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Intervals and Cubes

I An open interval I = (a, b) ⊂ R is the subset

(a, b) := {x ∈ R | a < x < b}

and we define its length (i.e. 1-dim volume) as

vol(I ) = b − a.

I A closed interval I = [a, b] ⊂ R is the subset

[a, b] = {x ∈ R | a ≤ x ≤ b}

and we define its length as vol(I ) = b − a.
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Intervals and Cubes

I An open cube Q ⊂ Rn is a Cartesian product

(a1, b1)× (a2, b2)× · · · × (an, bn)

of open intervals, and we define its volume as

vol(Q) = (b1 − a1)(b2 − a2) · · · (bn − an).

I A closed cube Q ⊂ Rn is a Cartesian product

[a1, b1]× [a2, b2]× · · · × [an, bn]

of closed intervals, and we define its volume as

vol(Q) = (b1 − a1)(b2 − a2) · · · (bn − an).

Note: It’s really a n-dim rectangle.
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Shifting by Constant

I For a set A ⊂ R and a real number r ∈ R, we define

A + r := {x + r | x ∈ A}

I For a set A ⊂ Rn and a point p ∈ Rn, we define

A + p := {x + p | x ∈ A}

Here we add the n-tuples component-by-component.

Fact: For a (open or closed) cube A ⊂ Rn,

vol(A) = vol(A) + r ∀r ∈ R.

Proof: (b + r)− (a + r) = b − a, ∀a, b, r ∈ R
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Set Addition and Union

I For sets A,B ⊂ Rn, we define

A + B := {x + y | x ∈ A, y ∈ B}

I For disjoint sets A,B ⊂ Rn, we define their disjoint union as

A t B := {x | x ∈ A or x ∈ B}

Remark. It is almost never the case that

vol(A + B) = vol(A) + vol(B) (even in an intuitive sense of volume).

However, for cubes A and B, we define

vol(A t B) = vol(A) + vol(B)

and more generally, vol(A ∪ B) ≤ vol(A) + vol(B).
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Measure Zero

Definition
A set S ∈ R has measure 0 if for any ε > 0, there exists a finite or
countable collection of open intervals (Ii ) such that∑

vol(Ii ) ≤ ε and S ⊂
⋃

Ii

Definition
A set S ∈ Rn has measure 0 if for any ε > 0, there exists a finite or
countable collection of open cubes Qi such that∑

vol(Qi ) ≤ ε and S ⊂
⋃

Qi
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Countable Set

I Look up numberphile video “infinity is bigger than you think.”

I Means you can list them out.

I N is countable: 1, 2, 3, 4 . . .

I Z is countable: 0, 1,−1, 2,−2, 3,−3, . . .

I R is not countable (Cantor diagonal argument)
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Q is countable

(from https://math.stackexchange.com/questions/501782/

is-the-infinite-table-argument-for-the-countability-of-q-unsound)
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Countable set has measure 0

I Let E = {e1, e2, . . . , } be a countable set, ε > 0.

I Then E can be covered with

F =
∞⋃
i=1

(
ei −

ε

2i+1
, ei +

ε

2i+1

)

total length of intervals in F =
∞∑
i=1

ε

2i
= ε

I Hence Q is measure 0.
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[0, 1] is not measure 0

I Suppose Ii is a collection of countably many intervals that
cover [0, 1].

I Because [0, 1] is compact, Ii has a finite subcover: i.e. there
exists a finite subcollection (Ink )Lk=1 such that

[0, 1] ⊆
L⋃

k=1

Ink .

I A finite collection of intervals that cover [0, 1] must have total
length greater than or equal to 1.
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Open, Closed, Half-Open intervals

Theorem
In the definition of measure 0, you can replace “open” with
“closed” or “half-open.”

Half open intervals are intervals with one side open the other side
closed (e.g. [a, b)).

sketch.
Given a collection Ii =

⋃∞
i=1(ai , bi ) with total length ε, can take

Ii =
∞⋃
i=1

[ai , bi ].

Conversely, given Ii =
⋃∞

i=1[ai , bi ], can take
Ii =

⋃∞
i=1(ai − ε/2i , bi + ε/2i ). That has total length 2ε. Similar

proof works for equivalence of “open” and “half-open.”
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Cantor Set

I Take [0, 1].

I Take away middle third (1/3, 2/3). End up with
[0, 1/3] ∪ [2/3, 1].

I Repeat for each of those two intervals.

(Taken from Wikipedia)

I Let C be the Cantor set, the “limit” when we repeat the
construction infinitely many times.
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Cantor Set

Formally, the Cantor set can be defined by:

C0 := [0, 1], Cn :=
Cn−1

3
∪
(

2

3
+

Cn−1
3

)
∀n ∈ Z+

C :=
∞⋂
i=0

Ci

I Cn are all closed - a union of 2n closed intervals.

I Cn are nested, i.e. Cn ⊂ Cn−1, ∀n ∈ Z+.

True for n = 1; by WOP, smallest bad n ≥ 2. Since Cn−1 ⊂ Cn−2,

Cn−1
3
∪
(

2

3
+

Cn−1
3

)
⊂ Cn−2

3
∪
(

2

3
+

Cn−2
3

)
.
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Facts abour the Cantor set

I Cantor set is uncountable.

I Cantor set is totally disconnected.

I Cantor set is nowhere dense.

I Cantor set is closed and bounded, thus compact by
Heine-Borel.

I Cantor set is a perfect set, where every point is an
accumulation point (for x ∈ C, points in C \ {x} approximate
x arbitrarily well).

I Cantor set with the Euclidean metric is homeomorphic to
{0, 1}N with the metric

d(~x , ~y) =
∑
i∈N

|xi − yi |
2i

, ~x , ~y ∈ {0, 1}N
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Cantor Set has measure 0

I Note that in our construction each Cn is a disjoint union of
closed intervals, whose volume is the sum of their length.

I For union of disjoint intervals, we write vol as a shorthand for
sum of length.

vol(Cn) = vol

(
Cn−1

3
∪
(

2

3
+

Cn−1
3

))
≤ 1

3
vol(Cn−1) +

1

3
vol(Cn−1)

=
2

3
vol(Cn−1)

I Since vol([0, 1]) = 1, vol(Cn) =
(
2
3

)n → 0 as n→∞.
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More Properties of Volume

I For a cube Q ∈ Rn, if we define mQ for m ∈ R as

mQ := {m · ~x | ~x ∈ Q},

a dilation of Q by a factor of m, and

vol(mQ) = |m|n vol(Q) (1)

I In general we want equation (1) true for all nice subsets of
Rn. This inspires a definition of dimension.

I The Cantor set C would satisfy (if we can make vol(C) 6= 0)

vol(3C) = 2 vol(C)

because dilating by m = 3 adds another copy of it in [2, 3].

I What could the “dimension” of C be?

16 / 16


