
Counting overlatti
es in automorphism groups of treesSeonhee LimO
tober 10, 2005Abstra
tWe give an upper bound for the number uΓ(n) of �overlatti
es� in the automor-phism group of a tree, 
ontaining a �xed latti
e Γ with index n. For an example of Γin the automorphism group of a 2p-regular tree whose quotient is a loop, we obtain alower bound of the asymptoti
 behavior as well.Nous donnons une borne supérieure pour le nombre uΓ(n) de �surréseaux� 
on-tenant un réseau �xé d'indi
e n dans le groupe d'automorphismes d'un arbre. Dansle 
as d'un arbre 2p-régulier T , et d'un réseau Γ tel que Γ\T soit une bou
le, nousobtenons aussi une minoration du 
omportement asymptotique.Introdu
tion. Given a 
onne
ted semisimple Lie group G, the Kazhdan-Margulis lemmasays that there exists a positive lower bound for the 
ovolume of 
o
ompa
t latti
es in G.This is no longer true when G is the automorphism group of a lo
ally �nite tree. Bassand Kulkarni (for 
o
ompa
t latti
es, see [BK℄) and Carbone and Rosenberg (for arbitrarylatti
es in uniform trees, see [CR℄) even 
onstru
ted examples of in
reasing sequen
es oflatti
es (Γi)i∈N in Aut(T ) whose 
ovolumes tend to 0 as i tends to ∞.If Γ is a 
o
ompa
t latti
e in the group Aut(T ) of automorphisms of a lo
ally �nite tree
T , there is only a �nite number uΓ(n) of �overlatti
es� Γ′ 
ontaining Γ with �xed index n([B℄). Thus a natural question, whi
h was raised by Bass and Lubotzky (see [BL℄), wouldbe to �nd the asymptoti
 behavior of uΓ(n) as n tends to ∞.In [G℄, Golds
hmidt proved that there are only 15 isomorphism 
lasses of (3,3)-amalgams.Thus for latti
es Γ in the automorphism group of a 3-regular tree T whose edge-indexedquotient is 3 3 , one has uΓ(n) = 0 for n large enough. Moreover it is 
onje
turedby Golds
hmidt and Sims that there is only a �nite number of (isomorphism 
lasses of)
(p, q)-almalgams, for any prime numbers p and q.In this paper, we give two results: an upper bound of uΓ(n) for any 
o
ompa
t latti
e,and a surprisingly big lower bound of uΓ(n) for a spe
i�
 latti
e Γ in the automorphismgroup of a 2p-regular tree. 1



Theorem 0.1. Let Γ be a 
o
ompa
t latti
e in Aut(T ). Then there are some positive
onstants C0 and C1 depending on Γ, su
h that
∀n ≥ 1, uΓ(n) ≤ C0n

C1 log2(n).Theorem 0.2. Let p be a prime number and let T be a 2p-regular tree. Let Γ be a 
o
ompa
tlatti
e in Aut(T ) su
h that the quotient graph of groups is a loop whose edge stabilizer istrivial and whose vertex stabilizer is a �nite group of order p.
Z/pZ {1}Let n = pk00 p

k1
1 · · · pkt

t be the prime de
omposition of n with p0 = p. Then there existpositive 
onstants c0, c1 su
h that lim sup
k0→∞

uΓ(n)

nc1 log n ≤ c0. For n = pk00 (k0 ≥ 3), we also have
uΓ(n) ≥ n

1
2
(k0−3).It is easy to see ([B℄) that

uΓ(n) ≤
∑

[Γ:Γ′′]|n!
Γ′′⊂Γ

|NAut(T )(Γ
′′)/Γ′′|,thus we 
ould hope to use the results of Lubotzky on subgroup growth (see for instan
e [L1℄,[L2℄). However, the estimations given in this way do not seem to be sharp enough. Thusour strategy 
onsists in using the 
orresponden
e between 
o
ompa
t latti
es and graphs ofgroups (the Bass-Serre theory, see se
tion 1) and redu
ing the problem to 
ounting 
ertainisomorphism 
lasses of 
overings of graphs of groups of index n (see se
tion 2).Together with the sharply 
ontrasting examples satisfying the Golds
hmidt-Sims 
on-je
ture, the examples in Theorem 0.2 are presently the only known behaviors for overlatti
e
ounting fun
tions.A
knowledgements: We thank Alex Lubotzky for introdu
ing the subje
t and the prob-lem as well as for helpful dis
ussions. We thank Gregory Margulis for his guidan
e andLászló Pyber and Gabe Rosenberg for explaining their works ([P℄, [CR℄) and [BK℄. Finally,we are grateful to Frédéri
 Paulin for his 
onstant help and en
ouragement.1 Overlatti
es and Coverings of graphs of groupsIn this se
tion, we brie�y re
all some ba
kground on group a
tions on trees and the theoryof graphs of groups, and we explain the 
orresponden
e between overlatti
es and 
overingsof graphs of groups. We refer the reader to [S℄, [B℄ and [BL℄ for details on the standardmaterial, gathered in se
tion 1.1. 2



Throughout the paper, we denote by T a lo
ally �nite tree, i.e., a tree having �nite va-len
e at ea
h vertex. We denote by Aut(T ) the group of automorphisms without inversionsof the tree T . A subgroup Γ of Aut(T ) is dis
rete if the stabilizer Γx is �nite for some,thus for every, vertex x of T . The 
ovolume of Γ is de�ned by
V ol (Γ\\T ) =

∑

x∈Γ\V T

1

|Γx|
.A dis
rete subgroup is a latti
e if its 
ovolume is �nite. In this 
ase, Aut(T ) is uni-modular, and the 
ovolume is equal (up to a 
onstant depending only on T ) to the volumeof Γ\Aut(T ) indu
ed by the Haar measure on the lo
ally 
ompa
t group Aut(T ) [BL℄. Alatti
e Γ is 
alled 
o
ompa
t if the quotient graph Γ\T is �nite. An overlatti
e of Γ is alatti
e of Aut(T ) 
ontaining Γ with �nite index.1.1. Co
ompa
t latti
es and �nite graphs of �nite groups By a graph of groups

(X,G•), we mean a 
onne
ted graph X, groups Gx and Ge = Ge assigned to ea
h vertex
x in V X and ea
h edge e in EX, together with inje
tions Ge → Gx for ea
h edge e withorigin o(e) = x. This inje
tive map will be denoted by αe, whatever the graph of groupis. The edge-indexed graph of the graph of groups (X,G•) is the graph X with index
i(e) = |Go(e)|/|Ge| asso
iated to ea
h edge e. Let us denote ad(g)(s) = gsg−1 from nowon.To every subgroup Γ of Aut(T ) is asso
iated a graph of groups, well-de�ned up toisomorphism of graph of groups (see de�nition below), whose graph X is the quotient graph
Γ\T . We will 
all it a quotient graph of groups of Γ and denote it by Γ\\T . A

ording to[B℄(se
tion 3), a 
onstru
tion of Γ\\T pro
eeds as follows. Let p : T → X be the 
anoni
alproje
tion.Choose subtrees R ⊂ S ⊂ T su
h that p|R : R→ X is bije
tive on verti
es, p|S : S → Xis bije
tive on edges, and for ea
h edge e in E(S), at least one of o(e), t(e) belongs to R.De�ne x̃ = p|−1

R (x) for ea
h x in V X and ẽ = p|−1
S (e) with ¯̃e = ˜̄e for ea
h e in EX. Forea
h e in EX, 
hoose an element ge in Γ su
h that geo(ẽ) = õ(e). We 
an and will always
hoose ge = 1 for all e with o(e) ∈ V R. Note that one of ge, gē is equal to 1 for any edge

e. Now let Gx be the stabilizer Γx̃ of x̃ in Γ for x in V X ∪ EX. The inje
tive map αe isde�ned as αe = ad(ge). Note that for e su
h that o(e) is a vertex of V R, ea
h αe is merelyan in
lusion.Conversely, for any graph of groups (X,G•), there exists a tree T and a group Γ a
tingon the tree T (unique up to equivariant tree isomorphism) su
h that (X,G•) is isomorphi
to Γ\\T . Let us 
all (T,Γ) a universal 
over of (X,G•) and Γ its fundamental group.Fix x0 ∈ V X. The fundamental group Γ of (X,G•) based at x0 is de�ned as follows.3



