

Theorem 5.1.3. If b is r.e. in and above 0′′ then there exists a minimal degree

a < 0′′ such that b = a′′.

Proof. We get a < 0′′ since c = a′ is r.e. in 0′, and so computable in 0′′.

36

37

Note that the converse also holds: if a < 0′′ is minimal, then a′′ is r.e. in

(and trivially above) 0′′, for a′′ = (a ∨ 0′)′ by Theorem 2.1.5, and that is r.e. in

a ∨ 0′ ≤ 0′′. This characterizes the degrees r.e. in and above 0′′ as the double

jumps of minimal degrees below 0′′. As mentioned in Chapter 1, the corresponding

problem for degrees r.e. in and above 0′ is not yet solved, and any solution will not

be as simple as in the case of 0′′.

In the following section we directly construct a double jump inversion of a

degree r.e. in and above 0′′, in a manner which is considerably simpler than the sum

of the proofs of the two theorems above. We build on the standard construction of

a minimal through forcing with binary trees (uniformity is not needed here), and

we code a set B of degree b as we go along. However, we only have an enumeration

of B (since the oracle is 0′′), and as a result we may make wrong coding steps.

Going back to fix these mistakes creates finite injury, and the conditions settle

down eventually.

It turns out that the degree a produced by this construction is different in a

fundamental way from the degree given by the proof of Theorem 5.1.3. For we can

reconstruct the set B using a′ and the construction oracle, giving

b = a′ ∨ 0′′,

whereas in Theorem 5.1.3 we have a′ ≤ 0′′, and so a′ ∨ 0′′ = 0′′.

Before presenting the construction, we mention the appropriate density lemma,

justified in [Ler83, V.2.7, V.3.2].

Definition 5.1.4. A binary tree T is e-splitting if for all P ∈ [T], whenever ϕPe is

total it is either recursive or computes P .

38

Lemma 5.1.5. There is a total function f : ω × ω → ω, computable in 0′′, such

that if T is (a recursive index for) a binary tree then f(e, T) is (a recursive index

for) a binary tree which

(i) is a subtree of T · Ei where i < 2 is such that T (i) is incompatible with ϕe;

(ii) decides e-totality;

(iii) is e-splitting.

We also define the standard narrow binary tree N2 as follows:

N2(d0d1 . . . dn) = d00d10 . . . dn0

for all n ∈ ω, di < 2. Note that for every binary tree T , the tree T ·N2 is a narrow

subtree of T : for no binary string σ is T ·Eσ a subtree of T ·N2. Moreover, if T is

recursive, so is T ·N2.

5.2 The Construction

Theorem 5.2.1. If b is r.e. in and above 0′′ then there exists a minimal degree

a < 0′′ such that

b = a′′ = a′ ∨ 0′′ = (a ∨ 0′)′.

Proof. Fix a set B ∈ b r.e. in 0′′, and let 〈bi〉i∈ω be an enumeration witnessing

that. Let Bs = {bi : i < s} approximate B. The construction is a finite injury

one, with oracle 0′′. At stage s we define a nested sequence of recursive binary

trees T si for i ≤ g(s), and a finite string αs = T sg(s)(∅).

39

Let g(0) = 0, and let T 0
0 be the identity tree (with α0 = ∅). At stage s + 1,

if g(s) > bs (injury) let g(s + 1) = bs + 1, otherwise let g(s + 1) = g(s) + 1.

For all i < g(s + 1) let T s+1
i = T si . Let n = g(s + 1) − 1. If n /∈ Bs+1 let

T s+1
g(s+1) = f(n, T s+1

n N2). Otherwise let T s+1
g(s+1) = f(n, T s+1

n Eσ) where σ is the first

string of even length m such that σ(m − 1) = 1 and T s+1
n (σ) ⊇ αs. In any case,

let αs+1 = T s+1
g(s+1)(∅).

Let A = ∪sαs, a = deg(A). This completes the construction.

Before we proceed with the proof, note that in case of injury (g(s) > bs), T
s+1
bs+1

is defined to be a subtree of T sbsEσ where σ is not on N2, whereas at stage s,

T sbs+1 ⊆ TbsN2. Consequently, not only are T sbs+1 and T s+1
bs+1 different, but they also

have disjoint sets of paths. The importance of this point will be apparent in the

proof.

First we show by induction that Ti = lims T
s
i exists for all i. T s0 is never

changed, since g(s) > 0 for all s > 0. Let s be a stage at which T sj = Tj for all

j ≤ i. This implies that no n < i enters B after s. Let t ≥ s be the least such

that T ti+1 6= T t+1
i+1 (if there is no such, we’re done). It must be that bt = i, and so

g(t + 1) = i + 1. Therefore after t + 1 no n ≤ i enters B, g remains above i + 1,

and lims T
s
i+1 = T t+1

i+1 .

Next, observe that a is a minimal degree, since for every e there is some tree S

such thatA lies on Te+1 = f(e, S). The construction is recursive in 0′′, consequently

a < 0′′.

To find TotA(n) given B, follow the construction (using 0′′ ≤ B) until Bs �

(n + 1) = B � (n + 1). As above, this means that Tn+1 = T sn+1 = f(n, S) for some

S. Since A is a path on Tn+1, we have n ∈ TotA iff T sn+1 forces n-totality, and this

can be found using 0′′. Hence a′′ ≤ b.

