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CHARLES K SMART

These are (still rough) lecture notes describing some of the material covered in
Math 6140 Viscosity Solutions in Spring 2015 at Cornell.
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1. The distance function

We begin by studying a trivial control problem. Suppose we would like to move
a particle x ∈ U to the complement Rd\U of a bounded open set U ⊆ Rd as quickly
as possible subject to the velocity constraint |ẋ| ≤ 1. Of course, the optimal escape
time as a function of x is the distance function

w(x) = min
y∈Rd\U

|x− y|.

We claim that w is the unique solution of the partial differential equation{
|Dw| = 1 in U

w = 0 on ∂U.

This is suspicious, since w is not differentiable!
We first give a local characterization of w. Observe that any trajectory from x

to Rd \U can be divided into two pieces by cutting at the first crossing of ∂B(x, r),
provided r > 0 is small enough that B̄(x, r) ⊆ U . This gives a lemma.
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Lemma 1.1. The distance function w is Lipschitz continuous and satisfies

w(x) = r + min
∂B(x,r)

w

whenever 0 < r < w(x).

Proof. The triangle inequality gives

w(x) = w(y) + |y − x|
for all x, y ∈ Rd. Thus w is Lipschitz continuous and satisfies

u(x) ≤ r + min
∂B(x,r)

u

for x ∈ Rd and r > 0. If 0 < r < u(x), then we can choose z ∈ Rd \ U such that
u(x) = |x− z|. Letting

y = x+ r
z − x
|z − x|

,

we compute u(x) = |x− z| = |x− y|+ |y − z| ≥ r + u(y) ≥ r + min∂B(x,r) u. �

This lemma is sometimes called a dynamic programming principle. It says that
the globally optimal escape time should be locally optimal. It turns out that local
optimality implies global optimality.

Theorem 1.2. The distance function w is the unique continuous function satisfying

(1.1)

 lim
r→0

w(x)−min∂B(x,r) w

r
= 1 if x ∈ U

w(x) = 0 if x ∈ Rd \ U.

Proof. Suppose for contradiction that w and v are distinct continuous functions
satisfying (1.1). By symmetry, we may assume that sup(w− v) > 0. Since w and v
are continuous and vanish outside the bounded open set U , we may select τ ∈ (0, 1)
and x ∈ U such that

max(τw − v) = (τw − v)(x) > 0.

Let yr ∈ ∂B(x, r) satisfy

min
∂B(x,r)

w = w(yr) and min
∂B(x,r)

v ≤ v(yr).

Using (1.1), we obtain
w(x)− w(yr) = r + o(r)

and
v(x)− v(yr) ≥ r + o(r).

Using τw(x)− v(x) ≥ τw(yr)− v(yr), we conclude

0 ≤ (τ − 1)r + o(r).

Since τ − 1 < 0, this is impossible. �

Our control-theoretic local characterization of the distance function approxi-
mates a partial differential equation in the following sense.

Lemma 1.3. If v ∈ C(Rd) is differentiable at x, then

lim
r→0

v(x)−min∂B(x,r) v

r
= |Dv(x)|.
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Proof. From the Taylor expansion

v(y) = v(x) +Dv(x) · (y − x) + o(|y − x|),
we compute

min
∂B(x,r)

v = v(x)− |Dv(x)|r + o(r). �

In particular, we see that the distance function w satisfies |Dw| = 1 wherever it
is differentiable. This happens quite often.

Theorem 1.4 (Rademacher). Lipschitz continuous functions on Rd are differen-
tiable Lebesgue almost everywhere.

It is difficult to interpret |Dw| = 1 correctly.

Example 1.5. The boundary value problem{
|w′| = 1 in (−1, 1)

w = 0 on R \ (−1, 1)

has no solution in C(R) ∩ C1((−1, 1)). If we relax the first condition to holding
almost everywhere, there are infinitely many solutions C0,1(R).

Nonetheless, the distance function is still a natural solution.

Example 1.6. For ε > 0, the boundary value problem{
|w′ε| = 1 + εw′′ε in (−1, 1)

wε = 0 on R \ (−1, 1)

has unique solution in C(R) ∩ C1((−1, 1)) given by

wε(x) =

{
1− |x|+ ε(e−1/ε − e−|x|/ε) if x ∈ (−1, 1)

0 if x ∈ R \ (−1, 1).

Note that wε converges uniformly as ε→ 0 to w(x) = max{0, 1− |x|}.

2. Differential inequalities

Consider the first order partial differential inequality

F (x, u,Du) ≤ 0 in U,

where U ⊆ Rd is open and F ∈ C(U ×R×Rd) is an arbitary nonlinearity. We wish
to allow merely semicontinuous functions to satisfy this inequality.

Definition 2.1. A function u : U → R is upper semicontinuous if and only if

u(x) = lim
r→0

sup
B(x,r)

u for x ∈ U.

Let C+(U) denote the set of all upper semicontinuous functions on U .

