
Counting overlatties in automorphism groups of treesSeonhee LimOtober 10, 2005AbstratWe give an upper bound for the number uΓ(n) of �overlatties� in the automor-phism group of a tree, ontaining a �xed lattie Γ with index n. For an example of Γin the automorphism group of a 2p-regular tree whose quotient is a loop, we obtain alower bound of the asymptoti behavior as well.Nous donnons une borne supérieure pour le nombre uΓ(n) de �surréseaux� on-tenant un réseau �xé d'indie n dans le groupe d'automorphismes d'un arbre. Dansle as d'un arbre 2p-régulier T , et d'un réseau Γ tel que Γ\T soit une boule, nousobtenons aussi une minoration du omportement asymptotique.Introdution. Given a onneted semisimple Lie group G, the Kazhdan-Margulis lemmasays that there exists a positive lower bound for the ovolume of oompat latties in G.This is no longer true when G is the automorphism group of a loally �nite tree. Bassand Kulkarni (for oompat latties, see [BK℄) and Carbone and Rosenberg (for arbitrarylatties in uniform trees, see [CR℄) even onstruted examples of inreasing sequenes oflatties (Γi)i∈N in Aut(T ) whose ovolumes tend to 0 as i tends to ∞.If Γ is a oompat lattie in the group Aut(T ) of automorphisms of a loally �nite tree
T , there is only a �nite number uΓ(n) of �overlatties� Γ′ ontaining Γ with �xed index n([B℄). Thus a natural question, whih was raised by Bass and Lubotzky (see [BL℄), wouldbe to �nd the asymptoti behavior of uΓ(n) as n tends to ∞.In [G℄, Goldshmidt proved that there are only 15 isomorphism lasses of (3,3)-amalgams.Thus for latties Γ in the automorphism group of a 3-regular tree T whose edge-indexedquotient is 3 3 , one has uΓ(n) = 0 for n large enough. Moreover it is onjeturedby Goldshmidt and Sims that there is only a �nite number of (isomorphism lasses of)
(p, q)-almalgams, for any prime numbers p and q.In this paper, we give two results: an upper bound of uΓ(n) for any oompat lattie,and a surprisingly big lower bound of uΓ(n) for a spei� lattie Γ in the automorphismgroup of a 2p-regular tree. 1



Theorem 0.1. Let Γ be a oompat lattie in Aut(T ). Then there are some positiveonstants C0 and C1 depending on Γ, suh that
∀n ≥ 1, uΓ(n) ≤ C0n

C1 log2(n).Theorem 0.2. Let p be a prime number and let T be a 2p-regular tree. Let Γ be a oompatlattie in Aut(T ) suh that the quotient graph of groups is a loop whose edge stabilizer istrivial and whose vertex stabilizer is a �nite group of order p.
Z/pZ {1}Let n = pk00 p

k1
1 · · · pkt

t be the prime deomposition of n with p0 = p. Then there existpositive onstants c0, c1 suh that lim sup
k0→∞

uΓ(n)

nc1 log n ≤ c0. For n = pk00 (k0 ≥ 3), we also have
uΓ(n) ≥ n

1
2
(k0−3).It is easy to see ([B℄) that

uΓ(n) ≤
∑

[Γ:Γ′′]|n!
Γ′′⊂Γ

|NAut(T )(Γ
′′)/Γ′′|,thus we ould hope to use the results of Lubotzky on subgroup growth (see for instane [L1℄,[L2℄). However, the estimations given in this way do not seem to be sharp enough. Thusour strategy onsists in using the orrespondene between oompat latties and graphs ofgroups (the Bass-Serre theory, see setion 1) and reduing the problem to ounting ertainisomorphism lasses of overings of graphs of groups of index n (see setion 2).Together with the sharply ontrasting examples satisfying the Goldshmidt-Sims on-jeture, the examples in Theorem 0.2 are presently the only known behaviors for overlattieounting funtions.Aknowledgements: We thank Alex Lubotzky for introduing the subjet and the prob-lem as well as for helpful disussions. We thank Gregory Margulis for his guidane andLászló Pyber and Gabe Rosenberg for explaining their works ([P℄, [CR℄) and [BK℄. Finally,we are grateful to Frédéri Paulin for his onstant help and enouragement.1 Overlatties and Coverings of graphs of groupsIn this setion, we brie�y reall some bakground on group ations on trees and the theoryof graphs of groups, and we explain the orrespondene between overlatties and overingsof graphs of groups. We refer the reader to [S℄, [B℄ and [BL℄ for details on the standardmaterial, gathered in setion 1.1. 2



Throughout the paper, we denote by T a loally �nite tree, i.e., a tree having �nite va-lene at eah vertex. We denote by Aut(T ) the group of automorphisms without inversionsof the tree T . A subgroup Γ of Aut(T ) is disrete if the stabilizer Γx is �nite for some,thus for every, vertex x of T . The ovolume of Γ is de�ned by
V ol (Γ\\T ) =

∑

x∈Γ\V T

1

|Γx|
.A disrete subgroup is a lattie if its ovolume is �nite. In this ase, Aut(T ) is uni-modular, and the ovolume is equal (up to a onstant depending only on T ) to the volumeof Γ\Aut(T ) indued by the Haar measure on the loally ompat group Aut(T ) [BL℄. Alattie Γ is alled oompat if the quotient graph Γ\T is �nite. An overlattie of Γ is alattie of Aut(T ) ontaining Γ with �nite index.1.1. Coompat latties and �nite graphs of �nite groups By a graph of groups

(X,G•), we mean a onneted graph X, groups Gx and Ge = Ge assigned to eah vertex
x in V X and eah edge e in EX, together with injetions Ge → Gx for eah edge e withorigin o(e) = x. This injetive map will be denoted by αe, whatever the graph of groupis. The edge-indexed graph of the graph of groups (X,G•) is the graph X with index
i(e) = |Go(e)|/|Ge| assoiated to eah edge e. Let us denote ad(g)(s) = gsg−1 from nowon.To every subgroup Γ of Aut(T ) is assoiated a graph of groups, well-de�ned up toisomorphism of graph of groups (see de�nition below), whose graph X is the quotient graph
Γ\T . We will all it a quotient graph of groups of Γ and denote it by Γ\\T . Aording to[B℄(setion 3), a onstrution of Γ\\T proeeds as follows. Let p : T → X be the anonialprojetion.Choose subtrees R ⊂ S ⊂ T suh that p|R : R→ X is bijetive on verties, p|S : S → Xis bijetive on edges, and for eah edge e in E(S), at least one of o(e), t(e) belongs to R.De�ne x̃ = p|−1

R (x) for eah x in V X and ẽ = p|−1
S (e) with ¯̃e = ˜̄e for eah e in EX. Foreah e in EX, hoose an element ge in Γ suh that geo(ẽ) = õ(e). We an and will alwayshoose ge = 1 for all e with o(e) ∈ V R. Note that one of ge, gē is equal to 1 for any edge

e. Now let Gx be the stabilizer Γx̃ of x̃ in Γ for x in V X ∪ EX. The injetive map αe isde�ned as αe = ad(ge). Note that for e suh that o(e) is a vertex of V R, eah αe is merelyan inlusion.Conversely, for any graph of groups (X,G•), there exists a tree T and a group Γ atingon the tree T (unique up to equivariant tree isomorphism) suh that (X,G•) is isomorphito Γ\\T . Let us all (T,Γ) a universal over of (X,G•) and Γ its fundamental group.Fix x0 ∈ V X. The fundamental group Γ of (X,G•) based at x0 is de�ned as follows.3