40

To find B(n) given A′ ∨0′′, follow the construction, and at every stage s where

T sn+1 is redefined, find if A lies on T sn+1 (this is recursive in A′). Since A ∈ [Tn+1],

this will eventually be the case. We claim that n ∈ B iff n ∈ Bs, where s is the

first such that A ∈ [T sn+1]. Indeed, if n ∈ Bs, clearly n ∈ B. Suppose n /∈ Bs. Let

m = bt be the least with t ≥ s, and suppose that m ≤ n. Then

A ∈ [T sn+1] ⊆ [T sm+1] = [T tm+1] and [T tm+1] ∩ [T t+1
m+1] = ∅,

hence A /∈ [T t+1
m+1]. But Tm+1 = T t+1

m+1 and A does lie on Tm+1. The contradiction

implies that m > n, and consequently that n never enters B.

Together with the inequality a′ ∨ 0′′ ≤ a′′, this proves the first two equalities

in the theorem. The last one follows from Lemma 2.1.5.

5.3 Limitations

It is natural to hope for a generalization of the construction which would allow

double-jump inversions of certain lattices (of degrees r.e.a. in 0′′) onto initial seg-

ments. As it turns out, even Theorem 5.1.3 is not generalizable to the simplest

lattices.

Theorem 5.3.1. There are degrees b1 and b2, r.e. in and above 0′′, such that for

no four element initial segment {0, a1, a2, a1 ∨ a2} below 0′′ do we have a′′i = bi

and (a1 ∨ a2)
′′ = b1 ∨ b2.

Proof. We relativize Shore’s non-inversion theorem [Sho88, 1.2] to 0′: there are

degrees b1 and b2, r.e. in and above 0′′, such that for no 0′ ≤ c1, c2 ≤ 0′′ do we

have c′i = bi and (c1 ∨ c2)
′ = b1 ∨ b2. Fix such b1 and b2.

41

Suppose there is an initial segment as in the theorem, and let ci = ai ∨ 0′ for

i = 1, 2. Then 0′ ≤ c1, c2 ≤ 0′′, and for i = 1, 2 we have

c′i = (ai ∨ 0′)′ = a′′i = bi

since ai is GL2 by Lemma 2.1.5. For a contradiction, note that (a1 ∨ a2) is GL2

as well, and therefore

(c1 ∨ c2)
′ = ((a1 ∨ a2) ∨ 0′)′ = (a1 ∨ a2)

′′ = b1 ∨ b2.

Chapter 6

A Non-Weakly Recursive Minimal With a

Strong Minimal Cover

We enter the second part of the thesis, concerning weakly recursive degrees and

strong minimal covers. The introduction to this section covers the basic definitions

and gives an overview of the construction, which follows in section 2.

6.1 Introduction

The following definition applies to any partial order. However we restrict our

attention to Turing degrees.

Definition 6.1.1. Let b < a be Turing degrees.

(i) a is a minimal cover of b if the interval (b, a) is empty.

(ii) a is a strong minimal cover of b if the intervals [0,b] and [0, a) are equal.

Clearly (ii) implies (i). The following definition and theorem are due to Ish-

mukhametov.

Definition 6.1.2. A degree a is weakly recursive if there is a recursive function

p such that for every function f ≤ a there is a recursive function h such that

|Wh(n)| ≤ p(n) and f(n) ∈ Wh(n) for all n ∈ ω.

42

43

Theorem 6.1.3. [Ish99] Every weakly recursive degree has a strong minimal cover.

While the converse is true for r.e. degrees [Ish99], we show that it is not true

in general. Indeed, in this chapter we construct a (minimal) degree b which is not

weakly recursive but has a strong minimal cover. The 0′′ construction is based on

that of a three element linear initial segment [Eps79, III] with uniform trees. In

order to make the middle degree non-weakly recursive, we define functions fi ≤ b

and diagonalize with fi against pi, hj for all j, where pk = hk is an enumeration of

all recursive functions (which our oracle provides).

The diagonalization requires fattening the trees so that the branching exceeds

the bounds given by pi. This leads us to abandon binary trees in favor of partial

ω-trees. The trees are finitely branching, but all of their paths are infinite (so that

their partiality is still limited).

Since the trees diverge from the definition given in Chapter 2, care must be

taken when dealing with concepts such as tree division (which is used, but in a

limited capacity). Also, we are forced to go into the semi-gory details of splitting

trees (which were elegantly skipped in previous chapters).

Recall Definition 2.2.2, and let Od be the set of odd natural numbers.

Definition 6.1.4. (i) Two strings σ, τ form an e-split if ϕσe (x) ↓6= ϕτe(x) ↓ for

some x ∈ ω.

(ii) A tree is e-non-splitting if no pair of strings in its range form an e-split.

(iii) A tree is e-splitting if every pair of non-compatible strings in its range form

an e-split.

(iv) A tree T is e-splitting on the odds if every branching pair on T (i.e. two

immediate successors of the same node) which disagrees on Od forms an

e-split, and no pair of strings on T which agrees on the odds forms an e-split.

44

The following is a summary of the Computation Lemmas from [Eps79, I.G,

III.A].

Lemma 6.1.5. Let A be a path on a tree T , such that C = ϕAe is a total function.

(i) If T is e-non-splitting, then C is recursive.

(ii) If T is e-splitting, then C ≥T A.

(iii) If T is e-splitting on the odds, then C ≡T Od(A).

6.2 The Construction

Theorem 6.2.1. There are degrees b < a ≤ 0′′ such that b is minimal and not

weakly recursive, and a is a strong minimal cover of b.