The path group Π(X,G•) is de�ned by
(

∗
x∈V X

Gx

)
∗ F (EX)/〈e−1 = e, eαe(g)e

−1 = αe(g) : g ∈ Ge〉,where F (EX) denotes the free group with basis EX. For x, x′ in V X, we denote by
π[x, x′] the subset of Π(X,G•) whi
h 
onsists of elements of the form g0e1g1e2 · · · gn−1engnwhere ei is an edge from vertex xi−1 to vertex xi, gi ∈ Gxi , x0 = x, and xn = x′. Thefundamental group of (X,G•) based at x0 is Γ = π1(X,G•, x0) = π[x0, x0], endowed withthe group stru
ture indu
ed by Π(X,G•).The universal 
over ˜(X,G•, x0) of (X,G•) based at x0 is de�ned as follows. It has asvertex set

V ( ˜(X,G•, x0)) =
∐

x∈V X

π[x0, x]/Gx,and there is an edge between two distin
t points [g] in π[x0, x]/Gx and [g′] in π[x0, x
′]/Gx′if and only if g−1g′ ∈ GxeGx′ where e is an edge in X from x to x′. The fundamentalgroup π1(X,G•, x0) = π[x0, x0] a
ts on ˜(X,G•, x0) by the natural left a
tion. The graph

˜(X,G•, x0) is a tree and moreover, for any other universal 
over (T,Γ) of (X,G•), thereis an isomorphism ψ between Γ and π1(X,G•, x0) and a ψ-equivariant graph isomorphismbetween T and ˜(X,G•, x0), see for example [S℄.A graph of groups is 
alled faithful (or e�e
tive) if there is no edge subgroup family
(Ne)e∈EX satisfying the following 
onditions:i) for ea
h e and e′ in EX su
h that o(e) = o(e′), the images of Ne and Ne′ 
oin
ide:

αe(Ne) = αe′(Ne′). Let us denote it by No(e).ii) For ea
h x in V X, Nx is a nontrivial normal subgroup in Gx.It is shown in [B℄ that the graph of groups (X,G•) is faithful if and only if its funda-mental group Γ is a subgroup of Aut(T ) for its universal 
over T , i.e., if and only if themap Γ −→ Aut(T ) is inje
tive. The fundamental group of a faithful �nite graph of �nitegroups is a 
o
ompa
t latti
e in the automorphism group of its universal 
overing tree and
onversely, a quotient graph of groups of a 
o
ompa
t latti
e in the automorphism groupof a lo
ally �nite tree is a faithful �nite graph of �nite groups.In [B℄, Bass de�nes a 
overing of graphs of groups in su
h a way that the indu
ed mapbetween the 
orresponding fundamental groups is a group monomorphism.De�nition 1.1. Let (X,G•) and (Y,H•) be two graphs of groups. We 
all a morphism ofgraphs of groups, whi
h we denote by φ• = (φ, φx, γx) : (X,G•) → (Y,H•), the followingdata(i) a graph morphism φ : X → Y , 4



(ii) group homomorphisms φx : Gx → Hφ(x) and φe : Ge → Hφ(e), for every vertex x andevery edge e of X,(iii) families of elements (γx)x∈V X ∈ π1(Y,H•, φ(x)) and (γe)e∈EX ∈ Π(Y,H•)su
h that for every edge e of X with origin x, we have γ−1
x γe ∈ Hφ(x) and the followingdiagram 
ommutes.

Ge

φe

��

αe // Gx

φx

��
Hφ(e)
ad(γ−1

x γe)◦αφ(e)// Hφ(x)The indu
ed homomorphism of path groups Φ = Φφ• : Π(X,G•) → Π(Y,H•), is de-�ned as follows on generators (see [B℄): Φ(g) = γxφx(g)γ
−1
x for g ∈ Gx and x ∈ V X,

Φ(e) = γeφ(e)γ−1
ē for e ∈ EX. The indu
ed homomorphism on path groups restri
ts to ahomomorphism π1(X,G•, x0) → π1(Y,H•, φ(x0)), whi
h we will denote again by Φ.The indu
ed homomorphism Φ = Φφ• : π1(X,G•, x0) → π1(Y,H•, φ(x0)) gives a Φxo-equivariant graph isomorphism φ̃ : ˜(X,G•, xo) → ˜(Y,H•, φ(x0)) de�ned by

[g] ∈ π[x0, x]/Gx 7→ [Φ(g)γx] ∈ π[φ(x0), φ(x)]/Hφ(x).A morphism φ• = (φ, φx, γx)x∈V X∪EX of graphs of groups is an isomorphism of graphsof groups if φ is a graph isomorphism and φx are all group isomorphisms. In this 
ase,
φ−1
• = (φ−1, φ′y, γ

′
y) where φ′y = φφ−1(y) and γ′y = Φ−1(γφ−1(y))

−1 for y ∈ V Y ∪ EY .De�nition 1.2. A morphism of graphs of groups φ• is furthermore 
alled a 
overing if(a) the maps φe and φx are inje
tive for all x and e,(b) for every edge f of Y with origin φ(x),where x is in V X, the well-de�ned map
Φx/f :

∐

e∈φ−1(f),o(e)=x

Gx/αe(Ge) −→ Hφ(x)/αf (Hf )

[g]e 7−→ [φx(g)γ
−1
x γe]fis bije
tive.By the 
ondition (b) in De�nition 1.2, we have ∑

e∈φ−1(f),o(e)=x

|Gx|
|Ge|

=
|Hφ(x)|

|Hf |
for everyedge f of Y with origin φ(x). Summing over all verti
es x su
h that φ(x) = y, it followsthat the value of

n :=
∑

x∈φ−1(y)

|Hy|

|Gx|
=

∑

e∈φ−1(f)

|Hf |

|Ge|does not depend on verti
es and edges, sin
e the graph Y is 
onne
ted. Note that n is aninteger sin
e φx(Gx) is a subgroup of Hy for ea
h x su
h that φ(x) = y. A 
overing graphof groups with the above n is said to be n-sheeted.5



Note also that by the 
ondition (b), a 
overing of graphs of groups indu
es a 
overingof the 
orresponding edge-indexed graphs. Re
all that a 
overing φ : (X, i) → (Y, i) ofedge-indexed graphs is a graph morphism φ su
h that ∑
e∈φ−1(e′),o(e)=x i(e) = i(e′).Theorem 1.3 ([B℄, Prop. 2.7). The morphism φ• is a 
overing if and only if Φ :

π1(X,G•, x0) → π1(Y,H•, φ(x0)) is inje
tive and φ̃ : ˜(X,G•, x0) → ˜(Y,H•, φ(x0)) is anisomorphism.1.2. Counting overlatti
es Let Γ be a 
o
ompa
t latti
e in Aut(T ). Set
U(n) = UΓ(n) = {Γ′ : Γ ⊂ Γ′ ⊂ Aut(T ), [Γ′ : Γ] = n}and let u(n) = uΓ(n) = |U(n)| be the number of overlatti
es of Γ of index n. It is shownin [BK℄ that u(n) is �nite. We are interested in the asymptoti
 behavior of u(n). For thatpurpose, we will show in this se
tion that there is a bije
tion between overlatti
es of Γ andisomorphisms 
lasses of 
overings of graphs of groups by the quotient graph of groups of