The path group Π(X,G•) is de�ned by
(

∗
x∈V X

Gx

)
∗ F (EX)/〈e−1 = e, eαe(g)e

−1 = αe(g) : g ∈ Ge〉,where F (EX) denotes the free group with basis EX. For x, x′ in V X, we denote by
π[x, x′] the subset of Π(X,G•) whih onsists of elements of the form g0e1g1e2 · · · gn−1engnwhere ei is an edge from vertex xi−1 to vertex xi, gi ∈ Gxi , x0 = x, and xn = x′. Thefundamental group of (X,G•) based at x0 is Γ = π1(X,G•, x0) = π[x0, x0], endowed withthe group struture indued by Π(X,G•).The universal over ˜(X,G•, x0) of (X,G•) based at x0 is de�ned as follows. It has asvertex set

V ( ˜(X,G•, x0)) =
∐

x∈V X

π[x0, x]/Gx,and there is an edge between two distint points [g] in π[x0, x]/Gx and [g′] in π[x0, x
′]/Gx′if and only if g−1g′ ∈ GxeGx′ where e is an edge in X from x to x′. The fundamentalgroup π1(X,G•, x0) = π[x0, x0] ats on ˜(X,G•, x0) by the natural left ation. The graph

˜(X,G•, x0) is a tree and moreover, for any other universal over (T,Γ) of (X,G•), thereis an isomorphism ψ between Γ and π1(X,G•, x0) and a ψ-equivariant graph isomorphismbetween T and ˜(X,G•, x0), see for example [S℄.A graph of groups is alled faithful (or e�etive) if there is no edge subgroup family
(Ne)e∈EX satisfying the following onditions:i) for eah e and e′ in EX suh that o(e) = o(e′), the images of Ne and Ne′ oinide:

αe(Ne) = αe′(Ne′). Let us denote it by No(e).ii) For eah x in V X, Nx is a nontrivial normal subgroup in Gx.It is shown in [B℄ that the graph of groups (X,G•) is faithful if and only if its funda-mental group Γ is a subgroup of Aut(T ) for its universal over T , i.e., if and only if themap Γ −→ Aut(T ) is injetive. The fundamental group of a faithful �nite graph of �nitegroups is a oompat lattie in the automorphism group of its universal overing tree andonversely, a quotient graph of groups of a oompat lattie in the automorphism groupof a loally �nite tree is a faithful �nite graph of �nite groups.In [B℄, Bass de�nes a overing of graphs of groups in suh a way that the indued mapbetween the orresponding fundamental groups is a group monomorphism.De�nition 1.1. Let (X,G•) and (Y,H•) be two graphs of groups. We all a morphism ofgraphs of groups, whih we denote by φ• = (φ, φx, γx) : (X,G•) → (Y,H•), the followingdata(i) a graph morphism φ : X → Y , 4



(ii) group homomorphisms φx : Gx → Hφ(x) and φe : Ge → Hφ(e), for every vertex x andevery edge e of X,(iii) families of elements (γx)x∈V X ∈ π1(Y,H•, φ(x)) and (γe)e∈EX ∈ Π(Y,H•)suh that for every edge e of X with origin x, we have γ−1
x γe ∈ Hφ(x) and the followingdiagram ommutes.

Ge

φe

��

αe // Gx

φx

��
Hφ(e)
ad(γ−1

x γe)◦αφ(e)// Hφ(x)The indued homomorphism of path groups Φ = Φφ• : Π(X,G•) → Π(Y,H•), is de-�ned as follows on generators (see [B℄): Φ(g) = γxφx(g)γ
−1
x for g ∈ Gx and x ∈ V X,

Φ(e) = γeφ(e)γ−1
ē for e ∈ EX. The indued homomorphism on path groups restrits to ahomomorphism π1(X,G•, x0) → π1(Y,H•, φ(x0)), whih we will denote again by Φ.The indued homomorphism Φ = Φφ• : π1(X,G•, x0) → π1(Y,H•, φ(x0)) gives a Φxo-equivariant graph isomorphism φ̃ : ˜(X,G•, xo) → ˜(Y,H•, φ(x0)) de�ned by

[g] ∈ π[x0, x]/Gx 7→ [Φ(g)γx] ∈ π[φ(x0), φ(x)]/Hφ(x).A morphism φ• = (φ, φx, γx)x∈V X∪EX of graphs of groups is an isomorphism of graphsof groups if φ is a graph isomorphism and φx are all group isomorphisms. In this ase,
φ−1
• = (φ−1, φ′y, γ

′
y) where φ′y = φφ−1(y) and γ′y = Φ−1(γφ−1(y))

−1 for y ∈ V Y ∪ EY .De�nition 1.2. A morphism of graphs of groups φ• is furthermore alled a overing if(a) the maps φe and φx are injetive for all x and e,(b) for every edge f of Y with origin φ(x),where x is in V X, the well-de�ned map
Φx/f :

∐

e∈φ−1(f),o(e)=x

Gx/αe(Ge) −→ Hφ(x)/αf (Hf )

[g]e 7−→ [φx(g)γ
−1
x γe]fis bijetive.By the ondition (b) in De�nition 1.2, we have ∑

e∈φ−1(f),o(e)=x

|Gx|
|Ge|

=
|Hφ(x)|

|Hf |
for everyedge f of Y with origin φ(x). Summing over all verties x suh that φ(x) = y, it followsthat the value of

n :=
∑

x∈φ−1(y)

|Hy|

|Gx|
=

∑

e∈φ−1(f)

|Hf |

|Ge|does not depend on verties and edges, sine the graph Y is onneted. Note that n is aninteger sine φx(Gx) is a subgroup of Hy for eah x suh that φ(x) = y. A overing graphof groups with the above n is said to be n-sheeted.5



Note also that by the ondition (b), a overing of graphs of groups indues a overingof the orresponding edge-indexed graphs. Reall that a overing φ : (X, i) → (Y, i) ofedge-indexed graphs is a graph morphism φ suh that ∑
e∈φ−1(e′),o(e)=x i(e) = i(e′).Theorem 1.3 ([B℄, Prop. 2.7). The morphism φ• is a overing if and only if Φ :

π1(X,G•, x0) → π1(Y,H•, φ(x0)) is injetive and φ̃ : ˜(X,G•, x0) → ˜(Y,H•, φ(x0)) is anisomorphism.1.2. Counting overlatties Let Γ be a oompat lattie in Aut(T ). Set
U(n) = UΓ(n) = {Γ′ : Γ ⊂ Γ′ ⊂ Aut(T ), [Γ′ : Γ] = n}and let u(n) = uΓ(n) = |U(n)| be the number of overlatties of Γ of index n. It is shownin [BK℄ that u(n) is �nite. We are interested in the asymptoti behavior of u(n). For thatpurpose, we will show in this setion that there is a bijetion between overlatties of Γ andisomorphisms lasses of overings of graphs of groups by the quotient graph of groups of

Γ, in the following sense.De�nition 1.4. Let φ• = (φ, φx, γx) : (X,G•) → (Y,H•) and ψ• = (ψ,ψx, γ
′
x) : (X,G•) →

(Y ′,H ′
•) be two overings of graphs of groups. An isomorphism between them is an iso-morphism of graphs of groups θ• = (θ, θy, ρy) : (Y,H•) → (Y ′,H ′

