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Abstract

To study fine properties of certain smooth approximations uε to a viscosity solution
u of the infinity Laplacian PDE, we introduce Green’s function σε for the linearization.
We can then integrate by parts with respect to σε and derive various useful integral
estimates.

We are in particular able to use these estimates (i) to prove the everywhere differ-
entiability of u and (ii) to rigorously justify interpreting the infinity Laplacian equation
as a parabolic PDE.

1 Introduction

1.1 Basic equations. In this paper we consider the boundary value problem

(1.1)

{
−∆∞u = 0 in U

u = g on ∂U ,

where U ⊆ Rn is an open set, g : ∂U → R is Lipschitz continuous, and we write

∆∞u := uxiuxjuxixj

for the degenerate nonlinear infinity-Laplacian operator. Since the unique viscosity solution
of (1.1) need not be smooth, we will study also the regularization:

(1.2)

{
−∆∞u

ε − ε∆uε = 0 in U

uε = g on ∂U .
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Assume now that V ⊂⊂ U is a compactly contained open subset, with smooth boundary.
For each point x0 ∈ V we introduce also this linear problem:

(1.3)

{
−(uεxiu

ε
xj
σε)xixj + 2(uεxiu

ε
xixj

σε)xj − ε∆σε = δx0 in V

σε = 0 on ∂V .

Here δx0 denotes the Dirac measure at x0.

Notation. We will write

(1.4) Lεv := −uεxiu
ε
xj
vxixj − 2uεxiu

ε
xjxj

vxj − ε∆v

for the linearization of (1.2), and

(1.5) L∗εw := −(uεxiu
ε
xj
w)xixj + 2(uεxiu

ε
xjxj

w)xi − ε∆w

for its adjoint. Thus (1.3) says

(1.6) L∗εσ
ε = δx0 in V ,

and so σε is Green’s function for the linear elliptic operator Lε.

We will employ the functions σε to extract information about the limiting behavior of uε

as ε→ 0 and thus about the solution u of (1.1). The main new advances are a proof that u
is everywhere differentiable and a rigorous interpretation of the infinity Laplace equation as
a parabolic PDE, at least generically. Our companion paper [E-S] provides a simpler proof
of the everywhere differentiability, employing only the maximum principle. This alternative
proof was inspired by the adjoint methods set forth here, which however provide much more
detailed information, as we will see.

Introducing the adjoint PDE (1.3) is inspired by the first author’s recent paper [E1] on
nonconvex Hamilton-Jacobi equations and also by various techniques for the PDE approach
to weak KAM theory (see [E2]). Savin [S] proved for n = 2 dimensions that the viscosity
solution u of (1.1) is in fact C1.

2 Solving the approximating PDE

2.1 Estimates for uε. We record some first bounds, uniform in ε, proved in our other
paper [E-S]:

THEOREM 2.1 (i) There exists a unique solution uε of the (1.2), smooth on Ū . Further-
more, we have the estimates

(2.1) max
Ū
|uε| ≤ C,
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and for each open set V ⊂⊂ U

(2.2) max
V̄
|Duε| ≤ C.

Both constants are independent of ε and the constant in (2.3) depends upon dist(V, ∂U) > 0.
(ii) We have

(2.3) uε → u locally uniformly on Ū ,

where u is the unique viscosity solution of the boundary value problem (1.1).

2.2 The adjoint problem.

THEOREM 2.2 There exists a unique solution σε of the linear adjoint problem (1.3),
smooth on V̄ − {x0}. Furthermore,

(2.4) σε ≥ 0 in V .

Proof. 1. According to the maximum principle, the only solution of{
Lεv = 0 in V

v = 0 on ∂V

is v ≡ 0. Thus 0 is not an eigenvalue of the operator Lε and is consequently not an eigenvalue
of L∗ε. The existence of Green’s function σε solving (1.3) follows from standard linear elliptic
PDE theory, and σε is smooth away from the singularity at x0.

2. Given a smooth, nonnegative function f , we introduce the solution wε of the linear
boundary value problem

(2.5)

{
Lεw

ε = 0 in V

wε = 0 on ∂V .

Owing to the maximum principle, wε ≥ 0. We multiply the PDE in (2.5) by σε and integrate
by parts: ∫

V

fσε dx = wε(x0) ≥ 0.

This inequality is valid for all smooth f ≥ 0 and consequently σε ≥ 0. �
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3 Integral identities, more estimates

3.1 A first integral identity. The following integral estimate will be useful later:

THEOREM 3.1 (i) For each smooth function Φ : Rn → R we have the identity

(3.1) Φ(Duε(x0)) +

∫
V

Φpkpl(Du
ε)(uεxiu

ε
xixk

uεxju
ε
xjxl

+ εuεxixlu
ε
xixk

)σε dx =

∫
∂V

Φ(Duε)ρε dS

for

(3.2) ρε :=
((

∂uε

∂ν

)2
+ ε
)
|Dσε|.

(ii) In particular,

(3.3)

∫
∂V

ρε dS = 1

and

(3.4) Duε(x0) =

∫
∂V

Duερε dS.

(iii) We have this estimate for the second derivatives of uε:

(3.5)

∫
V

(|D2uεDuε|2 + ε|D2uε|2)σε dx ≤ C,

the constant C independent of ε.

Observe that the density ρε = ρεx0 depends upon σε and thus upon our choice of the point
x0 ∈ V . Also, take note that although (3.4) resembles a linear representation formula for
Duε(x0), in fact ρε depends in a highly nonlinear and nonlocal way upon Duε and D2uε.

Proof. 1. Differentiate the PDE (1.2) with respect to xk:

Lεu
ε
xk

= −uεxiu
ε
xj
uεxkxixj − 2uεxiu

ε
xixj

uεxkxj − ε∆u
ε
xk

= 0.

