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Abstract
We summarize Boundon-Pajot’s quasi-isometry rigidity for some

negatively-curved buildings.

1.1 Introduction

As the first application of quasiconformal analysis on boundaries of hyper-
bolic groups in this summer school, let us start with a general question taken
from the survey paper of Kleiner [6].

Question. Given a finitely generated group G, what is its quasi-isometry
group QI(G)?

Recall that the quasi-isometry group QI(X) of a metric space X is the set
of equivalence classes of quasi-isometries f : X → X, where two quasi-
isometries f1, f2 are equivalent iff supx d(f1(x), f2(x)) <∞ (here we consider
G as a metric space with a word metric). One approach to this question,
which has been the most successful one, is to find an ‘optimal’ space X
quasi-isometric to G and show that the natural map Isom(X) → QI(X) is
an isomorphism. This statement was proved in various settings, started by
Pansu (for quaternionic and Cayley hyperbolic spaces), followed by results of
Kleiner and Leeb (for products of irreducible affine buildings and symmetric
spaces of dimension ≥ 2), Kapovich and Schwartz (for universal covers of
compact locally symmetric spaces of dimension ≥ 3).

Bourdon and Pajot showed this quasi-isometry rigidity for some buildings
([3]). The class of Tits buildings they study are called right-angled Fuchsian
buildings: their apartments are hyperbolic planes, their chambers are regular
hyperbolic p-gons with right angles. These buildings are CAT (−1)-spaces.
By studying the quasi-conformal structure of the boundary at infinity of those
buildings, Bourdon and Pajot showed the following quasi-isometry rigidity:

Theorem 1. Let ∆,∆′ be two right-angled Fuchsian buildings. Any quasi-
isometry F : ∆→ ∆′ lies within bounded distance from an isometry.
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This theorem was later proved for general Fuchsian buildings by Xie [8]
(see section 1.5).

Let us briefly explain the quasi-conformal analysis on the Fuchsian build-
ings investigated by Bourdon-Pajot and Xie. As Fuchsian buildings are Gro-
mov hyperbolic, their boundaries (∂∆, δ) with a visual metric are Ahlfors
Q-regular (see lectures of T. Dymarz and those of Y. Kim). (There is an
optimal Q for which the space is Q-regular.) On the other hand, we already
learned that a complete Q-regular metric space enjoys Q-Loewner property
iff (1, Q)-Poincare inequality holds (lecture of H. Hakobyan) , and vaguely
speaking it is equivalent to showing that there are many rectifiable curves
(lecture of I. Peng). One equivalent condition that we have not seen yet is
that for a complete Q-regular space, having a (1, Q)-Poincare inequality is
equivalent to the fact that the given metric attains the conformal dimension

Cdim(∂X) = inf{Hdim(d) : d quasi− conformal to δ},

where Hdim(d) denotes the Hausdorff dimension of (∂X, d). The necessary
condition is due to Bonk-Tyson, for Ahlfors Q-regular metric spaces with
non-trivial Q-modulus. The sufficient condition is due to Keith-Laakso, who
showed that attaining conformal dimension (with Cdim = Q) implies that
some pointed Gromov-Hausdorff limit space has Q-Loewner property. In
our case of boundary of Gromov hyperbolic spaces, this limit is the space
itself. One sufficient condition of attaining conformal dimension is that the
space has some “product structure” (product of two spaces of dimension
1 and Hdim(δ) − 1, corresponding to curves and its fibers). This is an
important lemma by Pansu [7], and it is used by Bourdon [2] to show that
the “combinatorial metric” he constructed attains the conformal dimension,
thus the space enjoys Loewner property. Roughly speaking, he showed that
the boundary of a right-angled building is a “product” (à la Pansu) of a circle
and a Cantor set (the boundary of a hyperbolic plane and the boundary of
a tree). In terms of ”finding many rectifiable curves”, he showed that the
orbits of a geodesic segment γ in ∂H2 under the group of isometries of ∆
fixing certain chamber and endpoints of γ, form a nice set of curves.
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1.2 Preliminaries

1.2.1 (p,q)-Fuchsian buildings

Building ∆: In this section, we define (p, q)-Fuchsian buildings ([2]). These
are 2-dimensional right-angled hyperbolic buildings with thickness q. See [5]
for the definition of general hyperbolic buildings. Let us give three descrip-
tions of the building.