Proof. We construct, with oracle 0′′, an infinite ω-string A and functions {fi}i∈ω

recursive in Od(A) satisfying the following requirements:

R0
s : Od(A) 6= ϕs

R1
s : A 6= ϕOd(A)

s

R2
s : s = 〈i, j〉 → ∃n

(∣∣Whj(n)

∣∣ > pi(n) ∨ fi(n) /∈ Whj(n)

)
R3
s : ϕAs = C is total → (C ≤T 0 ∨ A ≤T C ∨ C ≡T Od(A))

Where pi = hi is the i-th recursive function (which can be found recursively in

0′′). Clearly, if A satisfies these requirements for all k ∈ ω, then b = deg(Od(A))

is minimal and not weakly recursive, and a = deg(A) is a strong minimal cover of

b. The construction will produce a sequence of recursive uniform partial ω-trees

such that Tn+1 ⊆ Tn for all n. We use τ @i τ ′ to mean that for some string σ and

k ∈ ω, τ = Ti(σ) and τ ′ = Ti(σak) (in other words, τ ′ is an immediate successor

of τ on Ti). We want the following conditions to hold for all i:

45

(i) If σak ∈ dom(Ti) and k′ < k then σak′ ∈ dom(Ti).

(ii) Ti is 2-branching at odd levels, i.e. if σ ∈ dom(Ti) is of odd length then

Ti(σa0) and Ti(σa1) are the (only) immediate successors of Ti(σ) on Ti.

(iii) (τ1, τ2 Ai Ti(σ) ∧ τ1 6= τ2) → (|σ| is odd ↔ Od(τ1) = Od(τ2))

(iv) (τ1 ∈ rg(Ti) ∧ i′ < i ∧ τ1 @i′ τ2) → ∃τ3 ⊇ τ2 (τ1 @i τ3)

Note that if Ti satisfies these conditions and Ti+1 is an extension subtree Ti · Eσ

with |σ| even, then Ti+1 satisfies these conditions as well.

A will be the unique path which lies on all Ti, and the functions fi are computed

from A as follows:

fi(n) = C(2n) where A = T5i(C).

Thus, in order to force the value of fi(n) it suffices to specify which node on

level 2n + 1 of T5i is an initial segment of A. Note that by condition (iii), if

C1(2n) 6= C2(2n) then Od(T5i(C1)) 6= Od(T5i(C2)), and therefore fi is computable

in Od(A) (for all i).

To define T0, let

T0(k0d0k1d1k2d2 . . .) = (0k0)a(d00)a(0k1)a(d10)a(0k2)a(d20)a . . .

for all kn ≤ max(p0(n), 1) and dn = 0, 1 (the parenthesis are for readability). Note

that T0 satisfies conditions (i)-(iii), and has > p0(n)-branching at level 2n (for all

n). Stages 5s+4 of the construction will ensure that T5s will be > ps(n)-branching

at level 2n, for all s > 0 as well (this will be assumed in stages 5s+ 2).

46

Stage 5s: Pick the first σ of length 2 such that Od(T5s(σ)) is incompatible with ϕs

(this is recursive in 0′). Let T5s+1 = T5sEσ. Then T5s+1 forces R0
s, and conditions

(i)-(iv) are maintained as in the remark above.

Stage 5s + 1: Let αi = T5s+1(0a i) for i = 0, 1, and let x be the first on which

α0, α1 disagree (note that Od(α0) = Od(α1), so x is even). If there is an extension

of α0 on T5s+1 which forces ϕ
Od(A)
s (x) ↑, let σ to be the first of even length such

that T5s+1(σ) is such an extension (this is recursive in 0′′).

Otherwise let σ0 be the first of even length such that β0 = T5s+1(σ0) = α0a τ

satisfies ϕ
Od(β0)
s (x)↓. Let β1 = α1aτ = T5s+1(σ1) (exists by uniformity). Then

β0(x) 6= β1(x) and ϕOd(β0)
s (x)↓= ϕOd(β1)

s (x)↓

since Od(β0) = Od(β1). Let i be the first such that ϕ
Od(βi)
s (x) 6= βi(x), and let

σ = σi.

In any case, now let T5s+2 = T5s+1Eσ. Then T5s+2 is recursive and forces R1
s,

and conditions (i)-(iv) are maintained.

Stage 5s + 2: Let i, j be such that s = 〈i, j〉. Let τ = T5s+2(∅) = T5i(σ).

By conditions (iii) and (iv), σ is of some even length 2n. If
∣∣Whj(n)

∣∣ ≤ pi(n), find

t ≤ pi(n) such that t /∈ Whj(n) (given hj and pi, this is computable in 0′), and let

T5s+3 = T5s+2Era0 where T5s+2(r) ⊇ T5i(σ a t) (such r exists by condition (iv)).

Then T5s+3 satisfies conditions (i)-(iv) and fixes fi(n) = t, thus forcing R2
s.

If
∣∣Whj(n)

∣∣ > pi(n), then R2
s is already satisfied. In this case, simply let T5s+3 =

T5s+2.

47

Stage 5s+ 3:

(i) If there is some x and some τ = T5s+3(σ) which forces ϕAs (x)↑, let x, τ, σ be

the first such with |σ| even, and let T5s+4 = T5s+3Eσ. This will force ϕAs to

not be total.

(ii) Otherwise, if there is some τ = T5s+3(σ) above which there are no s-splits,

let τ, σ be the first such with |σ| even, and let T5s+4 = T5s+3Eσ. This will

force ϕAs to be recursive by Lemma 6.1.5 (i).

(iii) Otherwise, if there is some τ = T5s+3(σ) above which there are no s-splits

which agree on the odds, let τ, σ be the first such with |σ| even. The idea

here is to construct a subtree of T5s+3Eσ with the branching at every even

level being pairwise s-splitting.

We replace T5s+3, T5s+4 with T, T ′, resp., for readability. The construction

is by induction on the tree level, starting with T ′(∅) = τ . Suppose we have

defined level n′ of T ′, consisting of strings from level n of T (where n− n′ is

even). If n′ is odd, simply copy the successors from level n + 1 of T , that is

let

T ′(σa i) = T ((T ′/T)(σ)a i) for all σ ∈ dom(T ′) of length n and i = 0, 1.