Multiply by Φpk(Du
ε), sum on k and rewrite, to discover that

LεΦ = −uεxiu
ε
xj

Φxixj − 2uεxiu
ε
xixj

Φxj − ε∆Φ = −Φpkpl(u
ε
xi
uεxixku

ε
xj
uεxjxl + εuεxixlu

ε
xixk

),

where Φ = Φ(Duε). We next multiply by σε and integrate by parts twice. Recalling that
σε = 0 on ∂V and remembering the PDE (1.3), we discover that

Φ(Duε(x0)) +

∫
V

Φpkpl(Du
ε)(uεxiu

ε
xixk

uεxju
ε
xjxl

+ εuεxixlu
ε
xixk

)σε dx

= −
∫
∂V

Φ(Duε)((uεxiu
ε
xj
σε)xi + εσεxj)ν

j dS,
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where ν = (ν1, . . . , νn) denotes the outward pointing unit normal along ∂V . Again noting
σε = 0 on ∂V , we observe that∫

∂V

Φ((uεxiu
ε
xj
σε)xi + εσεxj)ν

j dS =

∫
∂V

Φ(uεxiu
ε
xj
σεxi + εσεxj)ν

j dS = −
∫
∂V

Φρε dS,

since ν = − Dσε

|Dσε| . This proves (3.1).

2. The formulas (3.3) and (3.4) are special cases of (3.1), corresponding to Φ ≡ 1 and
Φ = pk (k = 1, . . . , n). The estimate (3.5) follows from the choice Φ = |p|2 and from (3.3).

�

3.2 A first estimate on the L1 norm of σε. As an application of (3.3) and (3.5), we
derive a rough estimate on the integral of σε:

THEOREM 3.2 There exists a constant C such that

(3.6)

∫
V

σε dx ≤ C

ε2
.

In general we do not have an L1 bound for σε that is independent of ε. For example,
if u = uε ≡ 0, then σε is 1/ε times Green’s function for the Laplacian, in which case
||σε||L1 = O(1/ε). See the later Theorem 3.5 for a more refined estimate.

Proof. Let v := |x|2. Then according to (1.4),

Lεv := −uεxiu
ε
xj
vxixj − 2uεxiu

ε
xixj

vxj − ε∆v = −2(|Duε|2 + nε)− 4uεxiu
ε
xixj

xj.

Therefore

|x0|2 =

∫
V

vL∗εσ
ε dx

=

∫
V

Lεvσ
ε dx+

∫
∂V

|x|2ρε dS

= −2

∫
V

(|Duε|2 + nε)σε dx− 4

∫
V

uεxiu
ε
xixj

xjσ
ε dx+

∫
∂V

|x|2ρε dS.

Rearranging, we deduce that∫
V

(2|Duε|2 + 2nε)σε dx ≤ C + C

∫
U

|D2uεDuε|σε dx

≤ C +
C

ε

∫
V

|D2uεDuε|2σε dx+ nε

∫
V

σε dx

≤ C

ε
+ nε

∫
V

σε dx,
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according to (3.3) and (3.5). This gives (3.6). �

3.3 An exponential estimate. It is clear that when Φ is convex, the second term on the
left hand side of (3.1) is nonnegative. One of our main observations is that this identity can
provide useful information for certain nonconvex functions Φ, namely those of the form

(3.7) Φ(p) = φ(|p|2)

where φ : R→ R is possibly decreasing. We write φ = φ(q).

THEOREM 3.3 (i) For each smooth φ we have the identity

(3.8)

φ(|Duε(x0)|2) + 2

∫
V

φ′(|Duε|2)(|D2uεDuε|2 + ε|D2uε|2)σε dx

=

∫
∂V

φ(|Duε|2)ρε dS − 4

∫
V

φ′′(|Duε|2)((ε∆uε)2 + ε|D2uεDuε|2)σε dx.

(ii) There exists a constant µ > 0 for which

(3.9)

∫
∂V

εe
µ(α2

ε−|Du
ε|2)

ε ρε dS +

∫
V

e
µ(α2

ε−|Du
ε|2)

ε (|D2uεDuε|2 + ε|D2uε|2)σε dx ≤ Cε,

where

(3.10) αε := |Duε(x0)|.

Notice that φ′′ occurs only within the last term in (3.8), and that this expression is O(ε),
according to (3.5).

We will see later that if lim infε→0 |Duε(x0)| > 0, the exponential bound (3.9) implies
that uε(x0) and Duε(x0) are determined up to small errors by the boundary data on ∂V
only at points where |Duε| ≥ |Duε(x0)|. That this is should be so is suggested by our
heuristic interpretation in §7 of the infinity Laplacian PDE as a parabolic equation, with
“time-like” direction −D2uDu = −1/2D(|Du|2). Therefore the values of u(x0) and Du(x0)
should be determined only by boundary data “earlier in time”, that is, at points on ∂V
where |Du| ≥ |Du(x0)|.

Proof. 1. Plug the expression (3.7) into the identity (3.1), to find

φ(|Duε(x0)|2)+2

∫
V

φ′(|Duε|2)(|D2uεDuε|2 + ε|D2uε|2)σε dx

=

∫
∂V

φ(|Duε|2)ρε dS − 4

∫
V

φ′′(|Duε|2)((∆∞u
ε)2 + ε|D2uεDuε|2)σε dx

=

∫
∂V

φ(|Duε|2)ρε dS − 4

∫
V

φ′′(|Duε|2)((ε∆uε)2 + ε|D2uεDuε|2)σε dx,
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according to the PDE (1.2).

