Today's discussion. We will look at intersections of surfaces, look at some multi-input functions, then work on other multi-input and multi-output functions in breakout rooms.

Examples.

Rotated Curves+Generalizations.

- 1. Consider the curve $z = x^2$, y = 0 on the xz-plane, and generate a surface by rotating it around the z-axis. Which function has this surface as its graph?
- 2. Consider the curve $z = \frac{1}{x}$, y = 0 on the xz-plane, and generate a surface by rotating it around the z-axis. Which function has this surface as its graph?

Other higher dimensional shapes.

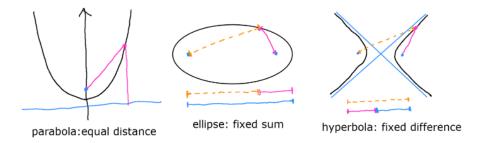
- 3. What does the shape $f(x, y) = x^2 y^2$ look like?
- 4. What are the level sets of $f(x, y, z) = x^2 + y^2 + z^2$?
- 5. Find a vector function of the curve made by intersecting $x^2 + y^2 = 9$ and x + z = 5.
- 6. How would you parametrize a helix wrapping around a torus?

Consider $f(x, y) = 2\sqrt{x^2 + y^2}$.

7. What is the level set f(x, y) = a?

Consider the surface defined by the graph of f, which is the set of all points with coordinate (x, y, f(x, y)).

- 8. Find a vector function that represents the intersection of this surface and (a) the plane x = 1, (b) the plane z = -2x, (c) the plane z = 2x, (d) the plane z = -2x + 1.
- 9. What is the intersection of this surface and the paraboloid $z = 4x^2 + y^2$?



► Exercise 10.5.1 tricks in finding the vertex+directrix of a parabola.

Problems. Those with an asterisk are harder.

- 1. Exercise 12.6.21-28.
- 2. For $\mathbf{r} = \langle t \cos(t), e^t, t^2 \sin(2t) \rangle$, what is $\mathbf{r}'(1)$? What is the unit tangent vector at t = 1?
- 3.* Consider a circle centered at (R, 0, 0) on the xz-plane, with radius r, and assume r < R. Make a donut/torus by rotating the circle around the z-axis. Can you parametrize this surface by a map

$$\mathbf{F}: (u,v) \mapsto \langle f(u,v), g(u,v), h(u,v) \rangle$$
?

4. Let
$$f(x, y) = \sqrt{9 - x^2 - 4y}$$
.

Evaluate f(1, 1).

What is the domain of the function?

5. Let
$$f(x, y, z) = \ln(9 - x^2 - 4y - z^2)$$
.

Evaluate f(1, 0, 1).

What is the domain of the function?

- 6.* What is the shape of $f(x, y) = \frac{x^3 y}{x^2 + y^2}$ around the origin?
- 7. Draw a contour map for the functions by sketching the level curves: f(x, y) = -2, -1, 0, 1, 2 (you can use a graphing calculator if it is hard to simplify).
 - (a) $f(x, y) = 4x^2 + y^2$.
 - (b) $f(x, y) = xy + y^3$.
 - (c) $f(x, y) = x^3 4x + xy^2$.
 - (d) $f(x, y) = x^3 3xy^2$. [Look up "monkey saddle".]
 - (e) $f(x, y) = \sqrt{x} + \sqrt{y}$.
 - (f) $f(x, y) = x^3 + 3x^2y + 4y^3 + 60x$.
- 8.* Find a function f(x, y) with level curves that looks like the following: (the idea is that as a changes, f(x, y) = a goes from a closed curve to a curve extending to infinity)

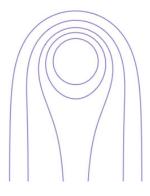


Figure 1: https://www.desmos.com/calculator/7aagstvwwf