Γ, in the following sense.De�nition 1.4. Let φ• = (φ, φx, γx) : (X,G•) → (Y,H•) and ψ• = (ψ,ψx, γ
′
x) : (X,G•) →

(Y ′,H ′
•) be two 
overings of graphs of groups. An isomorphism between them is an iso-morphism of graphs of groups θ• = (θ, θy, ρy) : (Y,H•) → (Y ′,H ′

•) su
h that θ ◦φ = ψ as amap of graphs and the 
orresponding indu
ed diagram of isomorphisms between universal
overs
( ˜X,G•, x0)

φ̃ //

ψ̃

''OOOOOOOOOOO
( ˜Y,H•, φ(x0))

θ̃
��

˜(Y ′,H ′, ψ(x0))
ommutes.It will also be useful to 
onsider a more restri
ted notion of isomorphism of 
overings.De�nition 1.5. Let φ• = (φ, φx, γx) : (X,G•) → (Y,H•) and ψ• = (ψ,ψx, γ
′
x) : (X,G•) →

(Y ′,H ′
•) be two 
overings of graphs of groups. A strong isomorphism between them 
onsistsof a pair {θ• = (θ, θy, ρy) : (Y,H•) → (Y ′,H ′

•), (ζx)x∈V X∪EX} where θ• is an isomorphismof graphs of groups (Y,H•) → (Y ′,H ′
•) and (ζx) ∈ H ′

ψ(x) are su
h thata) θ ◦ φ = ψ as a map of graphs,b) For any x ∈ V X ∪EX, we have ψx = ad(ζ−1
x )θφ(x) ◦ φx as maps Gx → H ′

ψ(x),
) γ′x = Θ(γx)ρφ(x)ζx for any x ∈ V X ∪ EX.Lemma 1.6. Any two strongly isomorphi
 
overings φ• = (φ, φx, γx) : (X,G•) → (Y,H•)and ψ• = (ψ,ψx, γ
′
x) : (X,G•) → (Y ′,H ′

•) are isomorphi
.6



Proof. We have a triangle of morphisms of path groups
Π(X,G•)

Φ //

Ψ

&&NNNNNNNNNNN
Π(Y,H•)

Θ
��

Π(Y ′,H ′
•)We 
laim that this triangle 
ommutes. It is enough to 
he
k it on generators: let x ∈ V Xand s ∈ Gx. We have Φ(s) = γxφx(s)γx

−1, Ψ(s) = γ′xψx(s)γ
′
x
−1 and on the other hand

Θ ◦ Φ(s) =Θ(γx)Θ(φx(s))Θ(γx)
−1

=Θ(γx)ρφ(x)θφ(x)(φx(s))ρ
−1
φ(x)Θ(γx)

−1

=Θ(γx)ρφ(x)ζxψx(s)ζ
−1
x ρ−1

φ(x)Θ(γx)
−1

(1)(using property (b) of strong isomorphism of 
overings), and this is equal to
= γ′xψx(s)γ

′
x
−1

= Ψ(s)by property (
) and the de�nition of Ψ. Similarly, for e ∈ EX,
Θ ◦ Φ(e) =Θ(γe)Θ(φ(e))Θ(γē)

−1

=Θ(γe)ρφ(e)θ(φ(e))ρ−1
φ(ē)Θ(γē)

−1

=Θ(γe)ρφ(e)ψ(e)ρ−1
φ(ē)

Θ(γe)
−1 = γ′eψ(e)γ′ē

−1
.

(2)The last equality 
omes from the fa
t that sin
e ζe ∈ H ′
ψ(e), by de�nition of the fundamentalgroup,

ψ(e) = ζeψ(e)ζ−1
ē .Thus we have a 
ommuting triangle of morphisms of fundamental groups

π1(X,G•, x0)
Φ //

Ψ

))RRRRRRRRRRRRR
π1(Y,H, φ(x0))

Θ
��

π1(Y
′,H ′, ψ(x0))(where Θ is an isomorphism), and a triangle of isomorphisms of trees, whi
h is equivariantwith respe
t to the above triangle of groups:

( ˜X,G•, x0)
φ̃ //

ψ̃

''OOOOOOOOOOOO
( ˜Y,H•, φ(x0))

θ̃
��

˜(Y ′,H ′, ψ(x0)).7



We 
laim that this triangle is also 
ommutative. Indeed, by de�nition, if g ∈ π[x0, x]/Gx ⊂

( ˜X,G•, x0) then
θ̃(φ̃(g)) = θ̃(Φ(g)γx) = Θ(Φ(g))Θ(γx)ρφ(x)

= Ψ(g)γ′xζ
−1
x = Ψ(g)γ′x = ψ̃(g)where we used relation (
) together with the fa
t that ζx ∈ H ′

ψ(x) (observe that Ψ(g)γ′x ∈

π[ψ(x0), ψ(x)]/H ′
ψ(x)). The Lemma is proved.For a given overlatti
e Γ′ of Γ, we 
an 
onstru
t a 
overing mΓ′ of graphs of groups asfollows. Let Y = Γ′\T and p′ : T → Y be the 
anoni
al proje
tion.De�ne subtrees R′ and S′ of R and S, respe
tively, in the following way. For ea
hvertex y of Y , 
hoose one vertex from ea
h set {p′−1(y)} ∩V R and 
all it ỹ. Let R′ be thesubgraph of R with verti
es {ỹ : y ∈ Y }. Sin
e R is a tree, we 
an 
hoose verti
es ỹ sothat R′ is 
onne
ted. Let S′ be the maximal subtree of S 
ontaining R′ su
h that p′|S′ isinje
tive on the edges. For e ∈ EY , 
hoose elements g′e ∈ Γ′ su
h that g′eo(ẽ) = õ(e). Thegraph of groups (Y,H•) is de�ned with respe
t to R′, S′ and g′'s, as (X,G•) is de�ned inse
tion 1.1.Now the 
overing of graphs of groups, whi
h will be denoted by m = mΓ′

: (X,G•) →

(Y,H•), is de�ned as follows. For the graph morphism m : X → Y , take the naturalproje
tion π. For the group morphisms mx : Gx → Hm(x), take an element σx in Γ′ whi
hsends x̃ to p̃(x). We 
an 
hoose σx = 1 if x̃ ∈ V R′ ∪ ES′. Note that p(x) is a vertex of
Y , thus p̃(x) ∈ R′ whereas x is a vertex of X, thus x̃ ∈ R. Let mx = ad(σx) ◦ ι be theinje
tion followed by the 
onjugation (g 7→ σxgσ

−1
x ). Sin
e Gx stabilizes x̃ ∈ V T ∪ ET ,the group σxGxσ

−1
x stabilizes p̃(x) ∈ V T ∪ ET , thus it is a subgroup of Hp(x) = Γ′

gp(x)
,for x ∈ V X ∪ EX. For the elements γx, γe in (iii) of De�nition 1.1, take γx = σ−1

x and
γe = geσ

−1
e g′−1

m(e). It follows that
ad(γ−1

x γe) ◦ αm(e) ◦me = ad(γ−1
x γe) ◦ ad(g

′
m(e)) ◦ ad(σe)

= ad(σxgeσ
−1
e g′−1

m(e)) ◦ ad(g
′
m(e)) ◦ ad(σe)

= ad(σxge) = ad(σx) ◦ ad(ge) = mx ◦ αe.Sin
e γx's are the elements of Γ′, the map mΓ′ is a morphism of graphs of groups. Themaps mx are 
learly inje
tive, thus it remains to show that the map Φx/f (in De�nition1.2. (b)) is bije
tive. Suppose that for e, e′ ∈ EX and g, g′ ∈ Gx, we have [φx(g)γ
−1
x γe]f =

[φx(g
′)γ−1

x γe′ ]f in Hφ(x)/αfHf . In other words,
γ−1
e γxφx(g

−1g′)γ−1
x γe′ ∈ αf (Hf )

gm(e)σeg
−1
e σ−1

x σxg
−1g′σ−1σge′σ

−1
e′ g

′
m(e)