•) suh that θ ◦φ = ψ as amap of graphs and the orresponding indued diagram of isomorphisms between universalovers
( ˜X,G•, x0)

φ̃ //

ψ̃

''OOOOOOOOOOO
( ˜Y,H•, φ(x0))

θ̃
��

˜(Y ′,H ′, ψ(x0))ommutes.It will also be useful to onsider a more restrited notion of isomorphism of overings.De�nition 1.5. Let φ• = (φ, φx, γx) : (X,G•) → (Y,H•) and ψ• = (ψ,ψx, γ
′
x) : (X,G•) →

(Y ′,H ′
•) be two overings of graphs of groups. A strong isomorphism between them onsistsof a pair {θ• = (θ, θy, ρy) : (Y,H•) → (Y ′,H ′

•), (ζx)x∈V X∪EX} where θ• is an isomorphismof graphs of groups (Y,H•) → (Y ′,H ′
•) and (ζx) ∈ H ′

ψ(x) are suh thata) θ ◦ φ = ψ as a map of graphs,b) For any x ∈ V X ∪EX, we have ψx = ad(ζ−1
x )θφ(x) ◦ φx as maps Gx → H ′

ψ(x),) γ′x = Θ(γx)ρφ(x)ζx for any x ∈ V X ∪ EX.Lemma 1.6. Any two strongly isomorphi overings φ• = (φ, φx, γx) : (X,G•) → (Y,H•)and ψ• = (ψ,ψx, γ
′
x) : (X,G•) → (Y ′,H ′

•) are isomorphi.6



Proof. We have a triangle of morphisms of path groups
Π(X,G•)

Φ //

Ψ

&&NNNNNNNNNNN
Π(Y,H•)

Θ
��

Π(Y ′,H ′
•)We laim that this triangle ommutes. It is enough to hek it on generators: let x ∈ V Xand s ∈ Gx. We have Φ(s) = γxφx(s)γx

−1, Ψ(s) = γ′xψx(s)γ
′
x
−1 and on the other hand

Θ ◦ Φ(s) =Θ(γx)Θ(φx(s))Θ(γx)
−1

=Θ(γx)ρφ(x)θφ(x)(φx(s))ρ
−1
φ(x)Θ(γx)

−1

=Θ(γx)ρφ(x)ζxψx(s)ζ
−1
x ρ−1

φ(x)Θ(γx)
−1

(1)(using property (b) of strong isomorphism of overings), and this is equal to
= γ′xψx(s)γ

′
x
−1

= Ψ(s)by property () and the de�nition of Ψ. Similarly, for e ∈ EX,
Θ ◦ Φ(e) =Θ(γe)Θ(φ(e))Θ(γē)

−1

=Θ(γe)ρφ(e)θ(φ(e))ρ−1
φ(ē)Θ(γē)

−1

=Θ(γe)ρφ(e)ψ(e)ρ−1
φ(ē)

Θ(γe)
−1 = γ′eψ(e)γ′ē

−1
.

(2)The last equality omes from the fat that sine ζe ∈ H ′
ψ(e), by de�nition of the fundamentalgroup,

ψ(e) = ζeψ(e)ζ−1
ē .Thus we have a ommuting triangle of morphisms of fundamental groups

π1(X,G•, x0)
Φ //

Ψ

))RRRRRRRRRRRRR
π1(Y,H, φ(x0))

Θ
��

π1(Y
′,H ′, ψ(x0))(where Θ is an isomorphism), and a triangle of isomorphisms of trees, whih is equivariantwith respet to the above triangle of groups:

( ˜X,G•, x0)
φ̃ //

ψ̃

''OOOOOOOOOOOO
( ˜Y,H•, φ(x0))

θ̃
��

˜(Y ′,H ′, ψ(x0)).7



We laim that this triangle is also ommutative. Indeed, by de�nition, if g ∈ π[x0, x]/Gx ⊂

( ˜X,G•, x0) then
θ̃(φ̃(g)) = θ̃(Φ(g)γx) = Θ(Φ(g))Θ(γx)ρφ(x)

= Ψ(g)γ′xζ
−1
x = Ψ(g)γ′x = ψ̃(g)where we used relation () together with the fat that ζx ∈ H ′

ψ(x) (observe that Ψ(g)γ′x ∈

π[ψ(x0), ψ(x)]/H ′
ψ(x)). The Lemma is proved.For a given overlattie Γ′ of Γ, we an onstrut a overing mΓ′ of graphs of groups asfollows. Let Y = Γ′\T and p′ : T → Y be the anonial projetion.De�ne subtrees R′ and S′ of R and S, respetively, in the following way. For eahvertex y of Y , hoose one vertex from eah set {p′−1(y)} ∩V R and all it ỹ. Let R′ be thesubgraph of R with verties {ỹ : y ∈ Y }. Sine R is a tree, we an hoose verties ỹ sothat R′ is onneted. Let S′ be the maximal subtree of S ontaining R′ suh that p′|S′ isinjetive on the edges. For e ∈ EY , hoose elements g′e ∈ Γ′ suh that g′eo(ẽ) = õ(e). Thegraph of groups (Y,H•) is de�ned with respet to R′, S′ and g′'s, as (X,G•) is de�ned insetion 1.1.Now the overing of graphs of groups, whih will be denoted by m = mΓ′

: (X,G•) →

(Y,H•), is de�ned as follows. For the graph morphism m : X → Y , take the naturalprojetion π. For the group morphisms mx : Gx → Hm(x), take an element σx in Γ′ whihsends x̃ to p̃(x). We an hoose σx = 1 if x̃ ∈ V R′ ∪ ES′. Note that p(x) is a vertex of
Y , thus p̃(x) ∈ R′ whereas x is a vertex of X, thus x̃ ∈ R. Let mx = ad(σx) ◦ ι be theinjetion followed by the onjugation (g 7→ σxgσ

−1
x ). Sine Gx stabilizes x̃ ∈ V T ∪ ET ,the group σxGxσ

−1
x stabilizes p̃(x) ∈ V T ∪ ET , thus it is a subgroup of Hp(x) = Γ′

gp(x)
,for x ∈ V X ∪ EX. For the elements γx, γe in (iii) of De�nition 1.1, take γx = σ−1

x and
γe = geσ

−1
e g′−1

m(e). It follows that
ad(γ−1

x γe) ◦ αm(e) ◦me = ad(γ−1
x γe) ◦ ad(g

′
m(e)) ◦ ad(σe)

= ad(σxgeσ
−1
e g′−1

m(e)) ◦ ad(g
′
m(e)) ◦ ad(σe)

= ad(σxge) = ad(σx) ◦ ad(ge) = mx ◦ αe.Sine γx's are the elements of Γ′, the map mΓ′ is a morphism of graphs of groups. Themaps mx are learly injetive, thus it remains to show that the map Φx/f (in De�nition1.2. (b)) is bijetive. Suppose that for e, e′ ∈ EX and g, g′ ∈ Gx, we have [φx(g)γ
−1
x γe]f =

[φx(g
′)γ−1

x γe′ ]f in Hφ(x)/αfHf . In other words,
γ−1
e γxφx(g

−1g′)γ−1
x γe′ ∈ αf (Hf )

gm(e)σeg
−1
e σ−1

x σxg
−1g′σ−1σge′σ

−1
e′ g

′
m(e)

−1
∈ ad(g′f )(Hf )