2. To establish the exponential estimate (3.9), we take

(3.11) φ(q) = εe
µ(α2

ε−q)
ε ,

µ > 0 to be selected. Then φ(|Duε(x0)|2) = ε according to (3.10). Combining the two terms
in (3.8) involving integration over V , we compute∫

V

−2φ′(|D2uεDuε|2 + ε|D2uε|2)σε − 4φ′′((ε∆uε)2 + ε|D2uεDuε|2)σε dx

=

∫
V

(
2µ(|D2uεDuε|2 + ε|D2uε|2)− 4µ2(ε(∆uε)2 + |D2uεDuε|2)

)
e
µ(α2

ε−|Du
ε|2)

ε σε dx

=

∫
V

(
(2µ− 4µ2)|D2uεDuε|2 + εµ(2|D2uε|2 − 4µ(∆uε)2)

)
e
µ(α2

ε−|Du
ε|2)

ε σε dx

≥ γ

∫
V

(
|D2uεDuε|2 + ε|D2uε|2

)
e
µ(α2

ε−|Du
ε|2)

ε σε dx

for some positive constant γ, provided we fix µ > 0 sufficiently small. �

3.4 A second integral identity. The identity (3.4) represents Duε(x0) as an integral of
Duε over ∂V with respect to the density ρε. We will see next that provided |Duε(x0)| is
bounded away from zero, there is a corresponding, but approximate, formula for uε(x0)

THEOREM 3.4 (i) For each smooth function ψ : R→ R we have the indentity

(3.12)

ψ(uε(x0)) +

∫
V

ψ′′(uε)(|Duε|4 + ε|Duε|2)σε dx

=

∫
∂V

ψ(uε)ρε dS + 2ε

∫
V

∆uεψ′(uε)σε dx.

(ii) If

(3.13) lim inf
ε→0

|Duε(x0)| > 0,

then the last term on the right of (3.12) is O(ε
1
2 ). In particular,

(3.14) uε(x0) =

∫
∂V

uερε dS +O(ε
1
2 ).

(iii) Furthermore, (3.13) implies the estimate

(3.15)

∫
V

(|Duε|4 + ε|Duε|2)σε dx ≤ C.
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The constant C in (3.15) depends upon a positive lower bound for αε := |Duε(x0)|.

Proof. 1. Multiply the PDE (1.2) by ψ′(uε) amd rewrite, to discover that

−uεxiu
ε
xj
ψxixj − ε∆ψ = −ψ′′(|Duε|4 + ε|Duε|2),

where ψ = ψ(uε). Next multiply by σε and integrate by parts. Similarly to the previous
proof, we learn that

ψ(uε(x0)) +

∫
V

ψ′′(uε)(|Duε|4 + ε|Duε|2)σε dx =

∫
∂V

ψ(uε)ρε dS − 2

∫
V

uεxiu
ε
xixj

ψxjσ
ε dx.

The last integral term is∫
V

uεxiu
ε
xixj

ψxjσ
ε dx =

∫
V

uεxiu
ε
xj
uεxixjψ

′(uε)σε dx = −ε
∫
V

∆uεψ′(uε)σε dx,

according to the PDE (1.2).

2. Our task now is to estimate the last term in (3.12), under the assumption (3.13). The
main issue is that we do not yet have an L1 estimate for σε that is independent of ε.

We first consider the case that ψ(z) = z2

2
. Take ε so small that

αε ≥ α > 0

for some fixed number α. The identity (3.12) for ψ(z) = z2

2
reads

(3.16)
1

2
(uε(x0))2 +

∫
V

(|Duε|4 + ε|Duε|2)σε dx =
1

2

∫
∂V

(uε)2ρε dS + 2ε

∫
V

∆uεuεσε dx.

We write the last integral as

(3.17)
2ε

∫
V

∆uεuεσε dx = 2ε

∫
V ∩{|Duε|≥α

2
}

∆uεuεσε dx− 2

∫
V ∩{|Duε|<α

2
}

∆∞u
εuεσε dx

=: A+B.

We estimate

(3.18)

|A| ≤ εC

∫
V ∩{|Duε|≥α

2
}

|D2uε|σε dx

≤ ε
1
2C

(∫
V

ε|D2uε|2σε dx
) 1

2

(∫
V ∩{|Duε|≥α

2
}

σε dx

) 1
2

≤ ε
1
2C

(∫
V

|Duε|4σε dx
) 1

2

≤ 1

2

∫
V

|Duε|4σε dx+ Cε.
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The third inequality above follows from (3.5). Furthermore,

(3.19)

|B| ≤ C

∫
V ∩{|Duε|<α

2
}

|Duε||D2uεDuε|σε dx

≤ C

(
ε

∫
V

|Duε|2σε dx
) 1

2

(
1

ε

∫
V ∩{|Duε|<α

2
}

|D2uεDuε|2σε dx

) 1
2

≤ C

(
ε

∫
V

|Duε|2σε dx
) 1

2

e
−3µα2

8ε

≤ ε

2

∫
V

|Duε|2σε dx+ Ce
−γ
ε ,

for some γ > 0. We used the exponential estimate (3.9) for the third inequality in this
calculation.

Employing the estimates (3.18) and (3.19) in (3.17) and (3.16), we derive the bound
(3.15). Returning again to (3.18) and (3.19), and now using (3.15) in the next-to-last lines,
we deduce that

|A|+ |B| ≤ Cε
1
2 + Ce−

γ
ε = O(ε

1
2 ).

This proves assertion (ii) for ψ(z) = z2

2
and the general case follows at once from the

foregoing estimates. �

3.5 An improved L1 estimate for σε. We derive next a uniform L1 estimate for σε,
under the assumption that the terms |Duε(x0)| are bounded away from zero. This will be
much more useful than the crude bound (3.6).

THEOREM 3.5 (i) There exists a constant µ > 0 such that for each 0 < β < αε, we have

(3.20)

∫
V ∩{|Duε|≤β}

σε dx ≤ C

ε
e
µ(β2−α2

ε)

ε ,

where αε := |Duε(x0)|.

(ii) If

(3.21) lim inf
ε→0

|Duε(x0)| > 0,

we have the uniform L1 bound

(3.22)

∫
V

σε dx ≤ C.
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Proof. 1. Let Φ(p) = φ(|p|2) for φ(q) = εe
µ(α2

ε−q)
ε and µ the constant from the estimate (3.9).