−1
∈ ad(g′f )(Hf )

σeg
−1
e g−1g′ge′σ

−1
e′ ∈ Hf = StabΓ′(f̃)8



Sin
e σe sends ẽ to f̃ and σe′ sends ẽ′ to f̃ , the element g−1
e g−1g′ge′ of Γ should send ẽ′to ẽ. We 
on
lude that e = e′ sin
e no element of Γ sends ẽ to ẽ′ where e′ 6= e in X ≃ Γ\T .We 
on
lude that e = e′ and g−1g′ ∈ Ge, i.e. [g]e = [g′]e′ . Therefore mΓ′ is indeed a
overing of graphs of groups.Proposition 1.7. Let Γ be a 
o
ompa
t latti
e of Aut(T ) and (X,G•) be its quotient graphof groups. The map Γ′ 7→ mΓ′ indu
es a bije
tion m between the set of overlatti
es of Γ ofindex n and the set of isomorphism 
lasses of the n-sheeted 
overings of faithful graphs ofgroups by (X,G•).The following lemma shows that the map m : Γ′ 7→ mΓ′ is well-de�ned.Lemma 1.8. Let Γ be a latti
e in T , and let Γ′ ⊃ Γ be an overlatti
e. Fix (R,S, ge) givingrise to a graph of groups stru
ture (X,G•) on Γ\T (as in se
tion 1.1.). Let (R′, S′, g′e)(resp. (R′′, S′′, g′′e )) be a data giving rise to a graph of groups stru
ture (Y,H•) (resp.

(Y ′,H ′
•)) on Γ′\T , and let (σ′x)x∈V X∪EX (resp. (σ′′x)x∈V X∪EX) be a data giving rise to a
overing φ• = (φ, φx, γ

′
x) : (X,G•) → (Y,H•) (resp. ψ• = (ψ,ψx, γ

′′
x) : (X,G•) → (Y ′,H ′

•)). Then the two 
overings φ• and ψ• are strongly isomorphi
.Proof. Re
all that by de�nition, we have σ′x : x̃ 7→ φ̃(x) and σ′′x : x̃ 7→ ψ̃(x), where σ′x and
σ′′x are in Γ′. Re
all also that γ′x = σ′x

−1, γ′′x = σ′′x
−1 for x ∈ V X and γ′e = geσ

′
e
−1g′φ(e)

−1,
γ′′e = geσ

′′
e
−1g′′ψ(e)

−1 for e ∈ EX. Now we want to 
onstru
t a strong isomorphism {θ• :

(Y,H•) → (Y ′,H ′
•), ζx} of 
overings of graphs of groups. First noti
e that there is a
anoni
al bije
tion θ : Y ≃ Γ′\T ≃ Y ′. It lifts to a bije
tion θ̃ : R′ → R′′ and it extends toa unique bije
tion θ̃ : S′ → S′′. Let us 
hoose arbitrary elements ξy ∈ Γ′ for y ∈ V Y ∪EYsu
h that ξy(ỹ) = θ̃(y) and de�ne maps

θy : Hy = Γ′
ỹ → Γ′

gθ(y) = H ′
θ(y), h 7→ ξyhξ

−1
y .We have a morphism of graphs of groups θ• = (θ, θy, ρy) : (Y,H•) → (Y ′,H ′

•) by setting
ρy = ξ−1

y for y ∈ V Y and ρe = g′e
−1ξe

−1g′′θ(e) for e ∈ EY . It is 
lear by 
onstru
tion thatthis is an isomorphism of graphs of groups (all maps are isomorphisms of groups). Notethat there is a 
ommutative diagram of isomorphisms
π1(Y,H•, y0)

iY //

Θ
��

Γ′

Id

��
π1(Y

′,H ′
•, θ(y0))

iY ′ // Γ′where we have denoted by iY , i′Y the isomorphisms π1(Y,H•, y0) ≃ Γ′, and π1(Y
′,H ′

•, θ(y0)) ≃

Γ′, respe
tively.Finally, put ζx = ξxσ
′
xσ

′′
x
−1. For any vertex x, there holds

Ad(ζ−1
x )θφ(x)φx = ad((σ′′x)(σ

′
x)

−1ξ−1
φ(x)) ◦ ad(ξφ(x)) ◦ ad(σ

′
x)

= ad((σ′′x)) = ψx9



as desired. A similar 
omputation holds for ψe : Ge → H ′
ψ(e) when e ∈ EX. This proves
ondition (b) in the de�nition of strong isomorphism of 
overings. Condition (
) followsfrom the very de�nition of ζx, σy, γ′x and γ′′x .Now let us de�ne the inverse map φ• 7→ Γφ ofm as follows. Set ΓY := π1(Y,H•, φ(x0)) ⊂

Aut(( ˜Y,H•, φ(x0))). We de�ne an embedding iφ : ΓY → Aut(( ˜X,G•, x0)) as follows :
iφ(u) · v = φ̃−1(u · φ̃(v)) for u ∈ ΓY and v ∈ V ( ˜X,G•, x0) ∪ E( ˜X,G•, x0).Let us denote by Γφ ⊂ Aut(( ˜X,G•, x0)) the image of iφ. The following lemma shows thatthis map is well-de�ned.Lemma 1.9. If φ• : (X,G•) → (Y,H•) and ψ• : (X,G•) → (Y ′,H ′

•) are isomorphi

overings of graphs of groups, then the 
orresponding subgroups Γφ ⊂ Aut(( ˜X,G•, x0)) and
Γψ ⊂ Aut(( ˜X,G•, x0)) 
oin
ide.Proof. By de�nition of isomorphi
 
overings, we have a triangle of isomorphisms of trees

( ˜X,G•, x0)
φ̃ //

ψ̃

''OOOOOOOOOOO
( ˜Y,H•, φ(x0))

θ̃
��

( ˜Y ′,H ′, ψ(x0))whi
h is equivariant with respe
t to the a
tion of the 
orresponding fundamental groups.De�ne ΓY ⊂ Aut(( ˜Y,H•, φ(x0))), an embedding iφ : ΓY → Aut(( ˜X,G•, x0)) and put
Γφ = Im(iφ) ⊂ Aut(( ˜X,G•, x0)) as above, and de�ne Γψ in the same fashion. We 
laimthat Γφ = Γψ. Indeed, if u ∈ ΓY then Θ(u) ∈ ΓY ′ and for v ∈ ( ˜X,G•, x0) we have

iφ(u) · v = φ̃−1(u · φ̃(v)) = φ̃−1(θ̃−1(Θ(u) · θ̃(φ̃(v)))

= ψ̃−1(Θ(u) · ψ̃(v)) = iψ(Θ(u)) · v.We dedu
e that Γφ ⊂ Γψ. Repla
ing θ• by its inverse and ex
hanging the roles of ψ• and
φ• we obtain the reverse in
lusion Γψ ⊂ Γφ. Thus Γψ = Γφ as desired.Proof of Proposition 1.7. It remains to show that the map φ• 7→ Γφ is the inversemap of m. To see this, let Γ′ ⊃ Γ be an overlatti
e of Γ. The quotient graph of groups
Γ\\T = (X,G•) is formed relative to some datum (R,S, gx); let us similarly 
hoose datum
(R′, S′, g′x) indu
ing a quotient graph of groups (Y,H•) = Γ′\\T . Re
all that by [S℄, �5.4,there are, for any x0 ∈ V X and y0 ∈ V Y , 
anoni
al isomorphisms Γ ≃ π1(X,G•, x0),
T ≃ ( ˜X,G•, x0) and Γ′ ≃ π1(Y,H•, y0), T ≃ ( ˜Y,H•, y0). Choosing furthermore someelements θx as in the proof of Lemma 1.8 we get a 
overing (see [B℄, Se
tion 4.2)

mΓ′

: (X,G•) → (Y,H•).10



>From [B℄, Proposition 4.2, the following diagrams 
ommute :
T

��

id // T

��

( ˜X,G•, x0)
gmΓ′

// ( ˜Y,H•, y0)