Note that this is clearly in accordance with conditions (i)-(iv). If n′ is even,

let τi = T ′(σi) (for 1 ≤ i ≤ r) be the strings on level n′ of T ′, and let q be

the branching size at level n of T . We go by induction on i ≤ r defining a

set of extensions ρi,j for j < q. First let ρ0,j = T ((T ′/T)(σ0)a j) − τ0 (that

is, the original q extensions of τ1 on T). For the induction step, suppose we

have defined ρi−1,j for all j < q. We define strings ρmi,j by a subinduction on

m running over an ordered list of all pairs 〈t, t′〉 ∈ q × q with t < t′. First

48

let ρ−1
i,j = ρi−1,j. Given ρm

−
i,j , with the next pair being m = 〈t, t′〉, let (χ0, χ1)

be the first s-split above τi a ρm
−

i,t on T , and let x be the first such that

ϕχ0
s (x) 6= ϕχ1

s (x). Let χ2 be the first extension of τi a ρm
−

i,t′ on T such that

ϕχ2
s (x) ↓. Let ρmi,t′ = χ2 − τi, and let ρi,t be χk − τi where k < 2 is the first

such that (τk, τ2) s-splits. Let ρmi,j = ρm
−

i,j for all other j. This completes the

subinduction. Having defined ρmi,j for the last pair m, let w be the least odd

number not less than all levels of T on which the strings τiaρmi,j lie. For all

j < q, let ρi,j be the least extension of ρmi,j such that τiaρi,j lies on level w

of T . This completes the induction on i. Finally, let T ′(σiaj) = τiaρr,j for

all 1 ≤ i ≤ r and j < q. This completes the construction in this case.

T ′ satisfies conditions (i)-(iv). Furthermore, every branching in T which

disagrees on the odds s-splits, while no s-split agrees on the odds. Thus T ′

is s-splitting on the odds, and consequently forces ϕAs ≡ Od(A) by Lemma

6.1.5 (iii).

(iv) Otherwise, it is necessarily the case that there are s-splits agreeing on the

odds above every node on T5s+3. In this case we construct a fully s-splitting

tree T5s+4 with T5s+4(∅) = T5s+3(∅). At even levels, we apply the same

process of erecting splits which was applied in case (iii). At odd levels the

process is similar, but with two differences. First, there is no subinduction

on m, since there is only one pair (q = 2 here). Second, we need to define

the extensions ρi,j (for j = 0, 1) to agree on the odds. The latter slightly

complicates the definition of ρi,j given ρi−1,j: Let (χ0, χ1) be the first s-split

above τiaρi−1,0 on T , which agrees on the odds, and let x be the first such

that ϕχ0
s (x) 6= ϕχ1

s (x). Let χ2 be the first extension of χ0[τia ρi−1,0 → τia

ρi−1,1] on T such that ϕχ2
s (x)↓. Let k < 2 be the least such that (χk, χ2) is an

s-split (which agrees on the odds, note). Now let ρi,0 and ρi,1 be extensions

49

of equal length of ρ∗i,0 = χk− τi and ρ∗i,1 = χ2− τi (resp.), which agree on the

odds, by copying the extension from the longer to the shorter. For instance,

if ρ∗i,0 is the longer, let ρi,0 = ρ∗i,0 and let ρi,1 = ρ∗i,0[(ρ
∗
i,0 � |ρ∗i,1|)→ ρ∗i,1].

The tree thus created forces A ≤ ϕAs , by Lemma 6.1.5 (ii).

In each of these cases we get a uniform subtree T5s+4 satisfying conditions (i)-

(iv), which forces R3
s.

Stage 5s + 4: The goal here is to build a subtree of T5s+4, fat enough so as

to have > ps+1(m)-branching at level 2m (for every n).

The tree T ′ = T5s+5 is constructed by induction on levels. As before, T5s+4

is denoted by T . First let T ′(∅) = T (∅). Suppose we have defined level n′ of T ′,

consisting of strings from level n of T (where n−n′ is even). If n′ is odd, copy the

successors from level n+ 1 of T , as was done in case (iii). If n′ = 2m is even, let τ

be a string on level n of T , and let w be the least odd number such that there are

q > ps+1(m) successors of τ on level w of T , name them τaρj for j < q. For each

σ of length n′ such that T ′(σ) ↓, and for each j < q, let T ′(σ a j) = T ′(σ)a ρj.

This ends the construction.

T5s+5 satisfies conditions (i)-(iv), and has > ps+1(n)-branching at level 2n, as

required by the construction.

Chapter 7

A Non-Weakly Recursive Minimal Below 0′

We answer a question raised in [Ish99]. An outline is given in section 1, and the

construction itself in section 2.

7.1 Introduction

We want to construct a minimal degree below 0′ which is not weakly recursive. In

order to achieve that, we apply the diagonalization method presented in Chapter

6 to the classic construction of a minimal degree below 0′, using partial recursive

trees and a finite injury argument [Ler83, IX.2.1].

Since 0′ is the oracle, we do not have the privilege of enumerating the recursive

functions. However, if pi (or hi) is not total that fact will be found out eventually,

and we can go back and act accordingly, just as we do when we run out of splittings.

As any minimal degree is not a.n.r. (see Theorem 1.2.2(i)), this result tightens

the bound on the scope of Ishmukhametov’s characterization. The structure of ∆0
2

degrees (i.e. D(≤ 0′)) is considered to be the “closest”, in many aspects, to the

structure of recursively enumerable Turing degrees. Here we see that, while every

r.e. degree is either weakly recursive or array non-recursive, the same does not hold

for the ∆0
2 degrees.

