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The aim of this note is to give a proof of the following result:

Theorem 1 Let T be a measure preserving transformation of the probability

space (Ω,A,m), and f : Ω 7→ R be such that
∫

√

|f | < ∞. Then, for m
almost every ω ∈ Ω:

lim
N→∞

1

N2

N−1
∑

n=0

f(T nω) = 0. (1)

In the case of independent random variables with the same law in L1/2,
Theorem 1 is a case of the Marcinkiewicz-Zygmund theorem. In general
actually, a stronger Theorem says that the same limit holds with identically
distributed variables (not necessary stationary), see [4], Corollary page 1651.
We want to present how Theorem 1 follows from a general Noncommutative
Ergodic Theorem. We may, without loss of generality, assume that the
transformation T is ergodic and invertible.

0.1 General Ergodic Theorems.

Let (X, d) be a metric space such that closed bounded sets are compact. Fix
a basepoint x0 ∈ X. Let

Φ : X → C(X)
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be defined by x 7→ d(x, ·) − d(x, x0) and where the topology on the space
of continuous functions C(X) is uniform convergence on compact sets. It
can be checked that Φ is a continuous injection, and we identify X with
its image. Let H = Φ(X). It is easy to verify that H is a compact and
metrizable space. The points in H \ Φ(X) are called horofunctions (based
at x0).

The action by Isom(X, d) on X extends continuously to an action by
homeomorphisms of H and is given by

g.h(x) = h(g−1x) − h(g−1x0).

See [3] and the references therein for more information.
Suppose now that A : Ω 7→ Isom(X) is a measurable map such that

∫

d(x0, A(ω)x0)dm(ω) < ∞. Form the product

A(N)(ω) = A(ω) ◦ A(Tω) ◦ · · · ◦ A(T N−1ω).

By the Subadditive Ergodic Theorem, we know that there is a number
α ≥ 0 such that, for m almost every ω ∈ Ω,

lim
N→∞

1

N
d(x0, A

(N)(ω)x0) = α. (2)

On the other hand, by the law of large numbers from [3], we know that, for
m almost every ω ∈ Ω, there is a horofunction hω ∈ H such that

lim
N→∞

1

N
hω(A(N)(ω)x0) = −α. (3)

0.2 Heisenberg space.

We are going to apply the above results with X = R
3. To define the metric

and the isometries, we think of X as a group with the product law defined
by

(x, y, z)(x′, y′, z′) = (x + x′, y + y′, z + z′ + 2(yx′ − xy′)).

Then the norm ‖(x, y, z)‖ =
(

x4 + 2x2y2 + y4 + z2
)1/4

is subadditive ([2]).
Indeed, setting u = x+iy, u′ = x′+iy′, we can rearrange ‖(x, y, z)(x′, y′, z′)‖4
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as:

|u|4 + z2 + 4(|u|2 Reuu′ + z Imuu′) +

+ 4(Re uu′)2 + 4(Im uu′)2 + 2|u|2|u′|2 + 2zz′ +

+ 4(|u′|2 Reuu′ + z′ Imuu′) + |u′|4 + z′2

≤ |u|4 + z2 + 4
√

|u|4 + z2|u||u′| +

+ 6(|u|2|u′|2 +
zz′

3
) + 4

√

|u′|4 + z′2|u||u′| + |u′|4 + z′2.

The sum of the last two lines is term by term not bigger than
(

(|u|4 + z2)1/4 + (|u′|4 + z′2)1/4
)4

,

which is
(

‖(x, y, z)‖ + ‖(x′, y′, z′)‖
)4

.

Therefore the following formula

d((x, y, z), (x′, y′, z′)) = ‖(x, y, z)(x′, y′, z′)−1‖

defines a metric on X, which is invariant under right translations. The space
(X, d) is proper. By direct examination, one finds, setting x0 = (0, 0, 0):

Proposition 2 The space of horofunctions of (X, d) is a 2-sphere with

North and South poles identified. It can be parametrized by {(θ, β), θ ∈
[−π, π), β ∈ R} ∪ {∞}, as follows:

hθ,β(x, y, z) = −x cos θ + y sin θ

(1 + β2)3/4
− β(y cos θ − x sin θ)

(1 + β2)3/4

and h∞(x, y, z) = 0. Indeed, Φ(u, v, w) → hθ,β if, and only if,

u√
u2 + v2

→ cos θ,
v√

u2 + v2
→ sin θ,

w

u2 + v2
→ β,

and Φ(u, v, w) → 0 if, and only if,
|w|

u2+v2 → ∞.

0.3 Proof of Theorem 1.

Let A : Ω 7→ Isom(X) be such that A(ω) is the right translation by
(1, 1, f(ω)). We have

∫

d(x0, A(ω)x0)dm(ω) =

∫

(4 + f2)1/4 < ∞.
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Then, A(N)(ω) is the right translation by
(

N,N,
∑N−1

n=0 f(T nω)
)

. Set SN (ω) =
∑N−1

n=0 f(T nω). By (2), there is a number α such that, for m almost every
ω ∈ Ω,

lim
N

1

N

(

4N4 + SN (ω)2
)1/4

= α.

On the other hand, by (3) and Proposition 2, for m almost every ω ∈ Ω,
there is θ(ω), β(ω) such that:

−(cos θ(ω) + sin θ(ω))

(1 + β(ω)2)3/4
− β(ω)(cos θ(ω) − sin θ(ω))

(1 + β(ω)2)3/4
= −α.

The horofunction h∞ is impossible since, from the first equation, α ≥
√

2 >
0. The second equation yields that there are θ and β such that

α =
√

2

(

cos(θ − π/4)

(1 + β2)3/4
− β sin(θ − π/4)

(1 + β2)3/4

)

.

Set β = tan ϕ, for some ϕ ∈ (−π
2 , π

2 ). Then α =
√

2 cos ϕ cos(θ + ϕ − π
4 ).

Since α ≥
√

2, this is possible only if α =
√

2 (and then θ = π
4 , ϕ = 0).

Therefore, for m almost every ω ∈ Ω, limN
1
N

(

4N4 + SN (ω)2
)1/4

=
√

2
and the term 1

N4 S2
N does not contribute to the limit. This is the statement

of Theorem 1.
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