(i) Let P be a compact, convex regular polygon with p edges, say e1, · · · , ep,
in H2 with all dihedral angles π/2. Locally the building ∆ is constructed
by gluing copies of polygon P as follows. Start with one copy. Attach q − 1
copies along each edge. Around a fixed vertex, say intersection of edge ei and
ei+1, there are two types of edges (i.e. they are copies of either ei or ei+1)
since the dihedral angle is π/2. Now for any edge of type ei and any edge of
type ei+1, we glue another copy of P along those two edges. (This amounts
to saying that the link of each vertex is a complete (q, q) bipartite graph.)

(ii) The building ∆ is the universal cover of the complex of groups on P with
the following local groups and obvious monomorphisms: The local group of
P is trivial, all the edge group are cyclic groups C of order q, and all the
vertex groups are the direct product C × C. The fundamental group of the
complex of groups is

W =< s1, · · · , sp : sqi = 1, [si, si+1] = 1 > .

(iii) Here is a precise definition. Let P be as above, and let (W, I) be the
right-angled Coxeter system generated by reflections in the edges of P . A
(p, q)-Fuchsian building ∆ is a polyhedral complex with a maximal family of
subcomplexes (called apartments), each isometric to the tesselation of H2 by
copies of P (called chambers), which satisfy the usual axioms of buildings:

1. For any two chambers, there exists an apartment containing them.

2. For any two apartments A,A′ with non-trivial intersection, there exists
an isometry A→ A′ fixing the intersection A ∩ A′ pointwise.

Retractions: For a fixed chamber c and an apartment A containing it,
there exists a map ρ : ∆→ A, called the retraction from ∆ onto A centered
at c. It fixes c pointwise, and its restriction to any apartment A′ is an
isometry fixing A ∩ A′.
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The boundary ∂∆: The building ∆ is a Gromov hyperbolic space, thus we
can define the boundary ∂∆ as the set of equivalence classes of geodesic rays
(two geodesic rays r, r′ are equivalent if sup

t
{r(t)−r′(t)} <∞). Equivalently,

fix a base point x in ∆ and define ∂∆ as the set of geodesic rays starting
from x. With the topology of uniform convergence on compact subsets of
[0,∞), the boundary ∂∆ is homeomorphic to the Menger sponge ([1]).

Tree walls: A wall of ∆ is a bi-infinite geodesic contained in the 1-skeleton
of ∆. Since the dihedral angle is π/2, all the edges of a wall have the same
type (i.e. they are copies of one edge of P ), called type of the wall. Let us
define an equivalence relation: two edges are equivalent if they are contained
in a wall of ∆. An equivalence class is called a tree-wall and its type is
the type of the edges in it. A tree-wall of type i is a totally geodesic, bi-
homogeneous tree which divides ∆ into q connected components. Since they
are totally geodesic, any two distinct tree-walls share at most one vertex
of ∆. Also, a geodesic intersects a tree-wall at exactly one point if it does
transversally. Let us denote the set of tree-walls by T .

1.2.2 Combinatorial metrics

In this section, we describe metric structures on the boundary ∂∆ of a (p, q)
Fuchsian building ∆. Let us first define a metric | ·−·| on the set of chambers
of ∆ (or on the dual graph of the one skeleton of ∆), which is the path metric
determined by letting |c−d| = 1, if c, d are adjacent chambers with common
edge ei. For any pair of chambers c, d of ∆ and a tree wall T , let αT (c, d) = 1
if c, d belong to two distinct connected components of (∆ ∪ ∂∆)\(T ∪ ∂T ),
and zero otherwise. Then

|c− d| =
∑
T∈T

αT (c, d).

