Math 6140 Viscosity Solutions

Problem Set 2

(1) Characterize the Hamiltonians $H \in C(\mathbb{R}^d \times \mathbb{R}^d)$ the arise from finite horizon differential games. How does this change if we include a running cost. That is, if the payoff in response to controls \mathbf{y} and \mathbf{z} is

$$g(\mathbf{x}(T)) + \int_0^T h(\mathbf{x}(t), \mathbf{y}(t), \mathbf{z}(t)) dt$$

for some $g \in C(\mathbb{R}^d)$ and $h \in C(\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d)$.

- (2) Show that u is upper semicontinuous if and only if, for all $K \subseteq U$ compact and $g \in C(K)$, the difference u - g attains its maximum on K.

- (3) Show that, if $J_x^{0,+}u \cap J_x^{0,-}u \neq \emptyset$, then u is continuous at x. (4) Show that, if $\varphi \in J_x^{1,\pm}u$ and $\varphi^+(x) = \varphi^-(x)$, then u is differentiable at x. (5) Suppose u is the restriction of an element of $C^{\infty}(\mathbb{R})$ to the set $X = [0,1) \cup \mathbb{R}$ {2}. Compute $J_j^{k,+}u$ for k = 0, 1, 2 and j = 0, 1, 2, 3. (6) Prove Lemma 11.4 from the notes.
- (7) Prove Corollary 12.3 from the notes.