Then vε := Φ(Duε)|x|2 satisfies

Lεv
ε = Lε(Φ)|x|2 + ΦLε(|x|2)− 4uεxiu

ε
xj

Φxixj − 4εΦxjxj

= −(2φ′(|D2uεDuε|2 + ε|D2uε|2) + 4φ′′((ε∆uε)2 + ε|D2uεDuε|2))|x|2

− 2Φ|Duε|2 − 2nεΦ− 4uεxiu
ε
xj

Φxixj − 4Φuεxiu
ε
xjxj

xj − 4εΦxjxj

where Φ = Φ(Duε).
Multiplying by σε and integrating, we deduce using the bound (3.9) that

(3.23)

2

∫
V

(nε+ |Duε|2)Φσε dx

≤ Cε+

∫
V

(−4uεxiu
ε
xj

Φxixj − 4Φuεxiu
ε
xjxj

xj − 4εΦxjxj)σ
ε dx

=: Cε+ A1 + A2 + A3.

2. We have

|A1| ≤ C

∫
V

e
µ(α2

ε−|Du
ε|2)

ε |Duε||∆∞uε|σε dx

= C

∫
V

e
µ(α2

ε−|Du
ε|2)

ε |Duε||ε∆uε|σε dx

≤ C

∫
V

e
µ(α2

ε−|Du
ε|2)

ε ε(∆uε)2σε dx+

∫
V

|Duε|2Φσε dx

≤ Cε+

∫
V

|Duε|2Φσε dx,

according to (3.9). We also compute

|A2| ≤ Cε

∫
V

e
µ(α2

ε−|Du
ε|2)

ε |D2uεDuε|σε dx

≤ C

∫
V

e
µ(α2

ε−|Du
ε|2)

ε |D2uεDuε|2σε dx+
n

2

∫
V

εΦσε dx

≤ Cε+
n

2

∫
V

εΦσε dx,

again according to (3.9). The estimate for A3 is similar:

|A3| ≤ Cε

∫
V

e
µ(α2

ε−|Du
ε|2)

ε |D2uεDuε|σε dx ≤ Cε+
n

2

∫
V

εΦσε dx.
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We insert our estimates for A1, A2, A3 into (3.23), to deduce∫
V

(nε+ |Duε|2)Φσε dx ≤ Cε;

therefore

εe
µ(α2

ε−β
2)

ε

∫
V ∩{|Duε|≤β}

σε dx ≤ C.

This proves (3.20).

3. Assuming now (3.21), we take ε so small that

αε ≥ α > 0

for some positive constant α. Then (3.20) implies for β = α
2

that∫
V ∩{|Duε|≤β}

σε dx ≤ Ce
−γ
ε

where γ > 0. This and (3.15) prove (3.22). �

4 Flatness estimates

In this section we assume that u is a bounded viscosity solution of the infinity Laplacian
equation

(4.1) −∆∞u = 0 in B(0, 3).

We as before introduce the regularization

(4.2)

{
−∆∞u

ε − ε∆uε = 0 in B(0, 3)

uε = u in ∂B(0, 3).

According to Theorem 2.1,
max
B(0,2)

|uε|, |Duε| ≤ C.

We consider also the adjoint problem on the ball B(0, 2):

(4.3)

{
−(uεxiu

ε
xj
σε)xixj + 2(uεxiu

ε
xixj

σε)xj − ε∆σε = δx0 in B(0, 2)

σε = 0 on ∂B(0, 2),
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for a given point x0 ∈ B(0, 1). As in the previous section

(4.4)

∫
∂B(0,2)

ρε dx = 1

for ρε =
((

∂uε

∂ν

)2
+ ε
)
|Dσε|. Furthermore, if

(4.5) lim inf
ε→0

|Duε(x0)| > 0,

we know from Section 3 that

(4.6)

∫
B(0,2)

(1 + |D2uεDuε|2 + ε|D2uε|2)σε dx ≤ C,

and

(4.7)

∫
B(0,2)∩{|Duε|≤β}

σε dx ≤ C

ε
e
µ(β2−α2

ε)

ε ,

for some µ > 0, where αε := |Duε(x0)| and 0 < β < αε. The constants C in (4.6) and (4.7)
depend upon a positive lower bound α for the αε.

In this section we make the additional “flatness” assumption that the function uε is
uniformly close to an affine function in B(0, 2), which without loss we take to be the linear
function xn:

(4.8) max
B(0,2)

|uε − xn| =: λ,

where λ is small.

The ideal result would be that (4.8) forces the gradient Duε to be close to the unit vector
en = (0, . . . , 0, 1) everywhere within the ball B(0, 1). This however is very subtle, and we are
not able to prove this. We can however show that Duε(x0) is close en, provided x0 ∈ B(0, 1),
λ is small, and |Duε(x0)| is close to one.

THEOREM 4.1 Assume the condition (4.5) that the gradient Duε(x0) is bounded away
from zero and also the flatness condition (4.8). Select x0 ∈ B(0, 1).

(i) We then have the estimate

(4.9)

∫
B(0,2)

(|Duε|2 − uεxn)2σε ds ≤ Cλ.

(ii) Furthermore

(4.10)

∫
B(0,2)∩{|Duε|≥1+δ}

σε dx ≤ Cλ

δ2

for each δ > 0.
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Proof. 1. Put vε := (uε − xn)2; then

(4.11)

Lεv
ε = −uεxiu

ε
xj
vεxixj − 2uεxiu

ε
xjxj

vεxj − ε∆v
ε

= 2(uε − xn)(−uεxiu
ε
xj
uεxixj − 2uεxiu

ε
xjxj

(uεxj − δjn)− ε∆uε)
− 2(|Duε|2 − uεxn)2 − 2ε|Duε − en|2.

Multiply the σε and integrate over B(0, 2):

(uε(x0)− x0
n)2 =

∫
B(0,2)

vεL∗εσ
ε dx =

∫
B(0,2)

Lεv
εσε dx+

∫
∂B(0,2)

vερε dS.

Using (4.4), (4.8) and (4.11), we deduce that∫
B(0,2)

(|Duε|2 − uεxn)2σε dx ≤ Cλ2 + Cλ

∫
B(0,2)

(|D2uεDuε|+ ε|D2uε|)σε dx

≤ Cλ2 + Cλ,

the last inequality a consequence of (4.6). This proves (4.9).