Note that there are only finitely many T ’s which seperates c and d (exactly
those that intersect the geodesic segment, in the dual graph, joining c and
d). For chambers c, d, e of ∆, and ξ ∈ ∂∆, we define the combinatorial
horospherical distance as follows:

Nξ(c, d) =
∑
T∈T

αT (c, ξ)− αT (d, ξ).
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For chambers c, d, e of ∆, their Gromov product is defined as

{d|e}c =
1

2
{|c− d|+ |c− e| − |d− e|}.

For any chamber c and any pair d, e of chambers, there are only finitely many
tree walls seperating c and {d, e}. By connectivity argument, for any pair ξ, ν
of poins on the boundary ∂2∆ = (∂∆)2\diag(∆), the combinatorial Gromov
product with base point c

{ξ|ν}c =
1

2

∑
T∈T

αT (c, d) + αT (c, e)− αT (d, e)

is well-defined.

Remark. In more general case when the thickness qi (q−1 in the above case)
depends on the edge ei, we define |c − d| = log qi. Note that this metric is
not a word metric, and it is not ”symmetric” in the sense that the length of
your step (in the dual graph of the 1-skeleton of the building) depends on
the ”direction” i.e. on the edge you cross).

The combinatorial metric: This is a length metric on ∂∆ induced by
the metric | ·− · | as follows. Let τ be the exponential growth rate of the dual
graph of one chamber A with the metric | · − · |:

τ = lim sup
n→∞

(
1

n
log #{d : chamber of A s.t. |c− d| ≤ n}

)
.

Let Bc(ξ, r) = {ν ∈ ∂∆ : e
−τ{ξ|ν
c ≤ r}. Let us define the length lc(γ) of a

continuous path γ ⊂ ∂∆ by

lim
r→0

inf{
∑
i

ri},

where the infimum is taken over all the finite coverings {Bc(ξi, ri)} of γ with
ξi ∈ γ and ri < r for some fixed r. Now the combinatorial metric is defined
as follows: for any ξ, ν ∈ ∂∆,

δc(ξ, ν) = inf
γ
{lc(γ)},

where the infimum is taken over all continuous paths γ in ∂∆ joining ξ and
ν.
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Proposition 2. The combinatorial metric δc is a length metric with the
following properties: (i) There is a constant C > 1 such that

C−1e−τ{ξ|ν}c ≤ δc(ξ, ν) ≤ Ce−τ{ξ|ν}c .

(ii) The combinatorial metrics are pairwise conformal: for any ξ ∈ ∂∆ which
is not an endpoint of a wall,

lim
ν→ξ

δd(ξ, ν)

δc(ξ, ν)
= eτNξ(c,d).

Moreover, any isometry of ∆ is a conformal homeomorphism of the boundary
(∂∆, δc).

Sullivan’s criterion Let H and Hc be the Hausdorff dimension and the
Hausdorff measure of (∂∆, δc), respectively. Using Proposition 2, it can be
shown that the measure on ∂2∆ defined by

µ(ξ, ν) = e2Hτ{ξ|ν}cHc(ξ)(H)c(ν) (∗)

does not depend on the choice of c and is invariant under the diagonal action
of the group of isometries. The following characterization of isometries of ∆
is due to Sullivan for non-compact rank-1 symmetric spaces.

Proposition 3. Let µ, µ′ be the measures defined as in (∗). A homeomor-
phism f : ∂∆→ ∂∆′ is an extension of an isometry ∆→ ∆′ if and only if f
satisfies (f × f)∗µ = Cµ′.

1.3 Poincare inequality on the boundary

1.3.1 Approximation of curves on the boundary by geodesics in
apartments

Using tree-wall structure, which is special to right-angled hyperbolic build-
ings, Bourdon and Pajot show that curves on the boundary of the building
can be approximated by geodesic segments in the boundaries of apartments.

Lemma 4. (i) Any two points on ∂∆ can be joined by four geodesic segments,
each segment contained in the boundary of an apartment.
(ii) Now fix a boundary point ξ ∈ ∂∆. For almost every ξ ∈ ∂∆, if γ :
[0, 1] → ∂∆ is a continuous curve starting at ξ, then for any t ∈ (0, 1], the
subcurve γ((0, t]) intersects at least one boundary of an apartment containing
ξ.
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1.3.2 Poincaré inequality and Loewner space structure

Using the above lemma and the uniform Ahlfors-regularity of the fibers of
the retraction ρ (of ∆ onto A), we can estimate the size of the pencil joining
two points on the boundary of A (this is the set of boundaries of apartments
containing both points). Poincaré inequalities follows from these estimates:

Proposition 5. ([4]) The metric space (∂∆, δ) admits weak (1, α)-Poincaré
inquality for every α ≥ 1.