Definition 2.2. A function u ∈ C+(U) satisfies

F (x, u,Du) ≤ 0 in U

in the sense of viscosity if and only if

F (x, ϕ(x), Dϕ(x)) ≤ 0

holds whenever ϕ ∈ C1(U), x ∈ U , and maxU (u− ϕ) = (u− ϕ)(x) = 0.
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Remark 2.3. When maxU (u−ϕ) = (u−ϕ)(x) = 0, we say that ϕ touches u from
above at x in U . We obtain an equivalent definition if we replace maximum with
local maximum.

Theorem 2.4. If u ∈ C1(U), then the classical and viscosity interpretations of
F (x, u,Du) ≤ 0 in U are equivalent.

Proof. Suppose u satisfies F (x, u,Du) ≤ 0 in U in the sense of viscosity. Since u
touches itself from above at every x ∈ U , the definition implies

F (x, u(x), Du(x)) ≤ 0 for x ∈ U.
On the other hand, suppose u satisfies F (x, u,Du) ≤ 0 in U in the classical sense
and ϕ ∈ C1(U) touches u from above at x ∈ U . Since max(u− ϕ) = (u− ϕ)(x) =
0, we must have u(x) = ϕ(x) and Du(x) = Dϕ(x). Thus F (x, ϕ(x), Dϕ(x)) =
F (x, u(x), Du(x)) ≤ 0. �

Remark 2.5. The theorem implies that the viscosity interpretation is a relaxation
of the classical interpretation. In light of this, we omit the phrase “in the sense of
viscosity” in the sequel.

Example 2.6. Both of u(x) = ±|x| satisfy |Du| − 1 ≤ 0 in Rd.

We also wish to consider the opposite inequality

F (x, u,Du) ≥ 0 in U.

A suitable definition of viscosity solution can be obtained by reversing the inequal-
ities above, and in the process defining the lower semicontinuous functions C−(U)
and touching from below. Alternatively, we can use make use of symmetry.

Definition 2.7. Interpret F (x, u,Du) ≥ 0 as F̄ (x, v,Dv) ≤ 0, where v = −u and
F̄ (x, s, p) = −F (x,−s,−p).

Example 2.8. Only one of u(x) = ±|x| satisfies |Du| − 1 ≥ 0 in Rd.

Definition 2.9. Interpret F (x, u,Du) = 0 as the conjunction of F (x, u,Du) ≤ 0
and F (x, u,Du) ≥ 0.

3. Strict comparison

Observe that, if u, v ∈ C1(U) satisfy F (x, u,Du) < F (x, v,Dv) in U , then v
does not touch u in U . This is a consequence of the proof of Theorem 2.4. This is
also true when u and v are merely semicontinuous, provided the nonlinearity F is
sufficiently continuous and the inequality is uniform.

Theorem 3.1. Suppose U ⊆ Rd is open and F ∈ C(U × R× Rd) satisfies

|F (x, s, p)− F (y, t, q)| ≤ ω(|x− y|(1 + |s|+ |p|) + |s− t|+ |p− q|)
for some modulus of continuity ω. If u ∈ C+(U), v ∈ C−(U), and δ > 0 satisfy

F (x, u,Du) ≤ 0 and F (x, v,Dv)− δ ≥ 0 in U,

then v does not touch u from above at any point in U .

We need a perturbation lemma.

Lemma 3.2. If u ∈ C+(U) satisfies F (x, u,Du) ≤ 0 in U and f ∈ C1(U), then
v = u+f satisfies G(x, v,Dv) ≤ 0 in U , where G(x, s, p) = F (x, s−f(x), p−Df(x)).



NOTES FOR MATH 6140 VISCOSITY SOLUTIONS 5

Proof. If ϕ ∈ C1(U) touches u+ f from above at x, then ψ = ϕ− f touches u from
above at x. Thus

0 ≥ F (x, ψ(x), Dψ(x))

= F (x, ϕ(x)− f(x), Dϕ(x)−Df(x))

= G(x, ϕ(x), Dϕ(x)),

as required. �

Proof of Theorem 3.1. Suppose for contradiction that v touches u from above in
U . We may assume that U = B(0, 1) and the touching occurs at 0.

Step 1. By Lemma 3.2 and the continuity of F , the perturbation

w(x) = v(x) +
|x|2

2

satisfies

F (x,w,Dw)− δ

2
≥ 0 in B(0, r)

for some r > 0.
Step 2. For all small ε > 0, the function

Φε(x, y) = u(x)− w(y)− |x− y|
2

2ε

attains its maximum on B(0, r)2 at some point (xε, yε) ∈ B(0, r)2 satisfying

|u(xε)| ≤ O(1), |u(xε)− v(yε)| ≤ o(1), and |xε − yε| ≤ o(ε1/2)

as ε→ 0.
Step 3. The smooth function

x 7→ w(yε) +
|x− yε|2

2ε
+ Φε(xε, yε)

touches u from above at xε. Using the viscosity definition, we conclude that

F

(
xε, u(xε),

xε − yε
ε

)
≤ 0.

Similarly, the smooth function

y 7→ u(xε)−
|xε − y|2

2ε
− Φε(xε, yε)

touches w from below at yε and we conclude that

F

(
yε, w(yε),

xε − yε
ε

)
− δ

2
≥ 0.