Γ

��

// Γ′

��
π1(X,G•, x0)

MΓ′

// π1(Y,H•, y0)where we denote MΓ′ the morphism of path groups indu
ed by the 
overing mΓ′ .In parti
ular, the pullba
k of π1(Y,H•, y0) via the 
omposition of isomorphisms T ≃

( ˜X,G•, x0)
gmΓ′

→ ( ˜Y,H•, y0) is equal to Γ′. This shows that φ• 7→ Γφ is a left inverse of
Γ′ 7→ mΓ′ .To prove the other dire
tion, let φ• : (X,G•) → (Y,H•) be a 
overing of (X,G•)and set Γ′ = Γφ ⊂ Aut(( ˜X,G•, x0)). Now let (Y ′,H ′

•) be the quotient graph of groupsasso
iated as in Se
tion 1.1. to the a
tion of Γ′ on ( ˜X,G•, x0), relative to some 
hoi
es, andlet ψ• : (X,G•) → (Y ′,H ′) be a 
overing 
onstru
ted as in Se
tion 1.2. By 
onstru
tionthere is an isomorphism ψ̃ : ( ˜X,G•, x0)
∼
→ ( ˜Y ′,H ′

•, ψ(x0)), equivariant with respe
t to anembedding Ψ : π1(X,G•, x0) →֒ π1(Y
′,H ′

•, ψ(x0)), and by the �rst part of the proof ofProposition 1.5., we have Γ′ = iψ(π1(Y
′,H ′

•, ψ(x0))). Thus, 
omposing ψ̃−1 with φ̃ and
Ψ−1 with Φ yields an isomorphism of trees θ̃ : ( ˜Y ′,H ′

•, ψ(x0))
∼
→ ( ˜Y,H•, φ(x0)) whi
h isequivariant with respe
t to an isomorphism Θ : π1(Y

′,H ′
•, ψ(x0))

∼
→ π1(Y,H•, φ(x0)). Atthis point, we use the following Lemma:Lemma 1.10 ([B℄, Prop. 4.4, Cor. 4.5.). Let (Z,K•) and (W,J•) be two graphs of groups.For any isomorphism of trees σ̃ : ( ˜Z,K•, z0)

∼
→ ( ˜W,J•, w0) whi
h is equvariant with respe
tto an isomorphism of fundamental goups Σ : π1(Z,K•, z0)

∼
→ π1(W,J•, w0) there existsa (unique) isomorphism of graphs of groups ω•(Z,K•) → (W,J•) su
h that Σ̃ = ω̃ and

Σ = Ω.Using the above Lemma, we 
on
lude that there exists an isomorphism θ• : (Y ′,H ′
•) →

(Y,H•) making the diagram
( ˜X,G•, x0)

φ̃ //

ψ̃

''OOOOOOOOOOO
( ˜Y,H•, φ(x0))

θ̃
��

˜(Y ′,H ′, ψ(x0))
ommute. Hen
e the 
overings φ• and ψ• are indeed isomorphi
 as desired.11



Finally, we 
he
k that the above bije
tion sends an overlatti
e of index n to an n-sheeted 
overing. Let Γ′ be an overlatti
e of Γ of index n. We 
laim that mΓ is an
n′-sheeted 
overing with n = n′. Indeed, we have

n = [Γ′ : Γ] =
vol(Γ\\T )

vol(Γ′\\T )
=

∑
x∈V X

1
|Gx|

∑
y∈V Y

1
|Hy|

=

∑
y∈V Y

∑
x∈φ−1(y)

1
|Gx|

∑
y∈V Y

1
|Hy|

=

∑
y∈V Y

n′

|Gy|

∑
y∈V Y

1
|Hy|

= n′.Note that the �rst equality 
omes from the fa
t that T is a left Γ′-set (and Γ-set) with�nite stabilizers (see [BL℄, page 16).It follows from the above proposition that to �nd u(n), it su�
es to 
ount the numberof isomorphism 
lasses of 
overings of faithful graphs of groups by (X,G•).2 Main results2.1 Let G be a group of order n and let n =
∏t
i=1 p

ki
i be the prime de
omposition of

n. Let µ = µ(n) be the maximum of ki. We denote by d(G) the minimal 
ardinality of agenerating set of G and by f(n) the number of isomorphism 
lasses of groups of order n.In [P℄, Pyber showed that the number of isomorphism 
lasses of groups of order n witha given Sylow set, namely the set of Sylow pi-subgroups de�ned up to 
onjuga
y, is atmost n75µ+16. Together with the result of Sims ([Si℄), namely f(pk) ≤ p
2
27
k3+ 1

2
k

8
3 , we getthe following upper bound for f(n):

f(n) ≤
t∏

i=1

p
2
27
k3

i + 1
2
k
8/3
i

i n75µ+16

≤ n
2
27
µ2+ 1

2
µ5/3+75µ+16Let g(n) = 2

27µ
2(n) + 1

2µ
5/3(n) + 75µ(n) + 16 so that f(n) ≤ ng(n).On the other hand, Lu

hini and Guralni
k showed that if every Sylow subgroup ofG 
an be generated by d elements, then d(G) ≤ d + 1 ([Lu
℄, [Gu℄). Combining with thebasi
 fa
t that d(H) ≤ n for any group H of order pn ([Si℄), we dedu
e that

d(G) ≤ µ+ 1.Using these results, we obtain the following upper-bound for u(n).Theorem 2.1. Let Γ be a 
o
ompa
t latti
e of Aut(T ). Then there are some positive
onstants C0 and C1 depending only on Γ, su
h that
∀n > 1, uΓ(n) ≤ C0n

C1log2(n).12



Lemma 2.2. Any 
overing φ• = (φ, φx, γx) : (X,G•) → (Y,H•) is strongly isomorphi
 toa 
overing φ′• = (φ′, φ′x, γ
′
x) : (X,G•) → (Y ′,H ′

•) where γ′x ∈ Π(Y ′,H ′
•) is a produ
t of atmost 12 × diameter(X) generators hy ∈ H ′

y and e ∈ EY ′.Proof. Fix x0 ∈ X. Asso
iated to φ• is a latti
e Γ′ ⊂ Aut(( ˜X,G•, x0)) 
ontaining
π1(X,G•, x0). From (X,G•, x0) we 
onstru
t (R,S, ge) su
h that the quotient of ( ˜X,G•, x0)by π1(X,G•, x0) is exa
tly (X,G•). Namely, �rst �x a maximal tree τ inX. We may 
hoose
R = {e1 · · · en | e1 · · · en is a path from x0 inτ}, S = {e1 · · · enen+1 | e1 · · · en is a path in τ}and ge = e′1 · · · e

′
len+1

−1 · · · e1
−1 where e′1 · · · e′l is a path in τ from x0 to t(e), and where

e is the edge 
onne
ting e1 · · · en to e1 · · · en+1. In parti
ular, ge is a produ
t of at mosttwi
e the diameter of X number of generators of Π(X,G•). Now we 
hoose R′, S′ subsetsof R,S in su
h a way that the restri
tion of the proje
tion ( ˜X,G•, x0) → Γ′\( ˜X,G•, x0) on
R′ is bije
tive for verti
es (resp. the restri
tion of S′ is bije
tive on edges). We also 
hoose
g′e in a similar fashion as above, hen
e g′e is also a produ
t of at most twi
e the diameterof X number of generators of Π(X,G•). From this data, we 
onstru
t a graph of groups
(Y ′,H ′