2. On the set {|Duε| ≥ 1 + δ} we have

|Duε|2 − uεxn ≥ |Du
ε|(|Duε| − 1) ≥ δ,

and so (4.10) follows from (4.9). �

Next we strengthen (4.5), now to require that |Duε(x0)| be close to one, and then estimate
by how much Duε(x0) differs from en:

THEOREM 4.2 Select any point x0 ∈ B(0, 1). Suppose that

(4.12) 1− δ ≤ |Duε(x0)|2 ≤ 1 + δ

for a small constant δ > 0 and that the flatness condition (4.8) holds.
Then

(4.13) |Duε(x0)− en|2 ≤ C

(
e
−µδ
2ε

ε
1
2

+
λ

1
2

δ
+ λ

1
4 + δ

1
2 + ε

1
2

)
.

The conclusion (4.13) is a strong consequence of the flatness condition (4.8), since we
will later be able to adjust the various parameters to make the right hand side small. But
notice that we can only deduce this if we assume (4.12), that the length of the gradient is
close to one.
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Proof. 1. Select a smooth function ζ such that

(4.14) ζ ≡ 1 on B(0, 1), ζ = 0 on ∂B(0, 2).

Then

(4.15)

∫
B(0,2)

Lεζ σ
ε dx =

∫
B(0,2)

ζ L∗εσ
ε dx = ζ(x0) = 1.

We further compute that

Lε(ζu
ε
xn) = ζLεu

ε
xn + uεxnLεζ − 2uεxiu

ε
xj
uεxnxiζxj − 2εuεxnxiζxi

= uεxnLεζ − 2uεxiu
ε
xj
uεxnxiζxj − 2εuεxnxiζxi ,

since our differentiating the PDE (4.2) shows Lεu
ε
xn = 0.

Thus (4.14) and (4.15) imply

(4.16)
uεxn(x0)− 1 =

∫
B(0,2)

(uεxn − 1)Lεζσ
ε dx− 2

∫
B(0,2)

uεxiu
ε
xj
uεxnxiζxj + εuεxnxiζxiσ

ε dx

=: A+B.

2. Estimate of A. We recall (4.6), to compute

|A| ≤
∫
B(0,2)

|uεxn − 1||Lεζ|σε dx

≤ C

∫
B(0,2)

|uεxn − 1|
(
1 + |D2uεDuε|+ ε|D2uε|

)
σε dx

≤ C

(∫
B(0,2)

(uεxn − 1)2σε dx

) 1
2

≤ C

(∫
B(0,2)∩{|Duε|2≤1−2δ}

(uεxn − 1)2σε dx

) 1
2

+ C

(∫
B(0,2)∩{|Duε|2≥1+2δ}

(uεxn − 1)2σε dx

) 1
2

+ C

(∫
B(0,2)∩{1+2δ≥|Duε|2≥1−2δ}

(uεxn − 1)2σε dx

) 1
2

=: A1 + A2 + A3.

Owing to (4.7),

|A1| ≤
C

ε
1
2

e
−µδ
2ε .
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Furthermore, (4.10) lets us estimate

|A2| ≤ C

(∫
B(0,2)∩{|Duε|2≥1+2δ}

σε dx

) 1
2

≤ Cλ
1
2

δ
.

Finally, on the set {1 + 2δ ≥ |Duε|2 ≥ 1− 2δ} we have

(4.17) (uεxn − 1)2 ≤ C(|Duε|2 − uεxn)2 + Cδ2.

Consequently,

|A3| ≤ C

(∫
B(0,2)

(|Duε|2 − uεxn)2σε dx+ Cδ2

) 1
2

≤ C(λ
1
2 + δ).

in view of the estimate (4.9).

Collecting the foregoing bounds, we conclude that

(4.18) |A| ≤ C

ε
1
2

e
−µδ
2ε +

Cλ
1
2

δ
+ C(λ

1
2 + δ).

3. Estimate of B. To control this term, we first observe that

uεxiu
ε
xj
uεxnxiζxj = 1

2

n−1∑
j=1

uεxj(|Du
ε|2)xnζxj + 1

2
uεxn(|Duε|2)xnζxn

= 1
2

n−1∑
j=1

uεxj(|Du
ε|2)xnζxj −

(
1
2

n−1∑
j=1

uεxj(|Du
ε|2)xj + ε∆uε

)
ζxn

according to the PDE (4.2). Consequently,

(4.19) |uεxiu
ε
xj
uεxnxiζxj | ≤ C|D′uε||D2uεDuε|+ Cε|D2uε|,

where D′uε := (uεx1
, . . . , uεxn−1

, 0).

And so

|B| ≤
∫
B(0,2)

(|D′uε||D2uεDuε|+ Cε|D2uε|)σε dx

≤ C

(∫
B(0,2)

|D′uε|2σε dx
) 1

2

+ Cε
1
2

≤ C

(∫
B(0,2)∩{|Duε|2≤1−2δ}

|D′uε|2σε dx
) 1

2

+ C

(∫
B(0,2)∩{|Duε|2≥1+2δ}

|D′uε|2σε dx
) 1

2

+ C

(∫
B(0,2)∩{1+2δ≥|Duε|2≥1−2δ}

|D′uε|4σε dx
) 1

4

+ Cε
1
2

=: B1 +B2 +B3 + Cε
1
2 .
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As above,

|B1| ≤
C

ε
1
2

e
−µδ
2ε , |B2| ≤

Cλ
1
2

δ
.

In addition, on the set {1 + 2δ ≥ |Duε|2 ≥ 1− 2δ}, we have

|D′uε|2 ≤ 1− (uxn)2 + 2δ ≤ C|1− uεxn|+ Cδ.

We therefore have from (4.17) that

|D′uε|4 ≤ C(|Duε|2 − uεxn)2 + Cδ2.

Consequently, estimate (4.9) lets us conclude that

|B3| ≤ C(λ
1
4 + δ

1
2 ).

Combining all these estimates, we see that we conclude that

(4.20) |B| ≤ C

ε
1
2

e
−µδ
2ε +

Cλ
1
2

δ
+ C(λ

1
4 + δ

1
4 ) + Cε

1
2 .