σeg
−1
e g−1g′ge′σ

−1
e′ ∈ Hf = StabΓ′(f̃)8



Sine σe sends ẽ to f̃ and σe′ sends ẽ′ to f̃ , the element g−1
e g−1g′ge′ of Γ should send ẽ′to ẽ. We onlude that e = e′ sine no element of Γ sends ẽ to ẽ′ where e′ 6= e in X ≃ Γ\T .We onlude that e = e′ and g−1g′ ∈ Ge, i.e. [g]e = [g′]e′ . Therefore mΓ′ is indeed aovering of graphs of groups.Proposition 1.7. Let Γ be a oompat lattie of Aut(T ) and (X,G•) be its quotient graphof groups. The map Γ′ 7→ mΓ′ indues a bijetion m between the set of overlatties of Γ ofindex n and the set of isomorphism lasses of the n-sheeted overings of faithful graphs ofgroups by (X,G•).The following lemma shows that the map m : Γ′ 7→ mΓ′ is well-de�ned.Lemma 1.8. Let Γ be a lattie in T , and let Γ′ ⊃ Γ be an overlattie. Fix (R,S, ge) givingrise to a graph of groups struture (X,G•) on Γ\T (as in setion 1.1.). Let (R′, S′, g′e)(resp. (R′′, S′′, g′′e )) be a data giving rise to a graph of groups struture (Y,H•) (resp.

(Y ′,H ′
•)) on Γ′\T , and let (σ′x)x∈V X∪EX (resp. (σ′′x)x∈V X∪EX) be a data giving rise to aovering φ• = (φ, φx, γ

′
x) : (X,G•) → (Y,H•) (resp. ψ• = (ψ,ψx, γ

′′
x) : (X,G•) → (Y ′,H ′

•)). Then the two overings φ• and ψ• are strongly isomorphi.Proof. Reall that by de�nition, we have σ′x : x̃ 7→ φ̃(x) and σ′′x : x̃ 7→ ψ̃(x), where σ′x and
σ′′x are in Γ′. Reall also that γ′x = σ′x

−1, γ′′x = σ′′x
−1 for x ∈ V X and γ′e = geσ

′
e
−1g′φ(e)

−1,
γ′′e = geσ

′′
e
−1g′′ψ(e)

−1 for e ∈ EX. Now we want to onstrut a strong isomorphism {θ• :

(Y,H•) → (Y ′,H ′
•), ζx} of overings of graphs of groups. First notie that there is aanonial bijetion θ : Y ≃ Γ′\T ≃ Y ′. It lifts to a bijetion θ̃ : R′ → R′′ and it extends toa unique bijetion θ̃ : S′ → S′′. Let us hoose arbitrary elements ξy ∈ Γ′ for y ∈ V Y ∪EYsuh that ξy(ỹ) = θ̃(y) and de�ne maps

θy : Hy = Γ′
ỹ → Γ′

gθ(y) = H ′
θ(y), h 7→ ξyhξ

−1
y .We have a morphism of graphs of groups θ• = (θ, θy, ρy) : (Y,H•) → (Y ′,H ′

•) by setting
ρy = ξ−1

y for y ∈ V Y and ρe = g′e
−1ξe

−1g′′θ(e) for e ∈ EY . It is lear by onstrution thatthis is an isomorphism of graphs of groups (all maps are isomorphisms of groups). Notethat there is a ommutative diagram of isomorphisms
π1(Y,H•, y0)

iY //

Θ
��

Γ′

Id

��
π1(Y

′,H ′
•, θ(y0))

iY ′ // Γ′where we have denoted by iY , i′Y the isomorphisms π1(Y,H•, y0) ≃ Γ′, and π1(Y
′,H ′

•, θ(y0)) ≃

Γ′, respetively.Finally, put ζx = ξxσ
′
xσ

′′
x
−1. For any vertex x, there holds

Ad(ζ−1
x )θφ(x)φx = ad((σ′′x)(σ

′
x)

−1ξ−1
φ(x)) ◦ ad(ξφ(x)) ◦ ad(σ

′
x)

= ad((σ′′x)) = ψx9



as desired. A similar omputation holds for ψe : Ge → H ′
ψ(e) when e ∈ EX. This provesondition (b) in the de�nition of strong isomorphism of overings. Condition () followsfrom the very de�nition of ζx, σy, γ′x and γ′′x .Now let us de�ne the inverse map φ• 7→ Γφ ofm as follows. Set ΓY := π1(Y,H•, φ(x0)) ⊂

Aut(( ˜Y,H•, φ(x0))). We de�ne an embedding iφ : ΓY → Aut(( ˜X,G•, x0)) as follows :
iφ(u) · v = φ̃−1(u · φ̃(v)) for u ∈ ΓY and v ∈ V ( ˜X,G•, x0) ∪ E( ˜X,G•, x0).Let us denote by Γφ ⊂ Aut(( ˜X,G•, x0)) the image of iφ. The following lemma shows thatthis map is well-de�ned.Lemma 1.9. If φ• : (X,G•) → (Y,H•) and ψ• : (X,G•) → (Y ′,H ′

•) are isomorphioverings of graphs of groups, then the orresponding subgroups Γφ ⊂ Aut(( ˜X,G•, x0)) and
Γψ ⊂ Aut(( ˜X,G•, x0)) oinide.Proof. By de�nition of isomorphi overings, we have a triangle of isomorphisms of trees

( ˜X,G•, x0)
φ̃ //

ψ̃

''OOOOOOOOOOO
( ˜Y,H•, φ(x0))

θ̃
��

( ˜Y ′,H ′, ψ(x0))whih is equivariant with respet to the ation of the orresponding fundamental groups.De�ne ΓY ⊂ Aut(( ˜Y,H•, φ(x0))), an embedding iφ : ΓY → Aut(( ˜X,G•, x0)) and put
Γφ = Im(iφ) ⊂ Aut(( ˜X,G•, x0)) as above, and de�ne Γψ in the same fashion. We laimthat Γφ = Γψ. Indeed, if u ∈ ΓY then Θ(u) ∈ ΓY ′ and for v ∈ ( ˜X,G•, x0) we have

iφ(u) · v = φ̃−1(u · φ̃(v)) = φ̃−1(θ̃−1(Θ(u) · θ̃(φ̃(v)))

= ψ̃−1(Θ(u) · ψ̃(v)) = iψ(Θ(u)) · v.We dedue that Γφ ⊂ Γψ. Replaing θ• by its inverse and exhanging the roles of ψ• and
φ• we obtain the reverse inlusion Γψ ⊂ Γφ. Thus Γψ = Γφ as desired.Proof of Proposition 1.7. It remains to show that the map φ• 7→ Γφ is the inversemap of m. To see this, let Γ′ ⊃ Γ be an overlattie of Γ. The quotient graph of groups
Γ\\T = (X,G•) is formed relative to some datum (R,S, gx); let us similarly hoose datum
(R′, S′, g′x) induing a quotient graph of groups (Y,H•) = Γ′\\T . Reall that by [S℄, �5.4,there are, for any x0 ∈ V X and y0 ∈ V Y , anonial isomorphisms Γ ≃ π1(X,G•, x0),
T ≃ ( ˜X,G•, x0) and Γ′ ≃ π1(Y,H•, y0), T ≃ ( ˜Y,H•, y0). Choosing furthermore someelements θx as in the proof of Lemma 1.8 we get a overing (see [B℄, Setion 4.2)

mΓ′

: (X,G•) → (Y,H•).10



>From [B℄, Proposition 4.2, the following diagrams ommute :
T

��

id // T

��

( ˜X,G•, x0)
gmΓ′

// ( ˜Y,H•, y0)