•) as usual, and we have a 
anoni
al inje
tion Γ′ ⊂ Π(Y ′,H ′
•). For x ∈ X there existsa unique lift x̃ ∈ R and a unique x̃′ ∈ R′ in the Γ′−orbit of x̃. Choose θx ∈ Γ′ ⊂ Π(X,G•)su
h that θx(x̃) = x̃′ and su
h that θx is a produ
t of at most l(x̃, x̃0)+ l(x̃0, x̃′) generatorsof Π(X,G•): here l(a, b) is the distan
e in the tree R between a and b. This is possi-ble sin
e we may �rst 
hoose a path in the path group Π(X,G•) from x̃ to x̃0 of length

≤ l(x̃, x̃0) and then a path from x̃0 to x̃′ of length ≤ l(x̃0, x̃′). Observe that sin
e we 
hose
R′ ⊂ R, we have l(ỹ, w̃) ≤ diameter(X) for any verti
es w, y ∈ V X. We do the samething for edges in S, to de�ne θe ∈ Π1(X,G•) su
h that θe(ẽ) = ẽ′ and θe is a produ
tof at most 2 × diameter(X) generators of Π(X,G•). Then we 
an 
onstru
t from θx and
θe's a 
overing φ′• : (X,G•) → (Y ′,H ′

•), with γ′x = θ−1
x and γ′e = geθ

−1
e g−1

e′ , whi
h areboth produ
ts of at most 6×diameter(X) generators of Π(X,G•). Observe that a word oflength l in generators of Π(X,G•) belonging to Γ′ is also expressible as a word of length lin generators of Π(Y ′,H ′
•). Finally, by the proposition on bije
tion of isomorphism 
lassesof 
overings and overlatti
es, φ• : (X,G•) → (Y,H•) is isomorphi
 to φ′•.Proof of Theorem 2.1. Let us �x a quotient graph of groups (X,G•) of Γ as in se
tion 1.1.There exist only �nitely many 
overings of edge-indexed graphs by the edge-indexed graphsunderlying (X,G•), thus it is enough to show the assertion for the number of overlatti
eswith a �xed edge-indexed graph. Thus we want to 
ount n-sheeted 
overing graphs ofgroups φ• : (X,G•) → (Y,H•) su
h that Y is a �xed subgraph (with �xed indi
es) of Xand φ : X → Y the natural proje
tion, and that the edge group He is a subgroup of Ho(e).Let cx = |Gx| for any x in V X ∪ EX and let cy = (

∑
x∈φ−1(y)

c−1
x )−1. By the de�nitionof n-sheeted 
overing, the 
ardinality |Hy| = ncy, for any y in V Y ∪EY .Now we 
laim that for any group H of order n, there are at most (m!)µ(n)+1 subgroups13



of index m. For to any transitive H-a
tion on the set {1, · · · ,m}, we 
an asso
iate asubgroup of H with index m, namely the stabilizer of 1. This map {ρ : H → Sm} −→

{H ′ ⊂ H|[H : H ′] = m} is surje
tive sin
e for any subgroup H ′ of H with index m, thea
tion of H on the 
osets H/H ′ gives (among many) an a
tion on {1, · · · ,m}, where welet 1 stand for the trivial 
oset H ′. Again by the theorem of Lu

ini and Guralni
k, thereare at most (m!)µ(n)+1 transitive H-a
tion on the set {1, · · · ,m}, as 
laimed.There are at most ∏
y∈V Y (cyn)g(cyn) isomorphism 
lasses of Hy's. By the above 
laim,the number of subgroups αf (Hf ) of Hy is at most ((cy/cf )!)

µ(cyn)+1. There are at most∏
f∈EY (cfn)µ(cfn)+1 isomorphisms ϕ : αfHf → αf̄Hf and at most ∏

x∈V X(cφ(x)n)µ(cx)+1inje
tions φx : Gx → Hφ(x). By Lemma 2.2, there are at most (maxy|Hy|)
12K 
hoi
es forea
h γx or γe, where K = diameter of X. Hen
e

#{(γx, γe)} ≤
∏

x∈V X

maxy∈V Y (cyn)12K ×
∏

e∈EX

maxy∈V Y (cyn)12Kwhi
h is bounded by (Mn)(12K)(|V X|+|EX|).Note that by the 
ondition of inje
tivity and the 
ommutativity of the diagram,
Ge

φe

��

αe // Gx

φx

��
Hφ(e)

ad(γ−1
x γe)◦αφ(e)// Hφ(x)the group morphism φe : Ge → Hφ(e) is 
ompletely determined by the morphism

φx : Gx → Hx.Let M = max
y∈V Y ∪EY

cy, µ = µ(Mn). Let c0 = |V Y |, c1 = |EY |, c2 = max
{f∈EY }

{
( co(f)

cf

)
!},let c3 =

∑
x∈V X

µ(cx) + 1. Combining all the estimates above, we get the following upperbound for u(n),
uΓ(n) ≤

∏

y∈V Y

(cyn)g(cyn)
∏

x∈V X

(cφ(x)n)µ(cx)+1
∏

f∈EY

(cfn)µ(cfn)+1

∏

f∈EY

((co(e)/ce)!)
µco(e)n+1

· ((Mn)12K(|V X|+|EX|))

≤
∏

y∈V Y

(Mn)g(Mn)
∏

x∈V X

(Mn)µ(cx)+1
∏

f∈EY

(Mn)µ(Mn)+1

∏

f∈EY

(c2)
µMn+1 · ((Mn)12K(|V X|+|EX|))

≤(Mn)c0g(Mn)+c3+c1(µ(Mn)+1)(c2)
c1(µ(Mn)+1)(Mn12K(|V X|+|EX|))

≤(Mn)
2
27
c0µ2+

c0
2
µ5/3+(75c0+2c1)µ+(16c0+2c1+c3)c

c1(µ+1)
2 ((Mn)12K(|V X|+|EX|))

≤(C0n)C1µ2
≤ (C0n)C

′

1(logn)2 14



where C0 = max{M, c2}, C1 = c0
(

2
27 + 1

2 + 75 + 16 + 2
)

+ 6c1 + c3 + 12K(|V X| + |EX|)and C ′
1 = C1

(log 2)2
.2.2. Let p be a prime number. >From now on, we assume that T is a 2p-regular treeand that Γ is a 
o
ompa
t latti
e in Aut(T ) with a quotient graph of groups given by

Z/pZ {1}The aim of this se
tion is to give, in this situation, a smaller upper bound on uΓ(n)than the previous one, as well as a lower bound.Theorem 2.3. Let n = pk00 p
k1
1 · · · pkt

t be the prime de
omposition of n with p0 = p. Thenthere exist positive 
onstants c0, c1 su
h that lim sup
k0→∞

uΓ(n)

nc1 log n ≤ c0. For n = pk00 (k0 ≥ 3), wealso have uΓ(n) ≥ n
1
2
(k−3).In the following lemma, we denote by [g, h] the 
ommutator ghg−1h−1 in G.Lemma 2.4. Let A = (as,t)1≤s,t≤k−1 be a lower triangular matrix with 
oe�
ients in

0, · · · , p − 1 and G = G(A) be a group de�ned by the generators ḡ0, ḡ1, · · · , ḡk and thefollowing relators
ḡpi = 1, i = 0, 1, · · · , k