50

51

7.2 The Construction

Theorem 7.2.1. There is a minimal degree a < 0′ which is not weakly recursive.

Proof. The requirements here are:

R0
k : A 6= ϕk

R1
k : k = 〈i, j〉 ∧ ϕi, ϕj are total → ∃n

(∣∣Wϕj(n)

∣∣ > ϕi(n) ∨ fi(n) /∈ Wϕj(n)

)
R2
k : ϕAk = C is total → (C ≤T 0 ∨ A ≤T C)

The construction is a finite injury one, with oracle 0′. At stage s we construct

partial recursive trees T si for i ≤ g(s), and a string αs = T sg(s)(∅). Following the

notation of Chapter 6, we use τ @si τ
′ to mean that τ ′ is an immediate successor of

τ on T si . Since a single degree is being constructed, no uniformity is needed here.

We will satisfy the following conditions for all s and i ≤ g(s):

(i) If i = 4k and ϕk(n) ↓ then every non-terminal node on the n-th level of T si

has > ϕk(n) immediate successors.

(ii) If i = 4k + 1 then T si forces R0
k.

(iii) If i = 4k + 2 then T si forces R1
k (fi are defined below).

(iv) If i = 4k+3 then T si is either a k-splitting subtree or a non-splitting extension

subtree of T si−1.

(v) If τ1 is a non-terminal node on T si and τ1 @si′ τ2 for some i′ < i, then there

exists some τ3 ⊇ τ2 such that τ1 @si τ3.

For each i, the trees T si will approach a partial recursive limit tree Ti. The

function A = ∪αs is the unique path lying on all of the limit trees. The functions

52

fi are computed as follows:

fi(n) = C(n) where A = T4i(C).

We start with g(0) = 0 and T0 being the identity tree with domain {σ : σ(n) ≤

ϕ0(n)} (we assume wlog that ϕ0 is total).

At stage s + 1, let g(s + 1) = g(s) + 1 (this might be changed if there is an

injury). Let T s+1
i = T si for all i ≤ g(s). Let T = T s+1

g(s) . We define T ′ = T s+1
g(s)+1

by cases as described below. Before carrying out the appropriate instructions,

however, we check for convergence of all computations ϕi(x) which are mentioned

(only finitely many, so the 0′ oracle suffices). If ϕi(x) is found to diverge, ϕi is

marked non-total.

(i) If g(s + 1) = 4k + 1, let T ′ = T · Er where r is the first such that T (r)

is incompatible with ϕk (this is computable in 0′). This can fail if T (∅) is

terminal on T , in which case an injury occurs (see below).

(ii) If g(s + 1) = 4k + 2, let i, j be such that k = 〈i, j〉. If either of ϕi, ϕj has

been found to be non-total in a prior stage, there is nothing to be done,

so let T ′ = T . Otherwise observe that αs = T (∅) = T s+1
4i (σ) for some σ,

and let n = |σ|. Look for the least p ≤ ϕi(n) such that p /∈ Wϕj(n) (a 0′

computation). If p is found, find the q such that T (q) ⊇ T s+1
4i (σap) (exists

by property (v) above), and let T ′ = T · Eq. If no such p is found then

|Wϕj(n)| > ϕi(n), and the requirement is already fulfilled, so let T ′ = T . The

same applies to the case where ϕj(n) ↑. If, however, T (∅) is terminal on T ,

an injury occurs (see below). Note that this includes the cases where ϕi(n)↑

or αs is terminal on T s+1
4i .

53

(iii) If g(s+1) = 4k+3 let T ′(∅) = T (∅), and define T ′ to be a k-splitting subtree of

T in a manner which preserves property (v): when we have defined T ′(σ′) =

T (σ) = τ which has m immediate successors on T , we define immediate

successors T ′(σ′ a p) ⊇ T (σ a p) for all p < m, which k-split pairwise.

The process is much simpler than in Chapter 6, as we do not need to have

uniformity: start with ρp = T (σap) for p < m, then for each pair u < v < m

extend ρu and ρv to be k-splitting (and still on T). If this process cannot be

completed, τ is terminal on T ′.

(iv) If g(s+ 1) = 4k + 4 let T ′(∅) = T (∅), and define T ′ to satisfy condition (v).

When we have defined T ′(σ′) = T (σ) = τ with |σ′| = n, let {τp}p<m be the

first set of pairwise incompatible successors of τ on T such that m > ϕk+1(n)

and every immediate successor of τ on T is contained in some τp. Let T ′(σ′a

p) = τp for p < m. If no such set of successors is found, τ is terminal on T ′.

In cases (i) or (ii) above, injury occurs if αs = T (∅) is terminal on T . In this case,

let j be the least such that αs is terminal on T sj . Note that j is either 4k + 3 or

4k + 4, since in the other two cases the tree is an extension subtree, and cannot

be the first on which αs is terminal. In either case, let g(s + 1) = 4k + 3, and as

before let T s+1
i = T si for all i < g(s+ 1). If j = 4k + 3 then some string τ ⊇ αs on

T s4k+2 has no k-splits above it on that tree. On the other hand, if j = 4k+ 4, then

there are no infinite paths extending αs on T s4k+3 (the existence of such path would

yield a set of successors as required in case (iv) above). This in turn means that

some extension of αs is terminal on T s4k+3, and again the existence of such a string

τ is implied. Find the first such τ = T s4k+2(σ) using 0′, and set T s+1
4k+3 = T s+1

4k+2 ·Eσ,

a non-splitting extension subtree. This ends the construction.

54

Now we turn to the proof. The trees reach a limit by the usual argument: once

T sj have stabilized for all j < i, T si can be injured at most once (if i = 4k + 3).