4 The last inequality and the similar bound (4.18) for the term A prove that |uεxn − 1|,
and therefore |uεxn − 1|2, are less than or equal to the right hand side of (4.13).

To estimate the other derivatives, we see from (4.12) that at the point x0

|D′uε|2 ≤ 1− (uεxn)2 + δ ≤ C|1− uεxn|+ δ.

This and the foregoing estimate for |uεxn − 1| complete the proof of (4.13). �

5 Everywhere differentiability

5.1 Blow up limits. If −∆∞u = 0 in the viscosity sense in some open subset U ⊆ Rn and
B(x, r) ⊂ U , we define

L+
r (x) :=

max
∂B(x,r)

u− u(x)

r
, L−r (x) :=

u(x)−min
∂B(x,r)

u

r

As proved for example in [C-E-G], the limits

L(x) := lim
r→0

L+
r (x) = lim

r→0
L−r (x)

exist and are equal for each point x ∈ U . (We will see later that in fact L(x) = |Du(x)|).
The paper [C-E-G] proves the following theorem, asserting that any blow-up limit around

any point x ∈ U must be a linear function. See [C-E] for a simplifed proof.

16



THEOREM 5.1 Let u be a viscosity solution of

−∆∞u = 0 in U

and select any point x ∈ U .
For each sequence {rj}∞j=1 converging to zero, there exists a subsequence {rjk}∞k=1 such

that

(5.1)
u(rjky + x)− u(x)

rjk
→ a · y locally uniformly,

for some a ∈ Rn such that

(5.2) |a| = L(x).

Since solutions of −∆∞u = 0 are locally Lipschitz continuous, the rescaled functions
ur(y) := u(ry+x)−u(x)

r
are locally bounded and Lipschitz continuous and consequently contain a

locally uniformly convergent subsequence. Theorem 5.1 asserts that each such limit is linear,
but does not prove that various blow-up limits, corresponding to different subsequences of
radii going to zero, are the same (unless L(x) = 0).

5.2 Differentiability. This section resolves this uncertainty by proving the uniqueness of
the blow-up limits (5.1).

LEMMA 5.2 Assume b ∈ Rn, |b| = 1. Let v be a smooth function satisfying

max
B(0,1)

|v − b · x| ≤ η

for some small constant η. Then there exists a point x0 ∈ B(0, 1) at which

|Dv(x0)− b| ≤ 6η

Proof. Define
w := b · x− 3η|x|2 + α.

We select the constant α so that v ≥ w in B(0, 1), but v(x0) = w(x0) at some interior point
x0. Then Dv(x0) = Dw(x0) = b− 6ηx0. �

THEOREM 5.3 Let u be the unique viscosity solution of

(5.3)

{
−∆∞u = 0 in U

u = g on ∂U .

Then u is differentiable at each point in U .

17



Proof. 1. Select any point within U , which without loss we may assume is 0. Suppose that
the blow up discussed in §5.1 does not produce a unique tangent plane at 0. This means
there exist two sequences {rj}∞j=1, {sk}∞k=1, each converging to zero, for which

(5.4) max
B(0,rj)

1

rj
|u(x)− u(0)− a · x| → 0

and

(5.5) max
B(0,sk)

1

sk
|u(x)− u(0)− b · x| → 0,

for distinct vectors a, b ∈ Rn, with |a| = |b| > 0. We may assume without loss that

a = en, |b| = 1, b 6= en.

Define

(5.6) θ := |b− en| > 0.

2. Hereafter C denotes the constant on the right hand side of estimate (4.13). We now
adjust various parameters to make the right hand side of this inequality small as compared
with θ2.

First select δ > 0 so small that

(5.7) Cδ
1
2 ≤ θ2

24
.

Now fix λ > 0 so that

(5.8) C

(
λ

1
2

δ
+ λ

1
4

)
≤ θ2

24
.

Next select ε1 > 0 so that

(5.9) C

(
e
−µδ
2ε

ε
1
2

+ ε
1
2

)
≤ θ2

24
.

for all 0 < ε ≤ ε1.

We then use (5.4) (with a = en) to select a radius rj > 0 for which

max
B(0,rj)

1

rj
|u(x)− u(0)− xn| ≤

λ

2
.
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We may without loss assume that rj = 2 and that u(0) = 0, as we can otherwise rescale and

consider the function
u(rjx)−u(0)

rj
. Hence

(5.10) max
B(0,2)

|u− xn| ≤
λ

2
.

Now pick ε2 > 0 so that

(5.11) max
B(0,2)

|uε − xn| ≤ λ.

for all 0 < ε ≤ ε2.

3. We introduce yet another constant η > 0, picked so that

(5.12) 12η + 36η2 ≤ δ, 6η ≤ δ,

and

(5.13) 72η2 ≤ θ2

4
.

In view of (5.5), we can find a (possibly very small) radius 0 < s < 1 for which

max
B(0,s)

1

s
|u− b · x| ≤ η

2
.

We select ε3 > 0 so that

(5.14) max
B(0,s)

1

s
|uε − b · x| ≤ η,

for all 0 < ε ≤ ε3, and hereafter take

(5.15) ε := min{ε1, ε2, ε3}.

Rescaling (5.14) to the unit ball and applying the Lemma, we secure a point x0 ∈
B(0, s) ⊆ B(0, 1) at which

(5.16) |Duε(x0)− b| ≤ 6η.

Then since |b| = 1, we have

(5.17) |Duε(x0)|2 ≤ (1 + 6η)2 ≤ 1 + δ
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according to (5.12). Furthermore, |Duε(x0)| ≥ 1− 6η and therefore

(5.18) |Duε(x0)|2 ≥ 1− δ,

again owing to (5.12).

4. Now (5.17) and (5.18) allow us to invoke the key estimate (4.13):

|Duε(x0)− en|2 ≤ C

(
e
−µδ
2ε

ε
1
2

+
λ

1
2

δ
+ λ

1
4 + δ

1
2 + ε

1
2

)
.