Γ

��

// Γ′

��
π1(X,G•, x0)

MΓ′

// π1(Y,H•, y0)where we denote MΓ′ the morphism of path groups indued by the overing mΓ′ .In partiular, the pullbak of π1(Y,H•, y0) via the omposition of isomorphisms T ≃

( ˜X,G•, x0)
gmΓ′

→ ( ˜Y,H•, y0) is equal to Γ′. This shows that φ• 7→ Γφ is a left inverse of
Γ′ 7→ mΓ′ .To prove the other diretion, let φ• : (X,G•) → (Y,H•) be a overing of (X,G•)and set Γ′ = Γφ ⊂ Aut(( ˜X,G•, x0)). Now let (Y ′,H ′

•) be the quotient graph of groupsassoiated as in Setion 1.1. to the ation of Γ′ on ( ˜X,G•, x0), relative to some hoies, andlet ψ• : (X,G•) → (Y ′,H ′) be a overing onstruted as in Setion 1.2. By onstrutionthere is an isomorphism ψ̃ : ( ˜X,G•, x0)
∼
→ ( ˜Y ′,H ′

•, ψ(x0)), equivariant with respet to anembedding Ψ : π1(X,G•, x0) →֒ π1(Y
′,H ′

•, ψ(x0)), and by the �rst part of the proof ofProposition 1.5., we have Γ′ = iψ(π1(Y
′,H ′

•, ψ(x0))). Thus, omposing ψ̃−1 with φ̃ and
Ψ−1 with Φ yields an isomorphism of trees θ̃ : ( ˜Y ′,H ′

•, ψ(x0))
∼
→ ( ˜Y,H•, φ(x0)) whih isequivariant with respet to an isomorphism Θ : π1(Y

′,H ′
•, ψ(x0))

∼
→ π1(Y,H•, φ(x0)). Atthis point, we use the following Lemma:Lemma 1.10 ([B℄, Prop. 4.4, Cor. 4.5.). Let (Z,K•) and (W,J•) be two graphs of groups.For any isomorphism of trees σ̃ : ( ˜Z,K•, z0)

∼
→ ( ˜W,J•, w0) whih is equvariant with respetto an isomorphism of fundamental goups Σ : π1(Z,K•, z0)

∼
→ π1(W,J•, w0) there existsa (unique) isomorphism of graphs of groups ω•(Z,K•) → (W,J•) suh that Σ̃ = ω̃ and

Σ = Ω.Using the above Lemma, we onlude that there exists an isomorphism θ• : (Y ′,H ′
•) →

(Y,H•) making the diagram
( ˜X,G•, x0)

φ̃ //

ψ̃

''OOOOOOOOOOO
( ˜Y,H•, φ(x0))

θ̃
��

˜(Y ′,H ′, ψ(x0))ommute. Hene the overings φ• and ψ• are indeed isomorphi as desired.11



Finally, we hek that the above bijetion sends an overlattie of index n to an n-sheeted overing. Let Γ′ be an overlattie of Γ of index n. We laim that mΓ is an
n′-sheeted overing with n = n′. Indeed, we have

n = [Γ′ : Γ] =
vol(Γ\\T )

vol(Γ′\\T )
=

∑
x∈V X

1
|Gx|

∑
y∈V Y

1
|Hy|

=

∑
y∈V Y

∑
x∈φ−1(y)

1
|Gx|

∑
y∈V Y

1
|Hy|

=

∑
y∈V Y

n′

|Gy|

∑
y∈V Y

1
|Hy|

= n′.Note that the �rst equality omes from the fat that T is a left Γ′-set (and Γ-set) with�nite stabilizers (see [BL℄, page 16).It follows from the above proposition that to �nd u(n), it su�es to ount the numberof isomorphism lasses of overings of faithful graphs of groups by (X,G•).2 Main results2.1 Let G be a group of order n and let n =
∏t
i=1 p

ki
i be the prime deomposition of

n. Let µ = µ(n) be the maximum of ki. We denote by d(G) the minimal ardinality of agenerating set of G and by f(n) the number of isomorphism lasses of groups of order n.In [P℄, Pyber showed that the number of isomorphism lasses of groups of order n witha given Sylow set, namely the set of Sylow pi-subgroups de�ned up to onjugay, is atmost n75µ+16. Together with the result of Sims ([Si℄), namely f(pk) ≤ p
2
27
k3+ 1

2
k

8
3 , we getthe following upper bound for f(n):

f(n) ≤
t∏

i=1

p
2
27
k3

i + 1
2
k
8/3
i

i n75µ+16

≤ n
2
27
µ2+ 1

2
µ5/3+75µ+16Let g(n) = 2

27µ
2(n) + 1

2µ
5/3(n) + 75µ(n) + 16 so that f(n) ≤ ng(n).On the other hand, Luhini and Guralnik showed that if every Sylow subgroup ofG an be generated by d elements, then d(G) ≤ d + 1 ([Lu℄, [Gu℄). Combining with thebasi fat that d(H) ≤ n for any group H of order pn ([Si℄), we dedue that

d(G) ≤ µ+ 1.Using these results, we obtain the following upper-bound for u(n).Theorem 2.1. Let Γ be a oompat lattie of Aut(T ). Then there are some positiveonstants C0 and C1 depending only on Γ, suh that
∀n > 1, uΓ(n) ≤ C0n

C1log2(n).12



Lemma 2.2. Any overing φ• = (φ, φx, γx) : (X,G•) → (Y,H•) is strongly isomorphi toa overing φ′• = (φ′, φ′x, γ
′
x) : (X,G•) → (Y ′,H ′

•) where γ′x ∈ Π(Y ′,H ′
•) is a produt of atmost 12 × diameter(X) generators hy ∈ H ′

y and e ∈ EY ′.Proof. Fix x0 ∈ X. Assoiated to φ• is a lattie Γ′ ⊂ Aut(( ˜X,G•, x0)) ontaining
π1(X,G•, x0). From (X,G•, x0) we onstrut (R,S, ge) suh that the quotient of ( ˜X,G•, x0)by π1(X,G•, x0) is exatly (X,G•). Namely, �rst �x a maximal tree τ inX. We may hoose
R = {e1 · · · en | e1 · · · en is a path from x0 inτ}, S = {e1 · · · enen+1 | e1 · · · en is a path in τ}and ge = e′1 · · · e

′
len+1

−1 · · · e1
−1 where e′1 · · · e′l is a path in τ from x0 to t(e), and where

e is the edge onneting e1 · · · en to e1 · · · en+1. In partiular, ge is a produt of at mosttwie the diameter of X number of generators of Π(X,G•). Now we hoose R′, S′ subsetsof R,S in suh a way that the restrition of the projetion ( ˜X,G•, x0) → Γ′\( ˜X,G•, x0) on
R′ is bijetive for verties (resp. the restrition of S′ is bijetive on edges). We also hoose
g′e in a similar fashion as above, hene g′e is also a produt of at most twie the diameterof X number of generators of Π(X,G•). From this data, we onstrut a graph of groups
(Y ′,H ′