Combining these inequalities and using the continuity of F , we estimate

δ

2
≤ ω

(
|xε − yε|

(
1 + |u(xε)|+

|xε − yε|
ε

)
+ |u(xε)− w(yε)|

)
.

Using step 2, we conclude that
δ

2
≤ o(1)

as ε→ 0, which is impossible. �
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4. The Eikonal equation

We now show, for U ⊆ Rd open and bounded, that the distance function

w(x) = min
y∈Rd\U

|x− y|

is the unique solution of

(4.1)

{
|Dw| − 1 = 0 in U

w = 0 on Rd \ U.

We first check that w is a solution.

Lemma 4.1. If ϕ ∈ C1(U) and w−ϕ has a local maximum (minimum) at x ∈ U ,
then |Dϕ(x)| − 1 ≤ (≥)0.

Proof. Using the differentiablity of ϕ at x, we see that

min
∂B(x,r)

ϕ = ϕ(x)− r|Dϕ(x)|+ o(r)

for all r > 0. In the event of a local maximum, (1.1) implies

1 =
u(x)−min∂B(x,r) u

r
≥
ϕ(x)−min∂B(x,r) ϕ

r
= |Dϕ(x)|+ o(1)

as r → 0. In the event of the local minimum, the inequality is reversed. �

We next check that w is unique by proving a comparison principle.

Lemma 4.2. If u ∈ C+(U) and v ∈ C−(U) satisfy
|Du| − 1 ≤ 0 in U

|Dv| − 1 ≥ 0 in U

u ≤ v on ∂U,

then u ≤ v in U .

Proof. Step 1. We first claim that v ≥ 0. Otherwise, lower semicontinuity would
imply minU v = v(x) < 0 for some x ∈ U . Thus the constant function ϕ = v(x)
would touch v from below x in U and satisfy |Dϕ| − 1 < 0, contradicting the
definition of |Dv| − 1 ≥ 0.

Step 2. For δ ∈ (0, 1), let uδ = (1− δ)u. Using v ≥ 0, we see that{
|Duδ| − 1 + δ ≤ 0 in U

uδ ≤ v on ∂U.

Thus uδ ≤ v follows from Theorem 3.1. Sending δ → 0 gives u ≤ v. �

Combining the above lemmas, we obtain the following theorem.

Theorem 4.3. The distance function is the unique solution of (4.1).
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5. Comparison

We have already seen that comparison holds for the Eikonal equation in bounded
domains. We now give two general examples of comparison useful in game theory
applications. Assume that H ∈ C(Rd × Rd) satisfies

|H(x, p)−H(y, q)| ≤ ω(|x− y||p|+ |p− q|),
for some modulus of continuity ω.

Theorem 5.1. If U ⊆ Rd is open, u ∈ C+(Ū) and v ∈ C−(Ū) are bounded, and
u−H(x,Du) ≤ 0 in U

v −H(x,Dv) ≥ 0 in U

u ≤ v on ∂U,

then u ≤ v in U .

Proof. Suppose for contradiction that supU (u− v) ≥ δ > 0.
Step 1. Using Lemma 3.2, the perturbation

vε(x) = v(x) + ε
√

1 + |x|2

satisfies
vε −H(x,Dvε)− ω(ε) ≥ 0 in U.

Step 2. Since u− v is bounded, we see that

sup
U

(u− vε) = max
U

(u− vε)→ δ,

as ε→ 0.
Step 3. For small ε > 0, the vertical translation

wε = vε + max
U

(u− vε)

satisfies

wε −H(x,Dwε)−
δ

2
≥ 0 in U

and touches u from above in U . This contradicts Theorem 3.1. �

Theorem 5.2. If u ∈ C+([0, T )× Rd) and v ∈ C−([0, T )× Rd) are bounded and
Dtu−H(x,Dxu) ≤ 0 in (0, T )× Rd

Dtv −H(x,Dxv) ≥ 0 in (0, T )× Rd

u ≤ v on {0} × Rd,

then u ≤ v in (0, T )× Rd.

Proof. Suppose for contradiction that sup(u− v) > 0.
Step 1. Using Lemma 3.2, the perturbation

vε(t, x) = v(t, x) + ε
√

1 + |x|2 + 2ω(ε)
Tt

T − t
satisfies

Dtvε −H(x,Dxvε)− ω(ε) ≥ 0 in (0, T )× Rd.
Step 2. For small ε > 0,

sup
(0,T )×Rd

(u− vε) = max
(0,T )×Rd

(u− vε).
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Thus, some vertical translation of vε (which satisfies the same differential inequality)
touches u from above in (0, T )× Rd. This contradicts Theorem 3.1. �

Remark 5.3. In both of the above theorems, the boundedness requirement on u
and v can be relaxed. The proofs need only that u − v has sublinear growth at
infinity.

6. Finite horizon games

We study two-player zero-sum differential games. In these games, two players
compete over a payoff by controlling the dynamics of a particle in Rd.

Consider a dynamics given by an ordinary differential equation

x′ = f(x,y, z),

where f : (Rd)3 → Rd is bounded, uniformly continuous, and Lipschitz in its first
argument. Our hypotheses on f guarantee unique solvability.