The sequence αs is increasing, and so A = ∪αs is a function recursive in 0′, the

oracle for the construction. The requirements R0
k, R

1
k, R

2
k are forced by the trees

T4k+1, T4k+2, T4k+3 (respectively), and so a = deg(A) is minimal and not weakly

recursive (refer to Lemma 6.1.5).

Chapter 8

Very Weakly Recursive Degrees

We define very weakly recursive degrees, and modify Ishmukhametov’s original

proof to show that this possibly larger class of degrees has the strong minimal

cover property as well. At this point we have not been able to determine if there

exists a very weakly recursive degree which is not weakly recursive.

Definition 8.1. A degree a is very weakly recursive if there is a function p ≤ a such

that for every function f ≤ a there is a recursive function h with |Wh(n)| ≤ p(n)

and f(n) ∈ Wh(n) for all n ∈ ω.

Clearly every weakly recursive degree is very weakly recursive.

Theorem 8.2. Every very weakly recursive degree a has a strong minimal cover.

Proof. Let A ∈ a, and let p be the recursive function given by Definition 8.1.

We construct a set M with M(2n) = A(n), such that the following requirements

are satisfied:

Ne : ϕMe is total → (ϕMe ≤T A ∨M ≤T ϕMe),

Pe : M 6= ϕAe .

In order to construct M , we will construct a sequence of trees {Te}e∈ω such that

for all e ∈ ω:

55

56

(i) Te ≤T A is a full binary tree,

(ii) Te+1 is a subtree of Te, with Te+1(∅) ⊃ Te(∅),

(iii) Te+1 forces both Ne and Pe.

We will then define M as the unique path which lies on all of the trees Te. M will

consequently satisfy all requirements Ne and Pe, and will thus be a strong minimal

cover for A.

We start by defining

T0 = {σ : ∀n (σ(2n)↓→ σ(2n) = A(n))}

(that is, the full tree of “A-true” strings). T0 clearly satisfies condition (i).

At stage e > 0 the trees Tk for k ≤ e have been already defined and satisfy

conditions (i)-(iii). There are two cases.

Case 1. There are no e-splits on Te above some σ = Te(τ).

In this case let Te+1 = Te ·Eτ∗ , where τ ∗ ⊃ τ is the first such that Te(τ
∗) 6⊆ ϕAe .

Conditions (i) and (ii) are clearly satisfied by Te+1. For condition (iii), note that

Ne is forced since if ϕMe is total then it can be computed from the non-e-splitting

Te+1.

Case 2. e-splits are dense on Te.

In other words, there is an e-split above every σ ∈ rg(Te). Merely taking the

splitting subtree as Te+1 will not do here, as it will produce a minimal cover which

is not necessarily strong.

Therefore, in addition to the tree Te+1 we shall also construct a partial tree

T : ω<ω → 2<ω for which the following conditions hold:

(a) T is partial recursive (i.e. has a r.e. graph),

57

(b) T is e-splitting (i.e. every branching e-splits),

(c) Te+1 ⊆ T .

Given such T and Te+1, it is easy to show that Te+1 forces the requirement Ne.

Indeed, if M is a path on Te+1, and ϕMe = C is total, then we can compute M

from C by enumerating rg(T) and throwing away all strings σ for which ϕσe (n)

is incompatible with C. Condition (b) guarantees that the remaining strings are

all compatible, while condition (c) guarantees that they will form the full set M ,

which has arbitrarily long initial segments in rg(Te+1).

For the purpose of constructing T , we will first introduce some terminology.

Definition 8.3. (i) An e-splitting k-fan is a set F = {τ0; τ1, . . . , τk} of distinct

strings, such that τi and τj form an e-split of τ0 for every 1 ≤ i < j ≤ k. τ0

is the root of F and τ1, . . . , τk are the blades of F .

(ii) Two e-splitting fans F0, F1 e-split a string σ if their roots e-split σ.

We now define a function f recursively in A. Let σ∗ = Te(τ
∗) be the first

non-root string incompatible with ϕAe (this may not be computable in A, but it

is only done once, and no uniformity is claimed). Find two e-splitting p(1)-fans

F σ∗
0 , F σ∗

1 ⊆ rg(Te) which split σ∗, and let f(0) = [F σ∗
0 ∪F σ∗

1], where [·] here denotes

a recursive coding of finite sets of strings (not to be confused with the notation for

the set of paths on a tree).

Inductively, suppose we have defined

f(n− 1) =

[⋃
i<tn, j<2

F σi
j

]

where F σi
0 , F

σi
1 ⊆ rg(Te) are e-splitting p(n)-fans which e-split σi ∈ rg(Te). Find

for each blade τ of every fan F σi
j , two p(n+ 1)-fans F τ

0 , F
τ
1 ⊆ rg(Te) which split τ ,

58

and let

f(n) =

[⋃
τ,j

F τ
j

]

This definition can be carried out with oracle A since both Te and p are computable

in A, and splitting fans will always be found because of the density of e-splits on

Te.

By Definition 8.1, there is a recursive function h such that

∀n ∈ ω (f(n) ∈ Wh(n) ∧ |Wh(n)| ≤ p(n)).

Now we construct T . First throw into T all strings in {σ∗} ∪ F σ∗
0 ∪ F σ∗

1 (that is,

let σ∗ be the root of T , the two fan roots its successors, and the all the blades

as their successors on level 2 of T). Call F σ∗
0 and F σ∗

1 accepted fans of level 0.

Now simultaneously enumerate all Wh(n) for n > 0, and for each element an = [U]

enumerated in Wh(n) do the following:

First validation: Check that U is a union of e-splitting k-fans for some fixed

k, and that all strings in U agree on even elements. If not, drop an.