[ḡi, ḡi+1] = 1, i = 0, 1, · · · , k − 1

[ḡi, ḡi+2] = ḡ
a1,1

i+1 , i = 0, 1, · · · , k − 2 (**)
[ḡi, ḡi+3] = ḡ

a2,1

i+1 ḡ
a2,2

i+2 , i = 0, 1, · · · , k − 3...
[ḡi, ḡi+k] = ḡ

ak−1,1

i+1 ḡ
ak−1,2

i+2 · · · ḡ
ak−1,k−1

i+k−1 , i = 0Then any element of G 
an be written as ḡi00 · · · ḡikk where 0 ≤ ij < p.Proof. We pro
eed by indu
tion on k ≥ 1. It is 
lear for the 
ase k = 1 sin
e thegenerators ḡ0 and ḡ1 
ommute. Now suppose that the assertion is true for all k ≤ m− 1.For k = m, 
onsider the subgroup G1 generated by ḡ0, ḡ1, · · · , ḡm−1. It is a quotientof G(A′) with A′ = (as,t)1≤s,t≤k−2, by indu
tion hypothesis, any element of G1 
an bewritten as ḡi00 · · · ḡ
im−1

m−1 where 0 ≤ ij < p. Now we only need to 
onsider the elements of
G − G1. By an easy indu
tion, it su�
es to 
onsider the elements ḡmḡi = [ḡi, ḡm]−1ḡiḡmfor i = 0, 1, · · · ,m− 1. Sin
e [ḡi, ḡm] ∈ [G,G] ⊂ G1, the element [ḡi, ḡm]−1ḡi is an elementin G1, thus 
an be expressed as ḡi00 ḡi11 · · · ḡ

im−1

m−1 for some ij in {0, · · · , p− 1}. Therefore weget ḡmḡi = ḡi00 · · · ḡ
im−1

m−1 ḡm. 15



Lemma 2.5. Let G be a group of order pk+1(k ≥ 1), G1 and G2 be two isomorphi
subgroups of index p in G and ϕ be an isomorphim from G1 to G2. Suppose that G1
ontains no subgroup N whi
h is normal in G and ϕ-invariant. Then(a) there exist elements gi in G for i = 0, · · · , k, su
h that ϕ(gi) = gi+1 for i = 0, · · · , k−

1, G = 〈g0, · · · , gk〉 and G1 = 〈g0, · · · , gk−1〉,(b) There exists a lower triangular matrise A with 
oe�
ients in 0, · · · , p − 1 su
h thatthe map ψ : G(A) → G de�ned by ḡi 7→ gi is well-de�ned and is an isomorphism.Proof. We pro
eed by indu
tion on k ≥ 1, using the fa
t that any maximal proper subgroupof a p-group is normal, see for instan
e [Su℄.We �rst 
onsider the 
ase k = 1, that is when G has order p2. Sin
e G1 and G2are maximal, they are normal. Thus they are not equal by the normality assumptionand G = 〈G1, G2〉. Let g0 be an element in G1 − G2 and set g1 = ϕ(g0). Then 
learly
G1 = 〈g0〉, G2 = 〈g1〉 and G = 〈g0, g1〉. Moreover, sin
e |G| = p2, G is abelian [Su℄. Thus
[g0, g1] = 1 and G = {gi00 g

i1
1 : 0 ≤ i0, i1 ≤ p− 1}, whi
h shows that ψ in (b) is well-de�nedand surje
tive. Sin
e G(A) has 
ardinality at most p2 by Lemma 2.3, and G has 
ardinality

p2, the map ψ is an isomorphism.Now suppose that the assertion is true for all k < m. For k = m, 
onsider G,G1, G2and ϕ as in the statement of the lemma. As above, G1 and G2 are normal, distin
t and
G = 〈G1, G2〉. Sin
e [G2 : G2 ∩ G1] ≤ [〈G1, G2〉 : G1] = p, we have [G2 : G1 ∩ G2] = pand similarly [G1 : G1 ∩G2] = p. Therefore G1 ∩G2 is maximal, thus normal in G1 and
G2. Sin
e G is generated by G1 and G2, the subgroup G1 ∩ G2 is normal in G. By theassumption, ϕ(G1 ∩G2) 6= G1 ∩G2.Claim. If a subgroup N of G1∩G2 is normal in G2 and ϕ-invariant, then N is normal in G.
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ϕ // G2

sssss
NNNN

NN

G1 ∩G2

LLLLL

ϕ // ϕ(G1 ∩G2)

oooooo

NProof. Consider gNg−1, for any g ∈ G1. As ϕ(gNg−1) = ϕ(g)ϕ(N)ϕ(g)−1 = ϕ(g)Nϕ(g)−1 =

N (sin
e ϕ(g) ∈ G2) and ϕ is an isomorphism, we dedu
e that gNg−1 = ϕ−1(N) = N .Therefore G1 ⊆ NG(N) and similarly G2 ⊆ NG(N). Thus G, as a group generated by G1and G2, is also 
ontained in NG(N). Hen
e N is normal in G.By the above 
laim, we 
an use the indu
tion hypothesis on G′ = G2, G′
1 = G1 ∩ G2,

G′
2 = ϕ(G1 ∩G2) and ϕ′ = ϕ|G1∩G2 . It follows that there is an element g1 in G2 su
h that

G2 = 〈g1, · · · , gm〉, G1 ∩G2 = 〈g1, · · · , gm−1〉 and ϕ(gi) = gi+1 for i = 1, · · · ,m− 1.16



Let g0 = ϕ−1(g1). If g0 ∈ G1 ∩G2, then g1 ∈ ϕ(G1 ∩G2), whi
h 
ontradi
ts G1 ∩G2 6=

ϕ(G1 ∩G2). Thus g0 is an element of G1 −G2. Sin
e G2 is maximal in G, the group G isgenerated by G2 and g0, i.e., G = 〈g0, g1, · · · , gm〉. It is 
lear that G1 = 〈g0, · · · , gm−1〉 as
G1 ∩G2 is maximal in G1 and g0 ∈ G1 − (G1 ∩G2).To prove the assertion (b), note that [g0, gi] = ϕ−1([g1, gi+1]) = ϕ−1(g

ai,1

2 · · · g
ai,i

i ) =

g
ai,1

1 · · · g
ai,i

i−1 for 1 ≤ i ≤ m − 1 and gip = 1, for all i ≥ 1 by indu
tion hypothesis. Thuswe only need to 
onsider [g0, gm] and g0p. The element g0 
learly has order p sin
e ϕ is anisomorphism and g1 = ϕ(g0) has order p. It is easy to see that if two subgroups H and Kare normal subgroups of a group G, then so is the 
ommutator subgroup [H,K] and wehave [H,K] ⊂ H ∩K. Sin
e g0 ∈ G1 and gm ∈ G2, it follows that [g0, gm] ∈ G1 ∩ G2 =

〈g1, g2, · · · , gm−1〉, whi
h proves that ψ is a well-de�ned homomorphism. By the previousparagraph, it is surje
tive. Sin
e G and G(A) are of 
ardinality pk+1 and at most pk+1respe
tively, the map ψ is an isomorphism.Proof of Theorem 2.2. By Proposition 1.2, the number un is the number of isomorphism
lasses of n-sheeted 
overings of faithful graphs of groups φ• : Γ\\T → (X,G•). As alreadyseen, we may assume that X = Γ\T . The following 
ommutative diagram summarizes thedata de�ning φ•:
1

��

// Z/pZ

��
Ge

αe //
αe

// GxLet's �rst 
onsider the 
ase when n = pk. Let G = Gx, G1 = αe(Ge) and G2 = αe(Ge).By the 
ondition of faithfulness, G1 and G2 are distin
t as they are normal subgroups of
G. Hen
e if we let ϕ = αē ◦ α

−1
e : G1 → G2, then ϕ is an isomorphism and there is nosubgroup of G1 whi
h is normal in G and ϕ-invariant. Thus we 
an use Lemma 2.4 to�nd an element g0 in Gx su
h that Gx = 〈g0, g1, · · · gk〉 where ϕ(gj) = gj+1. Moreover, thegroup G is isomorphi
 to G(A), whi
h is determined by A. (note that A also determines