Theorem 6.1. Given an initial state x ∈ Rd, a time interval [t, T ) ⊆ R, and
measurable control inputs y, z : [t, T )→ Rd, there is a unique Lipschitz continuous
solution x : [t, T )→ Rd of{

x′(s) = f(x(s),y(s), z(s)) for s ∈ [t, T )

x(t) = x.

We call x = x(·;x,y, z) the system response. �

To define competition, we need a notion of strategy. The set of controls is

Mt,T = {y : [t, T )→ Rd measurable}.

The set of strategies is

Nt,T = {β :Mt,T →Mt,T non-anticipating},

where non-anticipating means that

y = ỹ a.e. in [t, s) implies β[y] = β[ỹ] a.e. in [t, s)

for all y, ỹ ∈Mt,T and s ∈ [t, T ].
A finite horizon game is specified by the dynamics above, together with a time

interval [0, T ] and a bounded and Lipschitz function g : Rd → R. Players I and
II seek to maximize and minimize, respectively, the payoff g(x(T )). To play, one
player chooses a strategy and then the other player chooses a control in response.
This leads to two value functions, depending on who chooses first. These are

V +(t, x) = inf
β∈Nt,T

sup
y∈Mt,T

g(x(T ;x,y, β[y]))

and

V −(t, x) = sup
α∈Nt,T

inf
z∈Mt,T

g(x(T ;x, α[z], z)),

for t ∈ [0, T ] and x ∈ Rd.
A priori, we know that V + ≥ V −. Our goal is to show that V + = V −. This

implies there is no disadvantage to choosing first. This is related to the existence
of a feedback control.
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7. Dynamic programming

There are natural bijections

Mt,T
∼=Mt,s ×Ms,T

and
Nt,T ∼= Nt,s × (Ns,T )Mt,s ,

where AB denotes the set of all functions from B → A. Moreover,

inf
h∈A→B

sup
a∈A

k(a, h(a)) = sup
a∈A

inf
b∈B

k(a, b),

holds for all sets A,B and functions k : A × B → R. These observations allow us
to divide the game into two phases.

Lemma 7.1. The value functions satisfy

V +(t, x) = inf
β∈Nt,s

sup
y∈Mt,s

V +(s,x(s;x,y, β[y]]))

and
V −(t, x) = sup

α∈Nt,s

inf
z∈Mt,s

V −(s,x(s;x, α[z],y))

for all 0 ≤ t ≤ s ≤ T and x ∈ Rd.

Proof. Compute

V +(t, x) = inf
β∈Nt,T

sup
y∈Mt,T

g(x(T ;x,y, β[y]))

= inf
β∈Nt,s

inf
β̃:Ms,t→Ns,T

sup
ỹ∈Mt,s

sup
y∈Mt,s

g(x(T ; x(s;x,y, β[y]), ỹ, β̃[y][ỹ]))

= inf
β∈Nt,s

sup
ỹ∈Mt,s

inf
β̃∈Ns,T

sup
y∈Mt,s

g(x(T ; x(s;x,y, β[y]), ỹ, β̃[ỹ]))

= inf
β∈Nt,s

sup
y∈Mt,s

V +(s,x(s;x,y, β[y])).

A similar computation holds for V −. �

The dynamic programming principle suggests that V + and V − solve a partial
differential equation. Suppose for the moment that the value functions are smooth
and the controls are piecewise constant. Hueristically, we compute

0 = inf
β∈Nt,s

sup
y∈Mt,s

V +(s,x(s;x,y, β[y]]))− V +(t, x)

s− t

= inf
z

sup
y

V +(s, x+ (s− t)f(x, y, z) + o(s− t))− V +(t, x)

s− t
= inf

z
sup
y
DtV

+(t, x) +DxV
+(t, x) · f(x, y, z) + o(1)

as s→ t+. In particular, we expect that V + solves

0 = DtV
+ +H+(x,DxV

+),

where
H+(x, p) = inf

z∈Rd
sup
y∈Rd

p · f(x, y, z).

Simiarly, we expect that V − solves

0 = DtV
− +H−(x,DxV

−),
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where

H−(x, p) = sup
y∈Rd

inf
z∈Rd

p · f(x, y, z).

We call H+ and H− the upper and lower Hamiltonians.
When players control different parts of the state, these are equal.

Lemma 7.2. If f(x, y, z) = f1(x, y) + f2(x, z), then H+ = H−. �

We henceforth assume the min-max condition

H+ = H−,

and write H = H±.

Lemma 7.3. The game Hamiltonian H satisfies

H(x, tp) = tH(x, p) for t > 0,

|H(x, p)| ≤ C|p|,

and

|H(x, p)−H(x̃, p̃)| ≤ C(|x− x̃||p|+ |p− p̃|).

Proof. This is immediate from the boundedness and uniform continuity of f . �

8. Uniqueness of value

We use viscosity solutions to show that V + = V −.

Lemma 8.1. The value functions V ± are bounded and Lipschitz.