Second validation: Wait until some an−1 is enumerated in Wh(n−1) and passes

the first and second validation, such that for each blade of a fan given by an−1 there

is a distinct pair of fans given by an which split it. If this happens, then an passes

the second validation, and is said to be extending an−1.

Now, label the elements of Wh(n) as an1 , . . . , a
n
kn

in order of enumeration, with

kn ≤ p(n). For each accepted fan F of level n−1, given by some an−1, with blades

τ1, . . . , τr, and for each 1 ≤ i ≤ r, if ani exists and extends an−1, then enumerate in

T the two fans given by ani which split τi (setting their roots to be successors of τi

in T), and call them accepted fans of level n. This ends the construction of T .

59

Properties (a),(b) clearly hold. Next we define Te+1 by induction as a subtree

of T , to ensure property (c). Note that for all n > 0 the set coded by f(n) will

pass both validations. Set Te+1(∅) = σ∗ and set Te+1(i) to be the root of F σ∗
i

(i = 0, 1). Suppose we have defined level n > 0 of Te+1, which consists of roots

of accepted fans of level n − 1 given by f(n − 1). Given τ on level n, the root of

the accepted fan F , there is a blade τ ′ of F such that there are two accepted fans

F τ ′
0 and F τ ′

1 given by f(n), which e-split τ ′ (and hence τ). This is because F is a

“true” fan, which has no more than p(n) blades. Let the roots of the fans F τ ′
i be

the successors of τ on level n+ 1.

Now, Te+1 is a subtree of T since all roots (as well as all blades) of accepted

fans appear on T . It is also a subtree of Te, since all roots (as well as all blades)

of “true” fans appear on Te. It was constructed from T with knowledge of f , so it

is computable in A. It is clearly e-splitting, hence forces Pe. Finally, it forces Ne

and satisfies condition (ii) by choice of σ∗.

Chapter 9

Constructing a Non-Join

We give a direct construction of a non-join, with the hope that it may be built

upon to produce interesting results (e.g. concerning the class of cuppable degrees).

Lemma 9.1. There are degrees 0 < b < a ≤ 0′′ such that no degree c < a satisfies

b ∨ c = a.

Proof. The requirements which we are trying to satisfy are

R0
s : Od(A) 6= ϕs

R1
s : s = 〈e1, e2〉 →(

ϕAe1 is total ∧ ϕϕ
A
e1
⊕Od(A)

e2 is total and equal to A → ϕAe1 ≥T A
)

We construct a sequence of recursive uniform binary trees Ti such that for all

i ∈ ω and binary strings σ we have Ti+1 ⊆ Ti and

|σ| is odd ↔ Od(Ti(σa0)) = Od(Ti(σa1)).

That is, the levels of each tree alternate between agreeing and disagreeing on the

odds.

60

61

To define T0, let

T0(d0d1d2d3 . . .) = (0d0)a(d10)a(0d2)a(d30)a . . .

for all di < 2 (the parenthesis are for readability).

At stage 2s, let σ be the first of length 2 such that Od(T2s(σ)) is incompatible

with ϕs. Let T2s+1 = T2sEσ. This tree is in the required form, and satisfies R0
s.

At stage 2s + 1, let T = T2s+1, and let e1, e2 be such that s = 〈e1, e2〉. We

construct T ′ = T2s+2 as follows.

(i) If there is some σ and x such that T (σ) forces ϕAe1(x) ↑ on T , let σ be the

first such of even length, and let T ′ = T · Eσ.

(ii) Otherwise, if there is some σ and x such that T (σ) forces ϕ
ϕAe1⊕Od(A)
e2 (x)↑ on

T , let σ be the first such of even length, and let T ′ = T · Eσ.

(iii) Otherwise, if there is some σ and x such that

ϕ
ϕ
T (σ)
e1
⊕Od(T (σ))

e2 (x)↓6= T (σ)(x)

let σ be the first such of even length, and let T ′ = T · Eσ.

(iv) Otherwise, we first prove

Proposition 9.2. Every σ has extensions σ0, σ1 such that T (σ0), T (σ1) agree

on the odds and e1-split.

Proof. Assume wlog that |σ| is odd, and let x be the first on which T (σa0)

and T (σa1) disagree (note that x is even, since these strings must agree on

the odds). Since cases (i),(ii) do not hold, there is some σ0 ⊇ σa0 such that

62

ϕ
ϕ
T (σ0)
e1

⊕Od(T (σ0))
e2 (x) ↓. Let σ∗1 = σ0[σa 0 → σa 1]. Similarly, there is some

σ1 ⊇ σ∗1 such that ϕ
ϕ
T (σ1)
e1

⊕Od(T (σ1))
e2 (x)↓.

Now, T (σ0) and T (σ1) agree on the odds by uniformity of T and because

Od(T (σa0)) = Od(T (σa1)). On the other hand, we must have

ϕ
ϕ
T (σi)
e1

⊕Od(T (σi))
e2 (x)↓= T (σi)(x)

for both i = 0, 1, since case (iii) fails. But T (σ0)(x) 6= T (σ1)(x) by choice of

x, and so the oracles must disagree. Since Od(T (σ0)) = Od(T (σ0)), it must

be that ϕ
T (σ0)
e1 is incompatible with ϕ

T (σ1)
e1 , hence T (σ0) and T (σ1) form an

e1-split.