•) as usual, and we have a anonial injetion Γ′ ⊂ Π(Y ′,H ′
•). For x ∈ X there existsa unique lift x̃ ∈ R and a unique x̃′ ∈ R′ in the Γ′−orbit of x̃. Choose θx ∈ Γ′ ⊂ Π(X,G•)suh that θx(x̃) = x̃′ and suh that θx is a produt of at most l(x̃, x̃0)+ l(x̃0, x̃′) generatorsof Π(X,G•): here l(a, b) is the distane in the tree R between a and b. This is possi-ble sine we may �rst hoose a path in the path group Π(X,G•) from x̃ to x̃0 of length

≤ l(x̃, x̃0) and then a path from x̃0 to x̃′ of length ≤ l(x̃0, x̃′). Observe that sine we hose
R′ ⊂ R, we have l(ỹ, w̃) ≤ diameter(X) for any verties w, y ∈ V X. We do the samething for edges in S, to de�ne θe ∈ Π1(X,G•) suh that θe(ẽ) = ẽ′ and θe is a produtof at most 2 × diameter(X) generators of Π(X,G•). Then we an onstrut from θx and
θe's a overing φ′• : (X,G•) → (Y ′,H ′

•), with γ′x = θ−1
x and γ′e = geθ

−1
e g−1

e′ , whih areboth produts of at most 6×diameter(X) generators of Π(X,G•). Observe that a word oflength l in generators of Π(X,G•) belonging to Γ′ is also expressible as a word of length lin generators of Π(Y ′,H ′
•). Finally, by the proposition on bijetion of isomorphism lassesof overings and overlatties, φ• : (X,G•) → (Y,H•) is isomorphi to φ′•.Proof of Theorem 2.1. Let us �x a quotient graph of groups (X,G•) of Γ as in setion 1.1.There exist only �nitely many overings of edge-indexed graphs by the edge-indexed graphsunderlying (X,G•), thus it is enough to show the assertion for the number of overlattieswith a �xed edge-indexed graph. Thus we want to ount n-sheeted overing graphs ofgroups φ• : (X,G•) → (Y,H•) suh that Y is a �xed subgraph (with �xed indies) of Xand φ : X → Y the natural projetion, and that the edge group He is a subgroup of Ho(e).Let cx = |Gx| for any x in V X ∪ EX and let cy = (

∑
x∈φ−1(y)

c−1
x )−1. By the de�nitionof n-sheeted overing, the ardinality |Hy| = ncy, for any y in V Y ∪EY .Now we laim that for any group H of order n, there are at most (m!)µ(n)+1 subgroups13



of index m. For to any transitive H-ation on the set {1, · · · ,m}, we an assoiate asubgroup of H with index m, namely the stabilizer of 1. This map {ρ : H → Sm} −→

{H ′ ⊂ H|[H : H ′] = m} is surjetive sine for any subgroup H ′ of H with index m, theation of H on the osets H/H ′ gives (among many) an ation on {1, · · · ,m}, where welet 1 stand for the trivial oset H ′. Again by the theorem of Luini and Guralnik, thereare at most (m!)µ(n)+1 transitive H-ation on the set {1, · · · ,m}, as laimed.There are at most ∏
y∈V Y (cyn)g(cyn) isomorphism lasses of Hy's. By the above laim,the number of subgroups αf (Hf ) of Hy is at most ((cy/cf )!)

µ(cyn)+1. There are at most∏
f∈EY (cfn)µ(cfn)+1 isomorphisms ϕ : αfHf → αf̄Hf and at most ∏

x∈V X(cφ(x)n)µ(cx)+1injetions φx : Gx → Hφ(x). By Lemma 2.2, there are at most (maxy|Hy|)
12K hoies foreah γx or γe, where K = diameter of X. Hene

#{(γx, γe)} ≤
∏

x∈V X

maxy∈V Y (cyn)12K ×
∏

e∈EX

maxy∈V Y (cyn)12Kwhih is bounded by (Mn)(12K)(|V X|+|EX|).Note that by the ondition of injetivity and the ommutativity of the diagram,
Ge

φe

��

αe // Gx

φx

��
Hφ(e)

ad(γ−1
x γe)◦αφ(e)// Hφ(x)the group morphism φe : Ge → Hφ(e) is ompletely determined by the morphism

φx : Gx → Hx.Let M = max
y∈V Y ∪EY

cy, µ = µ(Mn). Let c0 = |V Y |, c1 = |EY |, c2 = max
{f∈EY }

{
( co(f)

cf

)
!},let c3 =

∑
x∈V X

µ(cx) + 1. Combining all the estimates above, we get the following upperbound for u(n),
uΓ(n) ≤

∏

y∈V Y

(cyn)g(cyn)
∏

x∈V X

(cφ(x)n)µ(cx)+1
∏

f∈EY

(cfn)µ(cfn)+1

∏

f∈EY

((co(e)/ce)!)
µco(e)n+1

· ((Mn)12K(|V X|+|EX|))

≤
∏

y∈V Y

(Mn)g(Mn)
∏

x∈V X

(Mn)µ(cx)+1
∏

f∈EY

(Mn)µ(Mn)+1

∏

f∈EY

(c2)
µMn+1 · ((Mn)12K(|V X|+|EX|))

≤(Mn)c0g(Mn)+c3+c1(µ(Mn)+1)(c2)
c1(µ(Mn)+1)(Mn12K(|V X|+|EX|))

≤(Mn)
2
27
c0µ2+

c0
2
µ5/3+(75c0+2c1)µ+(16c0+2c1+c3)c

c1(µ+1)
2 ((Mn)12K(|V X|+|EX|))

≤(C0n)C1µ2
≤ (C0n)C

′

1(logn)2 14



where C0 = max{M, c2}, C1 = c0
(

2
27 + 1

2 + 75 + 16 + 2
)

+ 6c1 + c3 + 12K(|V X| + |EX|)and C ′
1 = C1

(log 2)2
.2.2. Let p be a prime number. >From now on, we assume that T is a 2p-regular treeand that Γ is a oompat lattie in Aut(T ) with a quotient graph of groups given by

Z/pZ {1}The aim of this setion is to give, in this situation, a smaller upper bound on uΓ(n)than the previous one, as well as a lower bound.Theorem 2.3. Let n = pk00 p
k1
1 · · · pkt

t be the prime deomposition of n with p0 = p. Thenthere exist positive onstants c0, c1 suh that lim sup
k0→∞

uΓ(n)

nc1 log n ≤ c0. For n = pk00 (k0 ≥ 3), wealso have uΓ(n) ≥ n
1
2
(k−3).In the following lemma, we denote by [g, h] the ommutator ghg−1h−1 in G.Lemma 2.4. Let A = (as,t)1≤s,t≤k−1 be a lower triangular matrix with oe�ients in

0, · · · , p − 1 and G = G(A) be a group de�ned by the generators ḡ0, ḡ1, · · · , ḡk and thefollowing relators
ḡpi = 1, i = 0, 1, · · · , k