Proof. Fix y, z ∈ Mt,T and consider what happens if we vary the initial state x
and initial time t. By standard ODE stability, the map

(s, x) 7→ x̄(T ;x,y|[s,T ), z|[s,T ))

is Lipschitz on [t, T ]×Rd, with constant depending only on f and [t, T ]. Since g is
bounded and Lipschitz, we conclude that V ± is an inf/sup of uniformly bounded
and uniformly Lipschitz functions. �

Formalizing the hueristic computation from before, we show that V ± are equal
to the unique viscosity solution of a Cauchy problem.

Theorem 8.2. The time-reversal v±(t, x) = V ±(T − t, x) satisfies{
Dtv

± −H(x,Dxv
±) = 0 in (0, T )× Rd

v± = g on {0} × Rd

In particular, V + = V −.
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Proof. Suppose ϕ ∈ C∞((0, T )×Rd) touches V + from above at (t, x) ∈ (0, T )×Rd.
For s ∈ [t, T ], the dynamic programming principle implies

0 = inf
β∈Nt,s

sup
y∈Mt,s

V +(s,x(s; t, x,y, β[y]))− V +(t, x)

≤ inf
β∈Nt,s

sup
y∈Mt,s

ϕ(s,x(s; t, x,y, β[y]))− ϕ(t, x)

≤ inf
z∈Rd

sup
y∈Mt,s

ϕ(s,x(s; t, x,y, z))− ϕ(t, x)

= inf
z∈Rd

sup
y∈Mt,s

ˆ s

t

Dtϕ(r,x(r; t, x,y(r), z))

+Dxϕ(r,x(r; t, x,y(r), z)) · x′(r; t, x,y(r), z)) dr

= inf
z∈Rd

sup
y∈Mt,s

ˆ s

t

Dtϕ(t, x) +Dxϕ(t, x) · f(x,y(r), z) + o(1) dr

= inf
z∈Rd

sup
y∈Rd

(s− t) [Dtϕ(t, x) +Dxϕ(t, x) · f(x, y, z) + o(1)]

= (s− t) [Dtϕ(t, x) +H(x,Dxϕ(t, x)) + o(1)] .

We conclude that

Dtϕ(t, x) +H(x,Dxϕ(t, x)) ≥ 0.

When ϕ touches V + from below at (t, x), we compute

0 = inf
β∈Ns,t

sup
y∈Ms,t

V +(s,x(s;x,y, β[y]))− V +(t, x)

≥ inf
β∈Ns,t

sup
y∈Ms,t

ϕ(s,x(s;x,y, β[y]))− ϕ(t, x)

≥ sup
y∈Ms,t

inf
z∈Ms,t

ϕ(s,x(s;x,y, z))− ϕ(t, x)

≥ sup
y∈Rd

inf
z∈Ms,t

ϕ(s,x(s;x, y, z))− ϕ(t, x)

and then proceed as before, concluding

Dtϕ(t, x) +H(x,Dxϕ(t, x)) ≤ 0.

Reversing time, we see that v+ satisfies

Dtv
+ −H(x,Dxv

+) = 0 in (0, T )× Rd.

That v+ is continuous on ([0, T )×Rd) and takes on the boundary conditions follows
from the lemma above. The proof for v− is symmetric. Uniqueness follows by
comparison. �

9. Stability

Differential inequalities in the viscosity sense are stable with respect to many
types of perturbations. This feature is as important as strict comparison.

Lemma 9.1. If u1, u2 ∈ C+(U) satisfy F (x, ui, Dui) ≤ 0 in U , then u = max{u1, u2}
satisfies F (x, u,Du) ≤ 0.

Proof. If ϕ ∈ C1(U) touches u from above at x ∈ U , then it must touch either u1

or u2 from above at x. �
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Definition 9.2. If u : U → R is locally bounded, then

u∗ = min{v ∈ C+(U) : v ≥ u}
and

u∗ = max{v ∈ C−(U) : v ≤ u}
are its upper and lower semicontinuous envelopes.

Lemma 9.3. Suppose un ∈ C+(U) satisfy and F (x, un, Dun) ≤ 0 and the point-
wise limit u = limn un exists. If the sequence un is monotone or if the convergence
of un → u is locally uniform, then F (x, u∗, Du∗) ≤ 0.

Proof. Suppose that ϕ ∈ C1(U) touches u∗ from above at x ∈ U . Consider the
perturbation

ψ(y) = ϕ(y) + |y − x|4.
For small r > 0, we have

(u∗ − ψ)(x) = 0 and sup
B̄(x,2r)\B(x,r)

(u∗ − ψ) ≤ −r4.

We claim that, for large enough n,

max
B̄(x,r)

(un − ψ) ≥ −1

3
r4 and sup

B̄(x,2r)\B(x,r)

(un − ψ) ≤ −2

3
r4.