Existence of Poincaré inequality implies absolute continuity of quasi-symmetric
homeomorphisms and Loewner space structure of the boundary (∂∆, δ).

Remark. Bourdon proved earlier ([2]) that the combinatorial metric he con-
structed satisfies the ”product structure” needed to apply Pansu’s lemma.
Note that only the (1, Q)-Poincaré inequality for Q = Cdim > 1 is implied by
Pansu’s Lemma. Bourdon and Pajot ([4]) showed (1, 1)-Poincaré inequality
by proving it directly (using the same set of curves mentioned in section 1.1).

1.4 Proof of theorem

By Gromov’s theorem, any quasi-isometry ∆→ ∆′ induces a quasi-symmetric
homeomorphism on the boundaries ∂∆ → ∂∆′. The main theorem follows
form the following:

(i) this quasi-symmetric homeomorphism is in fact conformal,
(ii) any conformal map on the boundaries is induced from an isometry of

the buildings.

1.4.1 Conformal homeomorphism

To show that any quasi-symmetric homeomorphism f : ∂∆ → ∂∆′ is con-
formal, we need differentiability property of such homeomorphisms and a
version of Rademacher-Stepanov theorem.

For any boundary a = ∂A of an apartment, let a(t) be the arc-length
parameterization of a s.t. a(0) = ξ. For ξ ∈ ∂∆, and t ∈ (−d, d), set

Dξ,t(a) =
d(f(a(t)), f(ξ))

|t|
,

whenever a contains ξ.
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Proposition 6. (i)For H-almost every ξ ∈ ∂∆, the function Dξ,t converges
uniformly (on the set of apartments containing ξ) to a constant function,
which we denote by f ′(ξ) ∈ (0,∞).
(ii)For almost every ν ∈ ∂∆′, we have

(f−1)(ν) =
1

f ′(f−1(ν))
.

From the above proposition and Lemma 4, a metric version of Rademacher-
Stepanov theorem follows:

Proposition 7. For almost every ξ ∈ ∂∆, we have Lf (ξ) = f ′(ξ).

It follows that the ratio of quasi-symmetry Lf (ξ)/lf (ξ) equals 1 for almost
every ξ.

1.4.2 A Liouville type theorem

Using Loewner property of the boundary ∂∆, it can be shown that any con-
formal homeomorphism f : ∂∆→ ∂∆′ is absolutely continuous and preserves
a cross-ratio. Let M and M ′ be the groups of homeomorphisms of ∆ and ∆′,
respectively, preserving the cross-ratio. It follows that the measure (f×f)∗µ
is M ′-invariant in ∂2∆′, and absolute continuity of f implies that it belongs
to the class of µ′. By Sullivan’s criterion (Proposition 3), f is an extension
of an isometry between ∆ and ∆′ to their boundaries. Alternatively, it can
be shown that the isometries of ∆ are exactly homeomorphisms of ∂∆ which
preserve extremities of walls. Preserving a cross-ratio implies this condition.

1.5 Further direction : Xie’s result

A 2-dimensional hyperbolic building is called Fuchsian if the thickness de-
pends only on the type of the edge. Xie extended the result of Bourdon-Pajot
by showing that any homeomorphism ∂∆ → ∂∆′ between two Fuchsian
buildings which preserves the combinatorial cross ratio almost everywhere
extends to an isomorphism from ∆ to ∆′ ([8]). Complications arise when
the polygon P has at most 4 edges. In this case, it is possible a priori to
have triangles or quadrilaterals in the 1-skeleton of the building which is the
union of a finite number of chambers, which does not happen in right-angled
buildings. Xie showed that even when P has at most 4 edges, there are not
many such triangles and quadrilaterals.
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