In view of our choices (5.7), (5.8) and (5.9), it follows that

(5.19) |Duε(x0)− en|2 ≤
θ2

8
.

Using (5.6), (5.13), (5.16) and (5.19), we at last reach the contradiction that

θ2 = |b− en|2 ≤ 2|Duε(x0)− b|2 + 2|Duε(x0)− en|2 ≤ 72η2 +
θ2

4
≤ θ2

2
.

�

Our paper [E-S] presents a simpler proof of the everywhere differentiability.

6 The infinity Laplacian PDE as a parabolic equation

This section provides heuristics to justify our claim that the infinity Laplacian PDE

(6.1) −∆∞u = 0

should be regarded as a parabolic, and not an elliptic, equation. (G. Aronsson has made a
similar observation in his old paper [A], although for different reasons.)

6.1 Linearization. The only reasonable way to assert that a given nonlinear PDE is elliptic
or parabolic or hyperbolic at a particular solution is to classify, if possible, the type of its
linearization around this solution. We therefore consider the formal linearization of (6.1),
which is the PDE

(6.2) Lv := −uxiuxjvxixj − 2uxiuxixjvxj = 0

for the “variation” v.
We contend that L is a parabolic equation, at least generically. Indeed the the second-

order term uxiuxjvxixj corresponds to diffusion along the line parallel to the gradient Du,
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whereas the first-order term−2uxiuxixjvxj corresponds to transport in the direction−D2uDu.
According to the infinity Laplacian equation (6.1), the direction of diffusion ±Du is orthog-
onal to the direction of transport.

The linearized PDE (6.2) is therefore analogous to the one-dimensional linear heat equa-
tion

vt = vxx,

except that (6.2) has variable coefficients, depending upon u, and holds in many variables.
We may think of the direction of −D2uDu as the “time-like” direction and the perpendicular
directions, including that of Du, as “space-like”. In particular a critical point x0, where
|Du(x0)| = 0, is at “time-like infinity”. Several of our rigorous assertions are consistent with
this interpretation, most notably the exponential estimate (3.9) which asserts that the value
of ρε is negligible at points y ∈ ∂U where |Duε(y)| < |Duε(x0)|. Such points are “forwards
in time” for x0 and so should not affect the solution at that point.

(If our smooth solution u of (6.1) happens also to be a solution of the eikonal equation
|Du| ≡ α for some constant α, the time-like term does not appear and the linearization is a
degenerate elliptic equation.)

6.2 Finite difference approximation. Our revisiting a standard finite difference approx-
imation for the infinity Laplacian also reveals the parabolic structure.

Fix a step size h > 0 and define the nonlinear finite difference operator operator

(6.3) ∆h
∞u(x) :=

1

h2
( max
B(x,h)

u+ min
B(x,h)

u− 2u(x)).

Then

(6.4) ∆h
∞u(x) =

1

h2
(u(x+) + u(x−)− 2u(x)),

the points x± are selected so that

u(x+) = max
B(x,h)

u, u(x−) = min
B(x,h)

u.

If u is smooth and Du 6= 0, we have

(6.5) lim
h→0

∆h
∞u =

∆∞u

|Du|2
:

see for instance Armstrong-Smart [A-S].
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LEMMA 6.1 If u is smooth and Du(x) 6= 0, then

(6.6) x+ = x+ h
Du

|Du|
+ h2

(
D2uDu

|Du|2
− ∆∞uDu

|Du|4

)
+O(h3)

and

(6.7) x− = x− h Du
|Du|

+ h2

(
D2uDu

|Du|2
− ∆∞uDu

|Du|4

)
+O(h3),

Du and D2u evaluated at the point x.

Proof. Without loss, we may assume x = 0. Then

x+ = h
Du(x+)

|Du(x+)|

= h
(
Du(0) +D2u(0)x+ +O(h2)

)( 1

|Du(0)|
− Du(0) ·D2u(0)x+

|Du(0)|3
+O(h2)

)
,

and so

x+ = h
Du(0)

|Du(0)|
+O(h2).

Plugging this into the previous expansion, we deduce (6.6). The derivation of (6.7) is similar.
�

We observe that in view of (6.6) and (6.7) the difference scheme (6.4) is that for a
parabolic PDE, involving O(h) steps in the “space-like” directions ±Du and an O(h2) step
in the “time-like” direction −D2uDu. It is straightforward to check the consistency condition
that (6.5) follows from (6.6), (6.7).

6.3 Stochastic differential equations. We introduce next a stochastic differential equa-
tion, which provides a probabilistic interpretation of ρε and σε:

(6.8)

{
dXε = Duε(Xε)dW +D2uε(Xε)Duε(Xε)dt+ (2ε)

1
2dW

Xε(0) = x0,

where W is a one-dimensional Brownian motion and W = (W 1, . . . ,W n) is an independent
n-dimensional Brownian motion.

Then ρε is the density of the distribution of Xε(τ), where τ = τ εx0 is the first hitting time
for ∂V . Furthermore if E ⊂ V is a Borel set, then∫

E

σε dx = E

(∫ τ

0

χ{Xε(t)∈E}dt

)
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records the amount of time that the process Xε spends within E before exiting V .

We can check using Ito’s calculus that Duε(Xε) is a martingale, although in general
uε(Xε) is not. This is why the formula (3.4) for the gradient Duε(x0) is exact, whereas the
expression (3.14) for uε(x0) has an error term (which is however small as ε→ 0).

7 Some numerical experiments

In a series of experiments we have studied numerically the limiting behavior of σε and ρε as
ε→ 0. We employed both a monotone and a second-order finite difference scheme, and only
report computations for which both methods gave nearly identical results.

7.1 A monotone scheme. A. Oberman’s monotone finite difference scheme [O] for the
normalized infinity Laplacian PDE is easily adapted to our case: we need only multiply his
finite difference operator by a suitable approximation of |Du|2. Given a step size h > 0, an
integer d > 0 and a function u : hZ2 → R, we therefore define

∆h,d
∞ u(x) :=

1

12(hd)4

(
max
z∈N(x)

(u(z)− u(x))3 + min
z∈N(x)

(u(z)− u(x))3

)
,

where
N(x) := {z ∈ hZ2 | h(d− 1/2) ≤ |x− z| ≤ h(d+ 1/2)}.