In the case of uniform convergence or un+1 ≥ un, this is easy. When un+1 ≤ un, we
use the upper semicontinuity of un. Observe, for each y ∈ U , that we can choose
large n and δ > 0 such that u ≤ un ≤ u+ 1

3r
4 in B(y, δ). By compactness, we see

that u ≤ un ≤ u+ 1
3r

4 in B̄(x, 2r) for all large n.
From the claim, it follows that the difference un − ϕ attains a local maximum

at some xn ∈ U for all large n. Moreover, since r > 0 is arbitrary, we may assume
that xn → x and (un − ψ)(xn) → 0 as n → ∞. The differential inequality for un
gives 0 ≥ F (xn, un(xn), Dψ(xn)). Sending n → ∞ and using the continuity of F
gives 0 ≥ F (x, ψ(x), Dψ(x)) = F (x, ϕ(x), Dϕ(x)). �

10. Existence

Using stability and comparison together, we can construct solutions. Fix U ⊆ Rd
open, Γ ⊆ ∂U closed, F ∈ C(Rd × R× Rd), and g : Γ→ R. Let S+ denote the set
of all u ∈ C+(U ∪ Γ) that satisfy{

F (x, u,Du) ≤ 0 in U

u ≤ g on Γ.

Similarly, let S− denote the set of all v ∈ C−(U ∪ Γ) that satisfy{
F (x, v,Dv) ≥ 0 in U

v ≥ g on Γ.

We assume S+ and S− are non-empty and that comparison holds:

sup
u∈S+

u ≤ inf
v∈S−

v.

Lemma 10.1. The function ū = supu∈S+ u satisfies

F (x, ū∗, Dū∗) ≤ 0 and F (x, ū∗, Dū∗) ≥ 0 in U.
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Proof. The first statement is stability. For the second statement, assume for contra-
diction that ϕ ∈ C1(U) touches ū∗ from below at x ∈ U and F (x, ϕ(x), Dϕ(x)) < 0.
For r > 0 small, the perturbation

ψ(y) = ϕ(x) +
1

2
r4 − |y − x|4

satisfies

F (x, ψ,Dψ) ≤ 0 in B(x, 2r) ⊆ U.
Moreover, we also have

min
B̄(x,r)

(ū∗ − ψ)(x) ≤ −1

2
r4, and min

B̄(x,2r)−B(x,r)
(ū∗ − ψ) ≥ 1

2
r4.

Since B̄(x, 2r) is compact, we can find u ∈ S+ such that

u∗ ≤ ū∗ ≤ u∗ +
1

4
r4 on B̄(x, 2r).

Thus

min
B̄(x,r)

(u∗ − ψ)(x) ≤ −1

2
r4, and min

B̄(x,2r)−B(x,r)
(u∗ − ψ) ≥ 1

4
r4.

Now consider

v(x) =

{
max{u(x), ϕ(x)} if x ∈ B(x, 2r)

u(x) if x ∈ U \ B̄(x, r).

Lemma 9.1 implies v ∈ S+. Since minB(x,2r)(ū− v) < 0, we have contradicted the
maximality of ū. �

Lemma 10.2. If there is a ū ∈ S+ satisfying ū∗ = g on Γ, then

sup
u∈S+

u = min
v∈S−

v.

Similarly, if there is a v̄ ∈ S− satisfying v̄∗ = g on Γ, then

max
u∈S+

u = inf
v∈S−

v.

Proof. Fix ū ∈ S+ and v̄ ∈ S− and suppose that ū∗ = g. (The case when v̄∗ = g is
symmetric.) Define

Un = {x ∈ U : dist(x,Γ) > 1/n},

wn = sup{u ∈ S+ : u = ū on U \ Un},
and

w = sup
n
wn.

By comparison, we have

ū ≤ w ≤ sup
u∈S+

u ≤ inf
v∈S−

v ≤ v̄.

Thus, it suffices to show that w∗ ∈ S−. Since w ≥ ū, we have w∗ ≥ ū∗ ≥ g on Γ.
Thus, it suffices to show that F (x,w∗, Dw∗) ≥ 0 in U . By stability, it suffices to
show that F (x, (wn)∗, D(wn)∗) ≥ 0 in Un. This is what the previous lemma shows
when applied to the domain Un. �
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Theorem 10.3. If there are ū ∈ S+ and v̄ ∈ S− such that ū∗ = v̄∗ = g on Γ, then
the boundary value problem {

F (x, w̄,Dw̄) = 0 in U

w̄ = g on Γ

has a unique bounded solution w ∈ C(U ∪ Γ).

Proof. Any element of S+ ∩ S− ⊆ C(Ū) is a solution. Uniqueness is immediate
from comparison. �

We already used finite horizon games to contruct solutions of Cauchy problems.
Using this new method, we can handle more general problems. (We could also
consider more general games.)

Corollary 10.4. Suppose H ∈ C(Rd × Rd) satisfies

|H(x, p)−H(y, q)| ≤ ω(|x− y||p|+ |p− q|)

and

sup |H(x, 0)| <∞.

For all bounded g ∈ C(Rd), the Cauchy problem{
Dtu−H(x,Dxu) = 0 in (0, T )× Rd

u = g on {0} × Rd

has a unique bounded viscosity solution u ∈ C([0, T )× Rd).

