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Measure Zero

Definition
A set S ∈ R has measure 0 if for any ε > 0, there exists a finite
or countable collection of open intervals (Ii) such that∑

vol(Ii) ≤ ε and S ⊂
⋃

Ii

Definition
A set S ∈ Rn has measure 0 if for any ε > 0, there exists a finite
or countable collection of open cubes Qi such that∑

vol(Qi) ≤ ε and S ⊂
⋃

Qi
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Terminology

When talking about measure 0, use “almost everywhere.” For
example, if f (x) = g(x) almost everywhere, that means that the
set for which f (x) 6= g(x) is measure 0. If f , g : [0, 1]→ R

f (x) =

{
0 0 ≤ x < 1

1 x = 1

g(x) = 0

are equal almost everywhere.
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Countable Set

I Look up numberphile video “infinity is bigger than you think."
I Means you can list them out.
I N is countable: 1, 2, 3, 4 . . .
I Z is countable: 0, 1,−1, 2,−2, 3,−3, . . .
I R is not countable (Cantor diagonal argument)
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Q is countable

(from https://math.stackexchange.com/questions/501782/
is-the-infinite-table-argument-for-the-countability-of-q-unsound)
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Countable set has measure 0

I Let E = {e1, e2, . . . , } be a countable set, ε > 0.
I Then E can be covered with

F =

∞⋃
i=1

(
ei −

ε

2i+1 , ei +
ε

2i+1

)

total length of intervals in F =

∞∑
i=1

ε

2i = ε

I Hence Q is measure 0.
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[0, 1] is not measure 0

I Suppose Ii is a collection of countably many intervals that
cover [0, 1].

I Because [0, 1] is compact, Ii has a finite subcover: i.e. there
exists a finite subcollection (Ink )

L
k=1 such that

[0, 1] ⊆
L⋃

k=1

Ink .

I A finite collection of intervals that cover [0, 1] must have
total length greater than or equal to 1.
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When is lim
∫
fndx =

∫
lim fndx?

I Suppose fn(x) is the runaway function:

If fn(x) := 1[n,n+1](x)

is the indicator function on [n, n + 1], then for all x ,

fn(x)→ 0 as n →∞.

Note that this is pointwise convergence; we need larger n for
larger x . When n > x , all of fn would be 0 at x .

x

y

f0(x)

x

y

f2(x)
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The Runaway Function

I For the runaway function,

lim fn = 0, but
∫

fn(x)dx = 1 for all n.

Thus, when we take the integral of the left side and the limit
of the right side, we get∫

0(x)dx = 0 6= 1 = lim
n→∞

1

I We cannot exchange limit and integral!
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The “Spike” Function

I Now suppose fn(x) is the spike function:

fn(x) = n · 1(0, 1n )(x)

is n times the indicator function on (0, 1
n ), then for all x ,

lim
n→∞

fn(x) =

{
0 ∀ n, if x ≤ 0

0 if n > 1
x

I However, the integral of fn is 1 for all n.
I We still cannot exchange limit and integral:∫

lim
n→∞

fn(x)dx = 0 6= 1 = lim
n→∞

∫
fn(x)dx
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The “Flattening” Function

I Again, suppose fn(x), n ∈ Z+ is the flattening function:

fn(x) =
1
n
· 1(0,n)(x)

is 1
n times the indicator function on (0, n), then for all x ,

fn(x) ≤
1
n
∀ x =⇒ lim

n→∞
fn(x) = 0

I However, the integral of fn is 1 for all n.
I Again we have∫

lim
n→∞

fn(x)dx = 0 6= 1 = lim
n→∞

∫
fn(x)dx
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When is lim
∫
fndx =

∫
lim fndx?

I Our criterion for switching lim and
∫
should exclude all of

them.
I We want our function to converge pointwise. Here pointwise

convergence can be relaxed to almost everywhere pointwise
convergence, i.e. converge except on set of measure zero.

I Caution: Keep track of what integral you are using. You
need Peano-Jordan measure 0 for Riemann integrals, and
Lebesgue measure 0 for Lebesgue integrals - a sequence
converging on R \Q but not on Q doesn’t necessarily give
you a Riemann integrable limit. The rationals Q has
Lebesgue measure 0, but is not Peano-Jordan measurable.
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When is lim
∫
fndx =

∫
lim fndx?

I The support of a function f is defined as

supp(f ) = {x | f (x) 6= 0}.

I Is it enough to say the support of the function is bounded?
No - see the spike function.

I Is it enough to say the value of the function is bounded?
No - see the runaway and the flattening function.

I What if we require both?

That is sufficient, but not the best we can get :
∫ ∞

1

1
x2 dx

exists, and we in fact define it as the limit

lim
n→∞

∫ n

1

1
x2 dx = lim

n→∞

∫
1
x2 · 1[1,n](x)︸ ︷︷ ︸

fn(x)

dx
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Monotone and Dominated Convergence, Riemann

Theorem (Monotone Convergence)
Suppose {fn}, f are R-integrable functions such that

0 ≤ fn(x) ≤ fn+1(x) <∞ ∀ x ∈ R, n ∈ Z+.

Suppose f (x) = limn fn(x) is R-integrable. Then we have∫
f (x)dx = lim

∫
fn(x)dx . (1)

Theorem (Dominated Convergence)
Suppose {fn}, f are R-integrable functions s.t. fn → f pointwise,

0 ≤ |fn(x)| ≤ M ∀ x ∈ R, n ∈ Z+,

and supp(f ) ⊂ [a, b]s.t.−∞ < a < b <∞. Then (1) also holds.
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Monotone and Dominated Convergence, Lebesgue

Theorem (Monotone Convergence)
Suppose {fn} are L-integrable functions such that

0 ≤ fn(x) ≤ fn+1(x) <∞ ∀ x ∈ R, n ∈ Z+.

Suppose f (x) = limn fn(x). Then we have∫
f (x)dx = lim

∫
fn(x)dx . (2)

Theorem (Dominated Convergence)
Suppose {fn} are L-integrable functions s.t. fn → f pointwise,

0 ≤ |fn(x)| ≤ g(x) ∀ x ∈ R, n ∈ Z+,

for a Lebesgue-integrable function g(x). Then (2) also holds.

15 / 24



Monotone and Dominated Convergence
I For the Riemann integral version, you need to assume the

limit function is R-integrable. For Lebesgue integrals, it’s
part of the conclusion the limit is L-integrable.

I What condition does the runaway function, the spike
function, and the flattening function fail?
None of them is monotone.

For the Lebesgue version, the smallest envelope of runaway is 1[0,∞)(x)

and the smallest envelope of the spike and the flattening function is on

the order of 1
x . For the Riemann version, runaway and flattening has no

bounded support while spike is not bounded.

I Why can’t you R-integrate 1Q as the pointwise limit of

1{r1,r2,··· ,rk}

where r1, r2, · · · is an enumeration of Q?
Part of the assumption is the limit f is R-integrable.
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Lebesgue integrals
I Provides a way of defining Lebesgue integrals while sweeping

measure theory under the rug: A function f is Lebesgue
integrable if there’s R-integrable functions
{fn}, limn→∞ fn = f , and you define the L-integral of f to be∫

fdx = lim

∫
fndx .

I What’s the Lebesgue integral of 1Q?

Theorem (Lebesgue’s Criterion for Riemann Integrability)
A function f is Riemann integrable if it is only discontinuous on a
set of Lebesgue measure 0.
Alternatively, if oscf (I ) := supI (f )− inf I (f ), then a function is
Riemann integrable iff for any ε,

∃{Ii}ni=1,

n⊔
i=1

Ii = supp(f ),
∑

oscf (Ii )>ε

vol(Ii) < ε.
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L1,L2 functions

Let

L1([0, 1]) = {f : [0, 1]→ R :

∫ 1

0
|f (x)|dx <∞}

L2([0, 1]) = {f : [0, 1]→ R :

∫ 1

0
|f (x)|2dx <∞}

L1([0, 1]) and L2([0, 1]) have norms, namely ‖f ‖1 =
∫ 1
0 |f (x)|dx

and

‖f ‖2 =

(∫ 1

0
|f (x)|2dx

)1/2

.

Notice the similarity to (Rn, | · |1) and (Rn, | · |2) where

|x |1 = |x1|+ |x2|+ · · ·+ |xn|, |x |2 =
√
x2
1 + · · ·+ x2

n .
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L1 and L2 functions

Norm ‖f ‖1 and ‖f ‖2 does satisfy the triangle inequality:∫ 1

0
|f (x) + g(x)|dx ≤

∫ 1

0
|f (x)|dx +

∫ 1

0
|g(x)|dx

(∫ 1

0
|f (x) + g(x)|2dx

)1/2

≤

((∫ 1

0
|f (x) + g(x)|dx

)2)1/2

≤
(∫ 1

0
|f (x)|2dx

)1/2

+

(∫ 1

0
|g(x)|2dx

)1/2

where the first step of the L2 equality follows from the
Cauchy-Schwarz inequality: ‖fg‖1 ≤ ‖f ‖2‖g‖2.
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L1 and L2 spaces

I A norm must be:
I Subadditive: N(u + v) ≤ N(u) + N(v) (Triangle ineq.)
I Absolutely scalable: |α|N(u) = N(αu), α is a scalar.
I Positive definite/point-separating/nondegeneracy:

N(u) = 0 iff u = 0.

I But ‖ · ‖1 and ‖ · ‖2 don’t quite satisfy “nondegeneracy.”

For if f (x) = g(x) almost everywhere, then

‖f ‖1 = ‖g‖1 and ‖f ‖2 = ‖g‖2.

So we’ll define an equivalence class that declares two
functions equal if they are equal almost everywhere.
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Facts about L1

I The limit of L1 functions is L1. That is, if (fk) are a
sequence of L1 functions whose norm ‖fm − fn‖1 gets
arbitrarily small for all m and n large enough, then there
exists an L1 function f such that ‖fn − f ‖1 → 0 as n →∞.

I So L1 is ”complete."
I True for L2 as well.
I L2 is equipped with an “inner product”

〈f , g〉 =
∫ 1

0
f (x)g(x)dx ,

with 〈f + g, h〉 = 〈f , h〉+ 〈g, h〉, 〈f , g + h〉 = 〈f , g〉+ 〈f , h〉,

|〈f , g〉| = |〈f , f 〉|1/2|〈g, g〉|1/2 <∞.
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Inner Product Space

An inner product space is a vector space V over a field F = R or
C with an inner product 〈·, ·〉 : V × V → F :
I 〈x , y〉 = 〈y , x〉 (the complex conjugate).
I 〈ax + by , z〉 = a〈x , z〉+ b〈y , z〉 where a, b ∈ F .
I 〈x , x〉 > 0 if x ∈ V \ {0}.

A complete inner product space is a Hilbert space.
I If you have an orthonormal basis B in a Hilbert space, which

means
〈b, b〉 = 1, 〈b, b′〉 = 0∀b 6= b′ ∈ B

then we can represent everything by the basis:

x =
∑
b∈B

〈x , b〉b, 〈x , x〉 =
∑
b∈B

〈x , b〉2 (3)
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A Fun Interplay of L1 and L2 Spaces

I The Fourier transformation for f ∈ L2([0, 1]) is defined using
the L2 inner product:

f̂ (ξ) = 〈f , e2πiξx 〉 =
∫
T
f (x)e2πiξxdx ,T = [0, 1]/0∼1

I The property (3) becomes Plancherel’s theorem:∫
T
|f (x)|2dx =

∫
T
|f̂ (ξ)|2dξ

Or, discretely, when limn ‖f (x)− sn(x)‖2 → 0, where
sn(x) is

∑
|i |≤n f̂ (n)e

2πinx we have Parseval’s identity:∫
T
|f (x)|2dx =

∑
n∈Z
|f̂ (n)|2
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A Fun Interplay of L1 and L2 Spaces

I For square integrable functions, i.e. L2 functions, we can
naturally define 〈f , e2πiξx 〉 and partial sums of the Fourier
series of f converges to something (not necessarily f ) in L2

because they form a Cauchy sequence there.
I However, the integral defining the Fourier coefficients f̂ (ξ)

can only be evaluated when it is absolutely integrable, i.e.∫
T
|f (x)e2πiξx |dx <∞.

Notice that

|f (x)e2πiξx | = |f (x)||e2πiξx | = |f (x)|.

I This is essentially saying f needs to be L1!
But L1(T) 6= L2(T).
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