[ḡi, ḡi+1] = 1, i = 0, 1, · · · , k − 1

[ḡi, ḡi+2] = ḡ
a1,1

i+1 , i = 0, 1, · · · , k − 2 (**)
[ḡi, ḡi+3] = ḡ

a2,1

i+1 ḡ
a2,2

i+2 , i = 0, 1, · · · , k − 3...
[ḡi, ḡi+k] = ḡ

ak−1,1

i+1 ḡ
ak−1,2

i+2 · · · ḡ
ak−1,k−1

i+k−1 , i = 0Then any element of G an be written as ḡi00 · · · ḡikk where 0 ≤ ij < p.Proof. We proeed by indution on k ≥ 1. It is lear for the ase k = 1 sine thegenerators ḡ0 and ḡ1 ommute. Now suppose that the assertion is true for all k ≤ m− 1.For k = m, onsider the subgroup G1 generated by ḡ0, ḡ1, · · · , ḡm−1. It is a quotientof G(A′) with A′ = (as,t)1≤s,t≤k−2, by indution hypothesis, any element of G1 an bewritten as ḡi00 · · · ḡ
im−1

m−1 where 0 ≤ ij < p. Now we only need to onsider the elements of
G − G1. By an easy indution, it su�es to onsider the elements ḡmḡi = [ḡi, ḡm]−1ḡiḡmfor i = 0, 1, · · · ,m− 1. Sine [ḡi, ḡm] ∈ [G,G] ⊂ G1, the element [ḡi, ḡm]−1ḡi is an elementin G1, thus an be expressed as ḡi00 ḡi11 · · · ḡ

im−1

m−1 for some ij in {0, · · · , p− 1}. Therefore weget ḡmḡi = ḡi00 · · · ḡ
im−1

m−1 ḡm. 15



Lemma 2.5. Let G be a group of order pk+1(k ≥ 1), G1 and G2 be two isomorphisubgroups of index p in G and ϕ be an isomorphim from G1 to G2. Suppose that G1ontains no subgroup N whih is normal in G and ϕ-invariant. Then(a) there exist elements gi in G for i = 0, · · · , k, suh that ϕ(gi) = gi+1 for i = 0, · · · , k−

1, G = 〈g0, · · · , gk〉 and G1 = 〈g0, · · · , gk−1〉,(b) There exists a lower triangular matrise A with oe�ients in 0, · · · , p − 1 suh thatthe map ψ : G(A) → G de�ned by ḡi 7→ gi is well-de�ned and is an isomorphism.Proof. We proeed by indution on k ≥ 1, using the fat that any maximal proper subgroupof a p-group is normal, see for instane [Su℄.We �rst onsider the ase k = 1, that is when G has order p2. Sine G1 and G2are maximal, they are normal. Thus they are not equal by the normality assumptionand G = 〈G1, G2〉. Let g0 be an element in G1 − G2 and set g1 = ϕ(g0). Then learly
G1 = 〈g0〉, G2 = 〈g1〉 and G = 〈g0, g1〉. Moreover, sine |G| = p2, G is abelian [Su℄. Thus
[g0, g1] = 1 and G = {gi00 g

i1
1 : 0 ≤ i0, i1 ≤ p− 1}, whih shows that ψ in (b) is well-de�nedand surjetive. Sine G(A) has ardinality at most p2 by Lemma 2.3, and G has ardinality

p2, the map ψ is an isomorphism.Now suppose that the assertion is true for all k < m. For k = m, onsider G,G1, G2and ϕ as in the statement of the lemma. As above, G1 and G2 are normal, distint and
G = 〈G1, G2〉. Sine [G2 : G2 ∩ G1] ≤ [〈G1, G2〉 : G1] = p, we have [G2 : G1 ∩ G2] = pand similarly [G1 : G1 ∩G2] = p. Therefore G1 ∩G2 is maximal, thus normal in G1 and
G2. Sine G is generated by G1 and G2, the subgroup G1 ∩ G2 is normal in G. By theassumption, ϕ(G1 ∩G2) 6= G1 ∩G2.Claim. If a subgroup N of G1∩G2 is normal in G2 and ϕ-invariant, then N is normal in G.

G

qqqqqq

MMMMMM

G1

KKKKK

ϕ // G2

sssss
NNNN

NN

G1 ∩G2

LLLLL

ϕ // ϕ(G1 ∩G2)

oooooo

NProof. Consider gNg−1, for any g ∈ G1. As ϕ(gNg−1) = ϕ(g)ϕ(N)ϕ(g)−1 = ϕ(g)Nϕ(g)−1 =

N (sine ϕ(g) ∈ G2) and ϕ is an isomorphism, we dedue that gNg−1 = ϕ−1(N) = N .Therefore G1 ⊆ NG(N) and similarly G2 ⊆ NG(N). Thus G, as a group generated by G1and G2, is also ontained in NG(N). Hene N is normal in G.By the above laim, we an use the indution hypothesis on G′ = G2, G′
1 = G1 ∩ G2,

G′
2 = ϕ(G1 ∩G2) and ϕ′ = ϕ|G1∩G2 . It follows that there is an element g1 in G2 suh that

G2 = 〈g1, · · · , gm〉, G1 ∩G2 = 〈g1, · · · , gm−1〉 and ϕ(gi) = gi+1 for i = 1, · · · ,m− 1.16



Let g0 = ϕ−1(g1). If g0 ∈ G1 ∩G2, then g1 ∈ ϕ(G1 ∩G2), whih ontradits G1 ∩G2 6=

ϕ(G1 ∩G2). Thus g0 is an element of G1 −G2. Sine G2 is maximal in G, the group G isgenerated by G2 and g0, i.e., G = 〈g0, g1, · · · , gm〉. It is lear that G1 = 〈g0, · · · , gm−1〉 as
G1 ∩G2 is maximal in G1 and g0 ∈ G1 − (G1 ∩G2).To prove the assertion (b), note that [g0, gi] = ϕ−1([g1, gi+1]) = ϕ−1(g

ai,1

2 · · · g
ai,i

i ) =

g
ai,1

1 · · · g
ai,i

i−1 for 1 ≤ i ≤ m − 1 and gip = 1, for all i ≥ 1 by indution hypothesis. Thuswe only need to onsider [g0, gm] and g0p. The element g0 learly has order p sine ϕ is anisomorphism and g1 = ϕ(g0) has order p. It is easy to see that if two subgroups H and Kare normal subgroups of a group G, then so is the ommutator subgroup [H,K] and wehave [H,K] ⊂ H ∩K. Sine g0 ∈ G1 and gm ∈ G2, it follows that [g0, gm] ∈ G1 ∩ G2 =

〈g1, g2, · · · , gm−1〉, whih proves that ψ is a well-de�ned homomorphism. By the previousparagraph, it is surjetive. Sine G and G(A) are of ardinality pk+1 and at most pk+1respetively, the map ψ is an isomorphism.Proof of Theorem 2.2. By Proposition 1.2, the number un is the number of isomorphismlasses of n-sheeted overings of faithful graphs of groups φ• : Γ\\T → (X,G•). As alreadyseen, we may assume that X = Γ\T . The following ommutative diagram summarizes thedata de�ning φ•:
1

��

// Z/pZ

��
Ge

αe //
αe

// GxLet's �rst onsider the ase when n = pk. Let G = Gx, G1 = αe(Ge) and G2 = αe(Ge).By the ondition of faithfulness, G1 and G2 are distint as they are normal subgroups of
G. Hene if we let ϕ = αē ◦ α

−1
e : G1 → G2, then ϕ is an isomorphism and there is nosubgroup of G1 whih is normal in G and ϕ-invariant. Thus we an use Lemma 2.4 to�nd an element g0 in Gx suh that Gx = 〈g0, g1, · · · gk〉 where ϕ(gj) = gj+1. Moreover, thegroup G is isomorphi to G(A), whih is determined by A. (note that A also determines