Proof. It is enough to construct ū ∈ S+ and v̄ ∈ S− such that ū∗ = v̄∗ = g on
{0} × Rd. We construct v̄. The construction of ū is similar. Since g is bounded,
there are αk, sk ∈ R and xk ∈ Rd such that

g(x) = inf
k

(sk + αk|x− xk|) for x ∈ Rd.

Let

βk = sup
x

sup
|p|≤αk

|H(x, p)| ≤ sup
x
|H(x, 0)|+ ω(αk) <∞.

It follows that

ϕk(t, x) = sk + αk|x− xk|+ βkt

satisfies

Dtϕk −H(x,Dxϕk) ≥ 0 in (0,∞)× Rd.

Finally, observe that

v̄(t, x) = inf
k
ϕk(t, x)

lies in S− ∩ C([0, T )× Rd) and satisfies v̄ = g on {0} × Rd. �
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11. Minimum time games

We now consider a much more interesting class of games. We assume the same
dynamics as before. The minimum time game has payoff

τ(x,y, z) = min{t ≥ 0 : x(t;x,y, z) ∈ Γ},

where Γ ⊆ Rd is closed and non-empty. The upper and lower value functions are

W+(x) = inf
β∈N0,∞

sup
y∈M0,∞

τ(x,y, β[y]))

and

W−(x) = sup
α∈N0,∞

sup
z∈M0,∞

τ(x, α[z], z),

for x ∈ Rd. As before, we have W+ ≥W− for free and hope to prove W+ = W−.

Example 11.1. If f(x, y, z) = z/(1 + |z|), then this is the exit time problem we
considered in the first lecture. Thus, provided Γ = Rd \ U with U bounded, we
know that W+ = W− is the unique solution of the Eikonal equation |Dw| − 1 = 0
in U with zero boundary conditions.

Lemma 11.2. The minimum time value functions satisfy

W+(x) = t+ inf
β∈N0,t

sup
y∈M0,t

W+(x(t;x,y, β[y]]))

and

W−(x) = t+ sup
α∈N0,t

inf
z∈M0,t

W−(x(t;x, α[z],y))

for all x ∈ Rd and 0 ≤ t < ‖f‖−1
L∞ dist(x,Γ).

Proof. The hypothesis 0 ≤ t < ‖f‖−1
L∞ dist(x,Γ) implies that

x̄(t;x,y, z) /∈ Γ

for all y, z ∈M0,t. We compute

W+(x) = inf
β∈N0,∞

sup
y∈M0,∞

τ(x,y, β[y])

= inf
β∈N0,t

inf
β̃:M0,t→N0,∞

sup
y∈M0,t

sup
ỹ∈M0,∞

t+ τ(x(t;x,y, β[y]), ỹ, β̃[y][ỹ])

= inf
β∈N0,t

sup
y∈M0,t

inf
β̃∈Nt,∞

sup
ỹ∈Mt,∞

t+ τ(x(t;x,y, β[y]), ỹ, β̃[y][ỹ])

= t+ inf
β∈N0,∞

sup
y∈M0,∞

W+(x(t;x,y, β[y]))

and similarly for V −. �

Repeating the heuristic analysis of the minimum time case, we expect that W±

both solve the boundary value problem{
−H(x,Dw) = 1 in U

w = 0 on ∂U.

This problem is more difficult to analyze than the time-dependent analogue we
discused before. Indeed, the solutions may be unbounded or discontinuous.
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Example 11.3. Suppose Γ = {(x, y) ∈ R2 : x ≤ byc} and f(x, y, z) = (−1, 0).
Then W±(x, y) = max{0, x − byc} is both unbounded and discontinuous. Note
that W± is lower semicontinuous.

Boundedness is obtained by transformation. Observe, if ϕ ∈ C1(Rd) and ψ =
1 − e−ϕ, then −H(x,Dϕ) = 1 is equivalent to ψ −H(x,Dψ) = 1. Since the map
s 7→ 1 − e−s is smooth and increasing, we expect this formal computation to hold
in the sense of viscosity.

Lemma 11.4. If w = 1− exp(−W±), then

w∗ −H(x,Dw∗) ≤ 1 and w∗ −H(x,Dw∗) ≥ 1 in U.

Proof. Exercise. �

We hope that 1− exp(−W±) are both the unique solution of

(11.1)

{
w −H(x,Dw) = 1 in U

w = 0 on ∂U.

Obseve that the constant functions 0 and 1 are sub and supersolutions. Since 0
takes on the boundary conditions, we can apply Lemma 10.2 to conclude that

sup
u∈S+

u = min
v∈S−

v,

where S± are defined as in Section 10. Constructing a supersolution that takes on
the boundary value is much harder. Still, this unique minimal supersolution is the
natural candidate for the solution.

12. Regularity and control

In the presence of additional structure, bounded subsolutions are automatically
more regular.

Lemma 12.1. Suppose U ⊆ Rd is open and H ∈ C(Rd × Rd) satisfies

H(x, p) ≥ c|p| − C.
If u ∈ C+(U) is bounded

u+H(x,Du) ≤ 0 in U,

then u is Lipschitz.