It is easy to see that ∆h,d
∞ is monotone. Furthermore, for any smooth function ϕ, we have

∆h,d
∞ ϕ→ ∆∞ϕ locally uniformly as d→∞ and hd→ 0. Combining ∆h,d

∞ with the standard
5-point Laplacian ∆h, we obtain a monotone finite difference scheme of the form

−∆h,d
∞ uh,d − ε∆huh,d = 0.

A theorem of Barles and Souganidis [B-S] immediately implies the convergence of this scheme.

7.2 A second-order scheme. To obtain a higher-order scheme, we exploit the variational
structure of the regularized PDE (1.2). If we multiply by the integration factor exp( 1

2ε
|Duε|2),

we obtain

(7.1) − div
(
e

1
2ε
|Duε|2Duε

)
= 0;

and this is the Euler-Lagrange equation for minimizers of the functional

(7.2)

∫
U

e
1
2ε
|Dv|2|Dv|2 dx.

We can now construct a second-order convergent finite difference approximation for (7.1)
using standard techniques (see for example Hackbusch [H] or LeVeque [L]). We in particular
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selected a second-order accurate discretization of (7.1) and then solved the Euler-Lagrange
equations for the discrete variational problem.

We must however be very careful when implementing such a scheme, as the fast growth
of exp

(
1
2ε
|Dv|2

)
increases the condition number of the linearization. Preconditioning is

required to obtain an accurate solution when ε is small. Even with this adjustment, numer-
ical instability manifests itself as a failure of the maximum principle for the adjoint of the
linearization when the step size h is insufficiently small relative to ε.

7.3 Experimental results. For each trial we took several small values of ε and approxi-
mated uε, σε and ρε for fixed boundary data on the square

Q := {x ∈ R2 | |x1|, |x2| < 1}.

Computation 1. In our first experiment, we set x0 = 0 and used boundary data given by
the argument function

u(x) := arctan

(
x2

2 + x1

)
.

Since u solves the regularized PDE (1.2) in R2 − {(−2, 0)} for all ε > 0, we expect that σε

converges as ε→ 0 to the solution σ of

(7.3)

{
−(uxiuxjσ)xixj − 2(uxiuxixjσ)xj = δx0 in Q,

σ = 0 on ∂Q.

This is exactly what appears to happen in Figure 1 below.

Computation 2. As a second numerical experiment, we put x0 = (1/10, 1/2) and used
boundary data given by

(7.4) u(x) := x
4/3
1 − x4/3

2 ,

an infinity harmonic function discovered by Aronsson that is nonsmooth along the coordinate
axes {x1x2 = 0} (which we regard as “weak shocks”).

We argue heuristically for this example that σε and ρε csnnot concentrate solely within
the first quadrant Q ∩ {x1, x2 > 0} as ε → 0, and therefore trajectories of the stochastic
differential equation (6.8) with positive probability diffuse across the forming weak shocks
along the coordinate axes. To see this, remember from (3.4) that

(7.5) Duε(x0) =

∫
∂Q

Duερε dS.

We assume now that Duε is close to Du along ∂Q. Since then uεx1
> 0 > uεx2

and since
|Duε| > |Duε(x0)| on ∂Q ∩ {x1, x2 > 0}, the identity (7.5) could not be true as ε → 0 if ρε

were to concentrate only on ∂Q ∩ {x1, x2 > 0}.
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Observe also that if we set ε = 0 in the stochastic differential equation (6.8), the transport
vector

D2uDu =
4

27
(x−1

1 , x−1
2 ),

not integrable near the coordinate axes {x1x2 = 0}; whereas the diffusion matrix

Du⊗Du =
16

9

(
x

2/3
1 0

0 x
2/3
2

)
,

is bounded. So presumably a competition occurs as ε→ 0 between the decay of the diffusion
and the growth of the transport in (6.8); and in the limit some positive portion of the mass
of σε must remain outside of the first quadrant.

It appears from the numerical data that σε converges as ε → 0 to a function σ that
solves (7.3) in Q − {x1x2 = 0}, but is singular on {|Du| > |Du(x0)|} ∩ {x1x2 = 0}. There
are corresponding singularities in the limit of the ρε at the four points where these “weak
shocks” hit the boundary. This is most apparent in the bottom image in Figure 2, in which
we see cusps forming in the graph the of ρε as ε→ 0.

Computation 3. In our final experiment, we set x0 = (0, 1/10) and used the boundary
data

u(x) :=
(1 + rx1)4/3 − (rx2)4/3 − 1

r
,

for small r > 0. That is, we zoomed in to a small neighborhood of a point on the weak
shocks of the Aronsson function (7.4) and get a closer view of the apparent singularities in
σε and ρε forming as ε→ 0. See Figure 3.
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Figure 1: Clockwise from the upper left are the level sets of uε for ε = 1/64, the level
sets of σε for ε = 1/64 and ρε for ε = 1/4, 1/16, 1/64. The boundary data are g(x, y) :=
arctan(y/(x+ 2)) and the initial point is x0 = 0.
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Figure 2: Clockwise from the upper left are the level sets of uε for ε = 1/32, the level
sets of σε for ε = 1/32, and ρε for ε = 1/2, 1/8, 1/32. The boundary data are given by
g(x, y) := x4/3 − y4/3 and the initial point is x0 = (1/10, 1/2).
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Figure 3: Clockwise from the upper left are the level sets of uε for ε = 1/64, the level
sets of σε for ε = 1/64, the cross sections of σε on {x1 = 8/10} (indicated by the dotted
line), and ρε along the right-most edge of the domain. The boundary data are g(x, y) :=
r−1[(1 + rx)4/3 − (ry)4/3] for r = 1/10 and the initial point is x0 = (0, 1/10).
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