Ge and the maps αe and αē.) Thus we have at most pPk−1
j=0 j hoies for Gx, Ge, αe and αē,whih is exatly the number of hoies of (ast)1≤t≤s≤k−1. One we have �xed Gx, Ge, αeand αē, an injetion i from Z/pZ into Gx is determined by the image of a generator in thedomain, whih implies that we have at most |Gx| = pk+1 hoies for i. Therefore we havean upper bound uΓ(n) ≤ p

Pk−1
j=1 jpk+1 = p

(k−1)k
2

+k+1 = p
k2+k+2

2 .Now let us onstrut non-isomorphi lasses of faithful overing graph of groups todedue a lower bound of u(n). Fix a lower triangular matrix A = (ast) 1 ≤ t ≤ s ≤ k − 1with oe�ients in 0, · · · , p − 1 suh that furthermore ak−1,j = 0 for j = 0, · · · , k − 1.Let Gx = G(A) be the group de�ned in Lemma 2.3, and de�ne the overing graph ofgroups φ• = φ•(A) : Γ\\T → G• as follows. Let Ge be the subgroup of Gx generatedby ḡ0, · · · , ḡk−1. Let the injetion αe be the inlusion map and the other inlusion αē17



be de�ned by αē(ḡi) = ḡi+1 ∈ Gx, whih is indeed a monomorphism by the de�nition of
G(A). Therefore, the group morphism ϕ = ϕA de�ned by ϕ(ḡi) = ḡi+1 is an isomorphismfrom αe(Ge) onto αē(Ge). The data G• thus de�nes a faithful graph of groups, as thereis no ϕ-invariant subgroup of Ge. Indeed, for any nontrivial element h = ḡ

ij0
j0

· · · ḡ
ijt
jtin Ge (with nonzero ijt), ϕk−jt(h) = ḡ

ij0
j0+k−jt

· · · ḡ
ijt
k /∈ Ge. Let v be a generator of

Z/pZ and set φx(v) = ḡ0ḡk. This de�nes a group monomorphism φx : Z/pZ → Gx, as
φx(v)

p = (ḡ0ḡk)
p = ḡp0 ḡ

p
k = 1. The map φx is learly injetive sine the order of g0gk is p.Thus we have onstruted a overing of graphs of groups. Now suppose that the overingsof graphs of groups φ•(A) and φ•(A′) : Γ\\T → (X,G′

•) are isomorphi. Let us denote by
ψ : (X,G•) → (X,G′

•) an isomorphism between them. Then there exists a ommutativediagram as follows:
α′

eαe

ψe

ψx

G′

x

G′

e

Z/pZ

1
Gx

GeSine ψe (respetively ψē) is a group isomorphism from G1 = αe(Ge) to G′
1 = αe(G

′
e)(respetively from G2 = αē(Ge) to G′

2 = αē(G
′
e)), it follows that ψx maps the followinghierarhy to the orresponding one in G′.

G

qqqqqq

MMMMMM

G1

KKKKK
G2

sssss
NNNN

NN

G1 ∩G2

NNNNN
ϕ(G1 ∩G2)

mmmmm

. . .In partiular, ψx preserves the smallest group in the hierarhy, i.e. ψx(〈gk〉) = 〈g′k〉. Let bbe an element in 0, · · · , p− 1 suh that ψx(gk) = g′k
b. The map ψx is ompletely determinedsine ψx(gi) = g′i

b for i = 0, · · · , k. In other words, if A and bA′ are not equivalent modulo
p for any integer b = 0, · · · , p − 1, then φ•(A) and φ•(A

′) are non-isomorphi overings.This implies that there are at least p
Pk−2

i=1
i

p non-isomorphi overing graphs of groups givenby the above examples φ•(A) with �non-homotheti� A = (ai,j)'s. Therefore we have alower bound un ≥ p
Pk−2

i=1
i

p = p
k2

−3k
2 .Now let's onsider the general ase. Reall that |Ge| =

∏t
i=0 p

ki
i and |Gx| =

∏t
i=0 p

ki
i p =

pk0+1
0

∏t
i=1 p

ki
i , thus the order of the Sylow pi-subgroup of Ge and that of Gx are the samefor all i 6= 0. Let G(pi)

e be a Sylow pi-subgroup of Ge. For i 6= 1, let G(pi)
x = αe(G

(pi)
e ).Choose one p-Sylow subgroup G(p)

x of Gx ontaining αe(G(p)
e ).We are now going to show that the faithfulness ondition is inherited to the Sylow

p-subgroups G(p)
e , G(p)

x of Ge and Gx, from whih we an use the upper bound given in the18



�rst part of the proof. Conjugating αe by an element of Gx, if neessary, we may assumethat αe(G(p)
e ) ⊂ G

(p)
x , thus we have the following diagram:

Ge
αe //
αe

// Gx

G
(p)
e

?�

OO

αe //
αe

// G
(p)
x

?�

OO

Suppose that N ⊳ G
(p)
e and N = αe(N) = αē(N) ⊳ G

(p)
x . Let N = 〈gNg−1 : g ∈ Ge〉(respetively N = 〈gN g−1 : g ∈ Gx〉) be the smallest normal subgroup of Ge (respetively

Gx) ontaining N (respetively N ).Note that αi (i = e, e) indues a bijetion between left osets
Ge/G

(p)
e −→ Gx/G

(p)
x

gG(p)
e 7−→ αi(g)G

(p)
x .For sine αi is injetive, if gG(p)

e is mapped to G(p)
x , then g is in αi(Ge)∩G(p)

x , whih is a p-group in αi(Ge) ontaining αi(G(p)
e ). Sine αi(G(p)

e ) is a Sylow p-subgroup, αi(G(p)
e )∩G

(p)
xis equal to αi(Ge). Thus αi(g−1h) is ontained in G(p)

x if and only if g−1h ∈ G
(p)
e and themap is injetive. It is surjetive sine the soure and the target have the same ardinality.Thus any element g in Gx an be written as αi(g′)hi for some g′ ∈ Ge, hi ∈ G
(p)
x and wehave gN g−1 = αi(g

′)hiNh−1
i αi(g

′−1) = αi(g
′)Nαi(g

′−1) (i = 1, 2). Therefore α1(N ) =

α2(N) = N and it is normal in Gx. As a onsequene, G(p)
e and G(p)

x satisfy the ondition offaithfulness, i.e., there is no subgroup N of G(p)
e suh that αe(N) = αē(N) is normal in G(p)

x .By the �rst part of the proof, this implies that the number of hoies for G(p)
x , G

(p)
e , αe|G(p)

eand αē|G(p)
e

is at most p k2
0+k0+2

2 .Sine all the other G(pi)
e and G

(pi)
x have �xed ardinality, we have a onstant totalnumber of hoies for them and the injetions αe|Gpi

e , say c0. Reall that one all the
G

(pi)
x 's and G(pi)

e 's are hosen, the number of Gx with a given �xed Sylow system is at most
(pn)75µ(pn)+16([P℄). Reall also that the injetions αe are determined by its restrition toSylow subgroups of Ge sine they generate the group. Finally we have the following upperbound.

un ≤ c0p
(k0+1)2+(k0+1)+2

2 (pn)75µ(pn)+16 ≤ c0(c1)
k2
0+5k0+8

2 (pn)75µ+16where c1 = p and µ = µ(pn).Remark. It follows from the proof above that eah prime fator of |Gx| is less than orequal to p, thus in the ase p = 2, u(n) = 0 if n is not a power of 2.Referenes[B℄ H. Bass, Covering theory for graphs of groups, J. Pure Appl. Alg. 89, (1993) 66-67.19
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