The proposition implies that we can construct an e1-splitting subtree of T in

the required form. The construction is by induction on levels, and is similar in

nature to the one carried out in case (iv) of the proof of Theorem 6.2.1. Start

with T ′(∅) = T (∅). Suppose we have defined level n of T ′, and let τi = T ′(σi)

be the strings on that level (for 1 ≤ i ≤ r). We define by induction on

i ≤ r strings ρ0,i, ρ1,i, starting with ρj,0 = ∅ for j = 0, 1. Having defined

ρj,i−1, find a e1-split χ0, χ1 ⊇ τi a ρ0,i−1 on T , such that Od(χ0) = Od(χ1)

(the existence of such is guaranteed by the proposition). Let x be the first

such that ϕχ0
e1

(x) ↓6= ϕχ1
e1

(x) ↓, and let χ2 ⊇ χ0[τi a ρ0,i−1 → τi a ρ1,i−1] on

T such that ϕχ2
e1

(x)↓ (guaranteed to exist since case (i) fails). Let k < 2 be

the first such that ϕχke1 (x) 6= ϕχ2
e1

(x). Now let ρi,0 and ρi,1 be extensions of

equal length of ρ∗i,0 = χk − τi and ρ∗i,1 = χ2 − τi (resp.), which agree on the

odds, by copying the extension from the longer to the shorter. For instance,

if ρ∗i,0 is the longer, let ρi,0 = ρ∗i,0 and let ρi,1 = ρ∗i,0[(ρ
∗
i,0 � |ρ∗i,1|)→ ρ∗i,1]. Note

that Od(ρi,0) = Od(ρi,1). This completes the induction on i. Finally, if n

63

is odd, simply let T ′(σi a k) = τi a ρr,k for all 1 ≤ i ≤ r and k = 0, 1.

This is a uniform e1-splitting branching which agrees on the odds. If n is

even we need to make the branching disagree on the odds, so let ρ0, ρ1 be

the first extensions of equal length of ρr,0, ρr,1 (resp.), which disagree on the

odds, such that τ1aρk ∈ rg(T) for k < 2 (such exist since the branching on

every even level of T disagrees on the odds). Let T ′(σiak) = τiaρk for all

1 ≤ i ≤ r and k < 2. Thus level n+ 1 of T ′ is constructed, and the induction

on n is complete.

Note that T2s+2 = T ′ is an e1-splitting tree, and therefore it forces require-

ment R1
s by Lemma 6.1.5.

In each of the cases, T2s+2 is a tree of the required form which forces R1
s.

Now let A be the unique path lying on all Ti, and let B = Od(A). Since the

requirements R0
s are satisfied, B is not recursive. Since the requirements R1

s are

satisfied, if X ≤T A and X ⊕ B ≥T A then X ≥T A. It follows that a = deg(A)

and b = deg(B) are as stated in the lemma.

Bibliography

[Coo73] S. B. Cooper. Minimal degrees and the jump operator. J. Symbolic

Logic, 38:249–271, 1973.

[DJS96a] Rod Downey, Carl G. Jockusch, and Michael Stob. Array nonrecur-

sive degrees and genericity. In Computability, enumerability, unsolvabil-

ity, volume 224 of London Math. Soc. Lecture Note Ser., pages 93–104.

Cambridge Univ. Press, Cambridge, 1996.

[DJS96b] Rod Downey, Carl G. Jockusch, and Michael Stob. Array nonrecur-

sive degrees and genericity. In Computability, enumerability, unsolvabil-

ity, volume 224 of London Math. Soc. Lecture Note Ser., pages 93–104.

Cambridge Univ. Press, Cambridge, 1996.

[DLS96] Rodney G. Downey, Steffen Lempp, and Richard A. Shore. Jumps of

minimal degrees below 0′. J. London Math. Soc. (2), 54(3):417–439,

1996.

[Eps79] Richard L. Epstein. Degrees of unsolvability: structure and theory, vol-

ume 759 of Lecture Notes in Mathematics. Springer, Berlin, 1979.

[Fri57] Richard Friedberg. A criterion for completeness of degrees of unsolvabil-

ity. J. Symb. Logic, 22:159–160, 1957.

64

65

[Ish99] Shamil Ishmukhametov. Weak recursive degrees and a problem of Spec-

tor. In Recursion theory and complexity (Kazan, 1997), volume 2 of de

Gruyter Ser. Log. Appl., pages 81–87. de Gruyter, Berlin, 1999.

[KHNS] Bjørn Kjos-Hanssen, André Nies, and Frank Stephan. On a question of

Ambos-Spies and Kučera. In preparation.

[Lac68] A. H. Lachlan. Distributive initial segments of the degrees of unsolvabil-

ity. Z. Math. Logik Grundlagen Math., 14:457–472, 1968.

[Ler83] Manuel Lerman. Degrees of unsolvability. Perspectives in Mathematical

Logic. Springer-Verlag, Berlin, 1983. Local and global theory.

[Sac63] Gerald E. Sacks. Recursive enumerability and the jump operator. Trans.

Amer. Math. Soc., 108:223–239, 1963.

[Sho78] Richard A. Shore. On the ∀∃-sentences of α-recursion theory. In Gen-

eralized recursion theory, II (Proc. Second Sympos., Univ. Oslo, Oslo,

1977), volume 94 of Stud. Logic Foundations Math., pages 331–353.

North-Holland, Amsterdam, 1978.

[Sho88] Richard A. Shore. A noninversion theorem for the jump operator. Ann.

Pure Appl. Logic, 40(3):277–303, 1988.

[Sim77] Stephen G. Simpson. First-order theory of the degrees of recursive un-

solvability. Ann. of Math. (2), 105(1):121–139, 1977.

[Spe56] Clifford Spector. On degrees of recursive unsolvability. Ann. of Math.

(2), 64:581–592, 1956.

[SS99] Richard A. Shore and Theodore A. Slaman. Defining the Turing jump.

Math. Res. Lett., 6(5-6):711–722, 1999.