Ge and the maps αe and αē.) Thus we have at most pPk−1
j=0 j 
hoi
es for Gx, Ge, αe and αē,whi
h is exa
tly the number of 
hoi
es of (ast)1≤t≤s≤k−1. On
e we have �xed Gx, Ge, αeand αē, an inje
tion i from Z/pZ into Gx is determined by the image of a generator in thedomain, whi
h implies that we have at most |Gx| = pk+1 
hoi
es for i. Therefore we havean upper bound uΓ(n) ≤ p

Pk−1
j=1 jpk+1 = p

(k−1)k
2

+k+1 = p
k2+k+2

2 .Now let us 
onstru
t non-isomorphi
 
lasses of faithful 
overing graph of groups todedu
e a lower bound of u(n). Fix a lower triangular matrix A = (ast) 1 ≤ t ≤ s ≤ k − 1with 
oe�
ients in 0, · · · , p − 1 su
h that furthermore ak−1,j = 0 for j = 0, · · · , k − 1.Let Gx = G(A) be the group de�ned in Lemma 2.3, and de�ne the 
overing graph ofgroups φ• = φ•(A) : Γ\\T → G• as follows. Let Ge be the subgroup of Gx generatedby ḡ0, · · · , ḡk−1. Let the inje
tion αe be the in
lusion map and the other in
lusion αē17



be de�ned by αē(ḡi) = ḡi+1 ∈ Gx, whi
h is indeed a monomorphism by the de�nition of
G(A). Therefore, the group morphism ϕ = ϕA de�ned by ϕ(ḡi) = ḡi+1 is an isomorphismfrom αe(Ge) onto αē(Ge). The data G• thus de�nes a faithful graph of groups, as thereis no ϕ-invariant subgroup of Ge. Indeed, for any nontrivial element h = ḡ

ij0
j0

· · · ḡ
ijt
jtin Ge (with nonzero ijt), ϕk−jt(h) = ḡ

ij0
j0+k−jt

· · · ḡ
ijt
k /∈ Ge. Let v be a generator of

Z/pZ and set φx(v) = ḡ0ḡk. This de�nes a group monomorphism φx : Z/pZ → Gx, as
φx(v)

p = (ḡ0ḡk)
p = ḡp0 ḡ

p
k = 1. The map φx is 
learly inje
tive sin
e the order of g0gk is p.Thus we have 
onstru
ted a 
overing of graphs of groups. Now suppose that the 
overingsof graphs of groups φ•(A) and φ•(A′) : Γ\\T → (X,G′

•) are isomorphi
. Let us denote by
ψ : (X,G•) → (X,G′

•) an isomorphism between them. Then there exists a 
ommutativediagram as follows:
α′

eαe

ψe

ψx

G′

x

G′

e

Z/pZ

1
Gx

GeSin
e ψe (respe
tively ψē) is a group isomorphism from G1 = αe(Ge) to G′
1 = αe(G

′
e)(respe
tively from G2 = αē(Ge) to G′

2 = αē(G
′
e)), it follows that ψx maps the followinghierar
hy to the 
orresponding one in G′.

G

qqqqqq

MMMMMM

G1

KKKKK
G2

sssss
NNNN

NN

G1 ∩G2

NNNNN
ϕ(G1 ∩G2)

mmmmm

. . .In parti
ular, ψx preserves the smallest group in the hierar
hy, i.e. ψx(〈gk〉) = 〈g′k〉. Let bbe an element in 0, · · · , p− 1 su
h that ψx(gk) = g′k
b. The map ψx is 
ompletely determinedsin
e ψx(gi) = g′i

b for i = 0, · · · , k. In other words, if A and bA′ are not equivalent modulo
p for any integer b = 0, · · · , p − 1, then φ•(A) and φ•(A

′) are non-isomorphi
 
overings.This implies that there are at least p
Pk−2

i=1
i

p non-isomorphi
 
overing graphs of groups givenby the above examples φ•(A) with �non-homotheti
� A = (ai,j)'s. Therefore we have alower bound un ≥ p
Pk−2

i=1
i

p = p
k2

−3k
2 .Now let's 
onsider the general 
ase. Re
all that |Ge| =

∏t
i=0 p

ki
i and |Gx| =

∏t
i=0 p

ki
i p =

pk0+1
0

∏t
i=1 p

ki
i , thus the order of the Sylow pi-subgroup of Ge and that of Gx are the samefor all i 6= 0. Let G(pi)

e be a Sylow pi-subgroup of Ge. For i 6= 1, let G(pi)
x = αe(G

(pi)
e ).Choose one p-Sylow subgroup G(p)

x of Gx 
ontaining αe(G(p)
e ).We are now going to show that the faithfulness 
ondition is inherited to the Sylow

p-subgroups G(p)
e , G(p)

x of Ge and Gx, from whi
h we 
an use the upper bound given in the18



�rst part of the proof. Conjugating αe by an element of Gx, if ne
essary, we may assumethat αe(G(p)
e ) ⊂ G

(p)
x , thus we have the following diagram:

Ge
αe //
αe

// Gx

G
(p)
e

?�

OO

αe //
αe

// G
(p)
x

?�

OO

Suppose that N ⊳ G
(p)
e and N = αe(N) = αē(N) ⊳ G

(p)
x . Let N = 〈gNg−1 : g ∈ Ge〉(respe
tively N = 〈gN g−1 : g ∈ Gx〉) be the smallest normal subgroup of Ge (respe
tively

Gx) 
ontaining N (respe
tively N ).Note that αi (i = e, e) indu
es a bije
tion between left 
osets
Ge/G

(p)
e −→ Gx/G

(p)
x

gG(p)
e 7−→ αi(g)G

(p)
x .For sin
e αi is inje
tive, if gG(p)

e is mapped to G(p)
x , then g is in αi(Ge)∩G(p)

x , whi
h is a p-group in αi(Ge) 
ontaining αi(G(p)
e ). Sin
e αi(G(p)

e ) is a Sylow p-subgroup, αi(G(p)
e )∩G

(p)
xis equal to αi(Ge). Thus αi(g−1h) is 
ontained in G(p)

x if and only if g−1h ∈ G
(p)
e and themap is inje
tive. It is surje
tive sin
e the sour
e and the target have the same 
ardinality.Thus any element g in Gx 
an be written as αi(g′)hi for some g′ ∈ Ge, hi ∈ G
(p)
x and wehave gN g−1 = αi(g

′)hiNh−1
i αi(g

′−1) = αi(g
′)Nαi(g

′−1) (i = 1, 2). Therefore α1(N ) =

α2(N) = N and it is normal in Gx. As a 
onsequen
e, G(p)
e and G(p)

x satisfy the 
ondition offaithfulness, i.e., there is no subgroup N of G(p)
e su
h that αe(N) = αē(N) is normal in G(p)

x .By the �rst part of the proof, this implies that the number of 
hoi
es for G(p)
x , G

(p)
e , αe|G(p)

eand αē|G(p)
e

is at most p k2
0+k0+2

2 .Sin
e all the other G(pi)
e and G

(pi)
x have �xed 
ardinality, we have a 
onstant totalnumber of 
hoi
es for them and the inje
tions αe|Gpi

e , say c0. Re
all that on
e all the
G

(pi)
x 's and G(pi)

e 's are 
hosen, the number of Gx with a given �xed Sylow system is at most
(pn)75µ(pn)+16([P℄). Re
all also that the inje
tions αe are determined by its restri
tion toSylow subgroups of Ge sin
e they generate the group. Finally we have the following upperbound.

un ≤ c0p
(k0+1)2+(k0+1)+2

2 (pn)75µ(pn)+16 ≤ c0(c1)
k2
0+5k0+8

2 (pn)75µ+16where c1 = p and µ = µ(pn).Remark. It follows from the proof above that ea
h prime fa
tor of |Gx| is less than orequal to p, thus in the 
ase p = 2, u(n) = 0 if n is not a power of 2.Referen
es[B℄ H. Bass, Covering theory for graphs of groups, J. Pure Appl. Alg. 89, (1993) 66-67.19
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