Proof. Suppose that |u| ≤ α and choose β > 0 such that

H(x, p) ≥ α+ 1 for |p| ≥ β.
Suppose B(x, r) ⊆ U and consider the function

ψε(y) = u(x) + β|y − x|+ ε

r − |y − x|
.

Observe that
ψε +H(x,Dψε) ≥ 1 in Rd \ {0}.

Since
ψε ≥ u on {x} ∪ ∂B(x, r),

comparison implies that u ≤ ψε in B(x, r). It follows that u(y) − u(x) ≤ β|y − x|
whenever B(x, |y − x|) ⊆ Rd. Thus u is Lipschitz. �
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This assumption also allows us to solve the minimum time problem.

Corollary 12.2. If U ⊆ Rd is open and H ∈ C(Rd × Rd) satisfies

|H(x, p)−H(y, q)| ≤ ω(|x− y||p|+ |p− q|)
and

H(x, p) ≥ c|p| − C,
then {

u+H(x,Du) = 1 in U

u = 0 on ∂U

has a unique solution u ∈ C(Ū).

Proof. Note that 0 is a subsolution taking on the boundary values. Moreover, the
coercivity guarantees that v(x) = α dist(x, ∂U) for α > 0 large is a supersolu-
tion taking on the boundary values. Apply Perron’s method to obtain a solution.
Uniqueness follows by comparison. �

The coercivity condition H(x, p) ≥ c|p| − C is sometimes called controllability.
In the context of differential games, it means that player II can force the velocity
to have positive inner product with any given unit vector.

Corollary 12.3. The value functions w = 1 − exp(−W±) are each the unique
solution of {

w −H(x,Dw) = 1 in U

w = 0 on ∂U

when the game Hamiltonian satisfies H(x, p) ≤ −c|p|.

Proof. Exercise. �

13. Monotone and consistent approximation

A variation on our proof of stability gives convergence of certain finite difference
approximations. This is useful if one wishes to numerically approximate viscosity
solutions. It is also useful in capturing scaling limits of certain discrete processes.

Consider a partial differential equation

F (x, u,Du) = 0 in U

where U ⊆ Rd open and F ∈ C(U × R× Rd).
Our approximation schemes consist of a sequence pairs

(Xn,Mn)

where Xn ⊆ Rd is locally finite and Mn : RXn → RXn∩U . We make the following
assumptions:

(1) Density: There is a sequence δn ↓ 0 and maps πn : U → Xn ∩ U such that
|πn(x)− x| ≤ δn for all x ∈ U .

(2) Locality: There is a sequence εn ↓ 0 such that, if x ∈ Xn∩U and ϕ,ψ ∈ RXn

agree on B(x, εn) ∩Xn, then Mnϕ(x) = Mnψ(x).
(3) Monotonicity: If ϕ : Xn → R touches ψ : Xn → R from above at x ∈

Xn ∩ U , then Mnϕ(x) ≤Mnψ(x).
(4) Consistency: If ϕ ∈ C1(U), x ∈ U , sn ∈ R, xn ∈ Xn, limn→∞ sn = 0, and

limn→∞ xn = x, then limn→∞Mn(ϕ+ sn)(xn) = F (x, ϕ(x), Dϕ(x)).
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Example 13.1. If U = (0, 1)d and Xn = {0/n, 1/n, ..., n/n}d, then

Mnu(x) = n(u(x)− u(x− ek/n))

approximates F (x, s, p) = pk in U = (0, 1)d.

Theorem 13.2. If un : Xn → R satisfy Mnun ≤ 0 and ūn = un ◦ πn → u ∈ C(U)
locally uniformly as n→∞, then F (x, u,Du) ≤ 0 in U .

Proof. Suppose that ϕ ∈ C1(U) touches u from above at x ∈ U . We may assume
that x = 0 and B̄(0, 1) ⊆ U . Consider the perturbation

ψ(x) = ϕ(x) + |x|4.
For r ∈ (0, 1), we have

max
B̄(0,r)

(u− ψ) = 0 and max
B̄(0,1)\B(0,r)

(u− ψ) ≤ −r4.

Since the convergence is uniform on the compact ball B̄(0, 1), we see that

max
B̄(0,r)

(ūn − ψ) ≥ −1

3
r4 and max

B̄(0,1)\B(0,r)
(ūn − ψ) ≤ −2

3
r4.

holds for all n ≥ nr. Thus un − ψ attains its maximum on B(0, 1 − δn) ∩ Xn at
xn ∈ B̄(x, r + δn) ∩Xn. Thus ψ + sn, where sn = (un − ψ)(xn), touches un from
aboave at xn in B̄(0, 1) ∩Xn. Since r ∈ (0, 1) is arbitary, we see that xn → 0 and
sn = (un − ψ)(xn)→ 0 as n→∞. Using locality and monotonicity, we compute

0 ≥Mnuh(xn) ≥Mn(ψ + sn)(xn)

for all large n. We then compute

0 ≥ lim
n→∞

Mn(ψ + sn)(xn) = F (0, ψ(0), Dψ(0)) = F (0, ϕ(0), Dϕ(0))

using consistency and the definition of ψ. �


