Equidistribution Review 6

James Leng and Jiazhen Tan

July 18, 2020

Measure Zero

Definition

A set $S \in \mathbb{R}$ has measure 0 if for any $\epsilon > 0$, there exists a finite or countable collection of open intervals (I_i) such that

$$\sum \operatorname{vol}(I_i) \leq \epsilon \quad \text{and} \quad S \subset \bigcup I_i$$

Definition

A set $S \in \mathbb{R}^n$ has measure 0 if for any $\epsilon > 0$, there exists a finite or countable collection of open cubes Q_i such that

$$\sum \operatorname{vol}(Q_i) \leq \epsilon$$
 and $S \subset \bigcup Q_i$

Terminology

When talking about measure 0, use "almost everywhere." For example, if f(x) = g(x) almost everywhere, that means that the set for which $f(x) \neq g(x)$ is measure 0. If $f, g: [0, 1] \rightarrow \mathbb{R}$

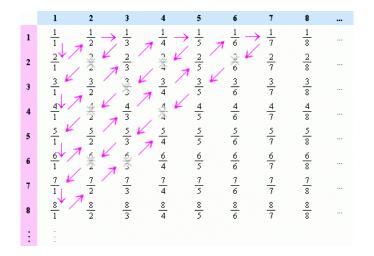
$$f(x) = \begin{cases} 0 & 0 \le x < 1\\ 1 & x = 1 \end{cases}$$
$$g(x) = 0$$

are equal almost everywhere.

Countable Set

- Look up numberphile video "infinity is bigger than you think."
- Means you can list them out.
- ▶ N is countable: 1, 2, 3, 4...
- ▶ \mathbb{Z} is countable: 0, 1, -1, 2, -2, 3, -3, ...
- ▶ **ℝ** is not countable (Cantor diagonal argument)

\mathbb{Q} is countable



(from https://math.stackexchange.com/questions/501782/ is-the-infinite-table-argument-for-the-countability-of-q-u

Countable set has measure 0

• Let
$$E = \{e_1, e_2, \dots, \}$$
 be a countable set, $\epsilon > 0$.

► Then *E* can be covered with

$$F = \bigcup_{i=1}^{\infty} \left(e_i - \frac{\epsilon}{2^{i+1}}, e_i + \frac{\epsilon}{2^{i+1}} \right)$$

total length of intervals in
$$F = \sum_{i=1}^{\infty} \frac{\epsilon}{2^i} = \epsilon$$

► Hence Q is measure 0.

[0, 1] is not measure 0

- Suppose *l_i* is a collection of countably many intervals that cover [0, 1].
- ▶ Because [0, 1] is compact, I_i has a finite subcover: i.e. there exists a finite subcollection $(I_{n_k})_{k=1}^L$ such that

$$[0,1]\subseteq \bigcup_{k=1}^L I_{n_k}.$$

A finite collection of intervals that cover [0, 1] must have total length greater than or equal to 1. When is $\lim \int f_n dx = \int \lim f_n dx$?

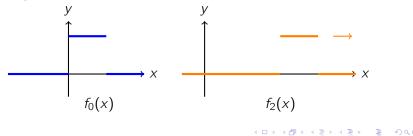
Suppose $f_n(x)$ is the runaway function:

If
$$f_n(x) := \mathbb{1}_{[n,n+1]}(x)$$

is the indicator function on [n, n+1], then for all x,

$$f_n(x) \to 0$$
 as $n \to \infty$.

Note that this is pointwise convergence; we need larger n for larger x. When n > x, all of f_n would be 0 at x.



8/24

The Runaway Function

For the runaway function,

lim
$$f_n = \mathbf{0}$$
, but $\int f_n(x) dx = 1$ for all n .

Thus, when we take the integral of the left side and the limit of the right side, we get

$$\int \mathbf{0}(x) dx = 0 \neq 1 = \lim_{n \to \infty} 1$$

We cannot exchange limit and integral!

The "Spike" Function

Now suppose $f_n(x)$ is the spike function:

$$f_n(x) = n \cdot \mathbb{1}_{(0,\frac{1}{n})}(x)$$

is *n* times the indicator function on $(0, \frac{1}{n})$, then for all *x*,

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \forall n, \text{ if } x \le 0\\ 0 & \text{if } n > \frac{1}{x} \end{cases}$$

- However, the integral of f_n is 1 for all n.
- We still cannot exchange limit and integral:

$$\int \lim_{n \to \infty} f_n(x) dx = 0 \neq 1 = \lim_{n \to \infty} \int f_n(x) dx$$

The "Flattening" Function

▶ Again, suppose $f_n(x)$, $n \in \mathbb{Z}^+$ is the flattening function:

$$f_n(x) = \frac{1}{n} \cdot \mathbb{1}_{(0,n)}(x)$$

is $\frac{1}{n}$ times the indicator function on (0, *n*), then for all *x*,

$$f_n(x) \leq \frac{1}{n} \forall x \implies \lim_{n \to \infty} f_n(x) = 0$$

- However, the integral of f_n is 1 for all n.
- Again we have

$$\int \lim_{n \to \infty} f_n(x) dx = 0 \neq 1 = \lim_{n \to \infty} \int f_n(x) dx$$

When is $\lim \int f_n dx = \int \lim f_n dx$?

- Our criterion for switching lim and ∫ should exclude all of them.
- We want our function to converge pointwise. Here pointwise convergence can be relaxed to *almost everywhere* pointwise convergence, i.e. converge except on set of measure zero.
- ► Caution: Keep track of what integral you are using. You need Peano-Jordan measure 0 for Riemann integrals, and Lebesgue measure 0 for Lebesgue integrals a sequence converging on ℝ \ Q but not on Q doesn't necessarily give you a Riemann integrable limit. The rationals Q has Lebesgue measure 0, but is not Peano-Jordan measurable.

When is $\lim \int f_n dx = \int \lim f_n dx$?

The support of a function f is defined as

$$\operatorname{supp}(f) = \{x \mid f(x) \neq 0\}.$$

- Is it enough to say the support of the function is bounded? No - see the spike function.
- Is it enough to say the value of the function is bounded? No - see the runaway and the flattening function.
- What if we require both?

That is sufficient, but not the best we can get : $\int_{1}^{\infty} \frac{1}{x^2} dx$ exists, and we in fact define it as the limit

$$\lim_{n \to \infty} \int_1^n \frac{1}{x^2} dx = \lim_{n \to \infty} \int \underbrace{\frac{1}{x^2} \cdot \mathbb{1}_{[1,n]}(x)}_{f_n(x)} dx$$

Monotone and Dominated Convergence, Riemann

Theorem (Monotone Convergence) Suppose $\{f_n\}$, f are R-integrable functions such that

 $0 \leq f_n(x) \leq f_{n+1}(x) < \infty \quad \forall x \in \mathbb{R}, n \in \mathbb{Z}^+.$

Suppose $f(x) = \lim_{n \to \infty} f_n(x)$ is *R*-integrable. Then we have

$$\int f(x)dx = \lim \int f_n(x)dx.$$
 (1)

Theorem (Dominated Convergence) Suppose $\{f_n\}$, f are R-integrable functions s.t. $f_n \to f$ pointwise,

 $0 \leq |f_n(x)| \leq M \quad \forall x \in \mathbb{R}, n \in \mathbb{Z}^+,$

and $supp(f) \subset [a, b]s.t. - \infty < a < b < \infty$. Then (1) also holds.

Monotone and Dominated Convergence, Lebesgue

Theorem (Monotone Convergence) Suppose $\{f_n\}$ are L-integrable functions such that

 $0 \leq f_n(x) \leq f_{n+1}(x) < \infty \quad \forall x \in \mathbb{R}, n \in \mathbb{Z}^+.$

Suppose $f(x) = \lim_{n \to \infty} f_n(x)$. Then we have

$$\int f(x)dx = \lim \int f_n(x)dx.$$
 (2)

Theorem (Dominated Convergence) Suppose $\{f_n\}$ are L-integrable functions s.t. $f_n \rightarrow f$ pointwise,

 $0 \leq |f_n(x)| \leq g(x) \quad \forall x \in \mathbb{R}, n \in \mathbb{Z}^+,$

for a Lebesgue-integrable function g(x). Then (2) also holds.

Monotone and Dominated Convergence

- For the Riemann integral version, you need to assume the limit function is R-integrable. For Lebesgue integrals, it's part of the conclusion the limit is L-integrable.
- What condition does the runaway function, the spike function, and the flattening function fail?

None of them is monotone.

For the Lebesgue version, the smallest envelope of runaway is $\mathbb{1}_{[0,\infty)}(x)$ and the smallest envelope of the spike and the flattening function is on the order of $\frac{1}{x}$. For the Riemann version, runaway and flattening has no bounded support while spike is not bounded.

 \blacktriangleright Why can't you R-integrate $\mathbb{1}_{\mathbb{Q}}$ as the pointwise limit of

 $\mathbb{1}_{\{r_1,r_2,\cdots,r_k\}}$

where r_1, r_2, \cdots is an enumeration of \mathbb{Q} ?

Part of the assumption is the limit f is R-integrable.

Lebesgue integrals

Provides a way of defining Lebesgue integrals while sweeping measure theory under the rug: A function f is Lebesgue integrable if there's R-integrable functions

 $\{f_n\}$, $\lim_{n\to\infty} f_n = f$, and you define the L-integral of f to be

$$\int f dx = \lim \int f_n dx.$$

► What's the Lebesgue integral of 1_Q?

Theorem (Lebesgue's Criterion for Riemann Integrability) A function f is Riemann integrable if it is only discontinuous on a set of Lebesgue measure 0. Alternatively, if $\operatorname{osc}_f(I) := \sup_I(f) - \inf_I(f)$, then a function is Riemann integrable iff for any ϵ ,

$$\exists \{I_i\}_{i=1}^n, \quad \bigsqcup_{i=1}^n I_i = \operatorname{supp}(f), \sum_{\operatorname{osc}_f(I_i) > \epsilon} \operatorname{vol}(I_i) < \epsilon.$$

イロト イヨト イヨト イヨト 三日

L^1 , L^2 functions

Let

$$L^{1}([0,1]) = \{f : [0,1] \to \mathbb{R} : \int_{0}^{1} |f(x)| dx < \infty\}$$
$$L^{2}([0,1]) = \{f : [0,1] \to \mathbb{R} : \int_{0}^{1} |f(x)|^{2} dx < \infty\}$$

 $L^{1}([0, 1])$ and $L^{2}([0, 1])$ have norms, namely $||f||_{1} = \int_{0}^{1} |f(x)| dx$ and

$$\|f\|_2 = \left(\int_0^1 |f(x)|^2 dx\right)^{1/2}.$$

Notice the similarity to $(\mathbb{R}^n, |\cdot|_1)$ and $(\mathbb{R}^n, |\cdot|_2)$ where

$$|x|_1 = |x_1| + |x_2| + \dots + |x_n|, |x|_2 = \sqrt{x_1^2 + \dots + x_n^2}.$$

L^1 and L^2 functions

Norm $||f||_1$ and $||f||_2$ does satisfy the triangle inequality:

$$\int_0^1 |f(x) + g(x)| dx \le \int_0^1 |f(x)| dx + \int_0^1 |g(x)| dx$$

$$\left(\int_0^1 |f(x) + g(x)|^2 dx\right)^{1/2} \le \left(\left(\int_0^1 |f(x) + g(x)| dx\right)^2\right)^{1/2}$$
$$\le \left(\int_0^1 |f(x)|^2 dx\right)^{1/2} + \left(\int_0^1 |g(x)|^2 dx\right)^{1/2}$$

where the first step of the L^2 equality follows from the Cauchy-Schwarz inequality: $||fg||_1 \le ||f||_2 ||g||_2$.

L^1 and L^2 spaces

A norm must be:

- Subadditive: $N(u + v) \le N(u) + N(v)$ (Triangle ineq.)
- Absolutely scalable: $|\alpha|N(u) = N(\alpha u)$, α is a scalar.
- ► Positive definite/point-separating/nondegeneracy: N(u) = 0 iff u = 0.
- But || · ||₁ and || · ||₂ don't quite satisfy "nondegeneracy."
 For if f(x) = g(x) almost everywhere, then

$$||f||_1 = ||g||_1$$
 and $||f||_2 = ||g||_2$.

So we'll define an equivalence class that declares two functions equal if they are equal almost everywhere.

Facts about L^1

- The limit of L¹ functions is L¹. That is, if (f_k) are a sequence of L¹ functions whose norm ||f_m − f_n||₁ gets arbitrarily small for all m and n large enough, then there exists an L¹ function f such that ||f_n − f||₁ → 0 as n → ∞.
- So L¹ is "complete."
- True for L^2 as well.
- ► L² is equipped with an "inner product"

$$\langle f,g\rangle = \int_0^1 f(x)g(x)dx,$$

with $\langle f + g, h \rangle = \langle f, h \rangle + \langle g, h \rangle$, $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle$, $|\langle f, g \rangle| = |\langle f, f \rangle|^{1/2} |\langle g, g \rangle|^{1/2} < \infty$.

Inner Product Space

An inner product space is a vector space V over a field $F = \mathbb{R}$ or \mathbb{C} with an inner product $\langle \cdot, \cdot \rangle : V \times V \to F$:

• $\langle x, y \rangle = \overline{\langle y, x \rangle}$ (the complex conjugate).

•
$$\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$$
 where $a, b \in F$.

•
$$\langle x, x \rangle > 0$$
 if $x \in V \setminus \{\mathbf{0}\}$.

- A complete inner product space is a Hilbert space.
 - If you have an orthonormal basis B in a Hilbert space, which means

$$\langle b, b \rangle = 1, \langle b, b' \rangle = 0 \forall b \neq b' \in B$$

then we can represent everything by the basis:

$$x = \sum_{b \in B} \langle x, b \rangle b, \langle x, x \rangle = \sum_{b \in B} \langle x, b \rangle^2$$
(3)

A Fun Interplay of L^1 and L^2 Spaces

The Fourier transformation for f ∈ L²([0, 1]) is defined using the L² inner product:

$$\hat{f}(\xi) = \langle f, e^{2\pi i \xi x} \rangle = \int_{\mathbb{T}} f(x) e^{2\pi i \xi x} dx$$
, $\mathbb{T} = [0, 1]/_{0 \sim 1}$

The property (3) becomes Plancherel's theorem:

$$\int_{\mathbb{T}} |f(x)|^2 dx = \int_{\mathbb{T}} |\hat{f}(\xi)|^2 d\xi$$

Or, discretely, when $\lim_{n} ||f(x) - s_n(x)||_2 \to 0$, where $s_n(x)$ is $\sum_{|i| \le n} \hat{f}(n) e^{2\pi i n x}$ we have Parseval's identity:

$$\int_{\mathbb{T}} |f(x)|^2 dx = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2$$

A Fun Interplay of L^1 and L^2 Spaces

- For square integrable functions, i.e. L² functions, we can naturally define (f, e^{2πiξx}) and partial sums of the Fourier series of f converges to something (not necessarily f) in L² because they form a Cauchy sequence there.
- However, the integral defining the Fourier coefficients $\hat{f}(\xi)$ can only be evaluated when it is absolutely integrable, i.e.

$$\int_{\mathbb{T}} |f(x)e^{2\pi i\xi x}| dx < \infty.$$

Notice that

$$|f(x)e^{2\pi i\xi x}| = |f(x)||e^{2\pi i\xi x}| = |f(x)|.$$

This is essentially saying f needs to be L^1 ! But $L^1(\mathbb{T}) \neq L^2(\mathbb{T})$.