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Trig Weierstrass

» Recall Weierstrass Approximation:

Theorem

Every continuous function on an interval can be uniformly
approximated by polynomials. That is, for each f € C([a, b]) and
€ > 0 there exists a polynomial P such that for all x € [a, b],

If(x) — P(x)| < e

> We will give a sketch of Trig Weierstrass Approximation:

Theorem
For each f € C([a, b]) and € > O there exists a trigonometric
polynomial P such that for all x € [a, b],

[f(x) — P(x)| <e



Remarks

» WLOG can assume [a, b] = [—1, 1]

» Can extend f to be a continuous function [—, 7] such that
f(r) = f(—mn).

» A trigonometric polynomial is a function of the form

N

Z ap cos(nx) + by sin(nx)

n=0
or if you prefer

N
§ : anelx

n=—N



Recall Proof of Weierstrass Approximation

» Suppose [a, b] = [—1,1]. Recall that we proved the
Weierstrass Approximation Theorem by taking a suitable
sequence of polynomials K, such that K,(0) — oo,

Kn(x) — 0 for all other x, K,(x) > 0 for all x € [-1,1], and

/_11 Kn(x) = 2.

» We then convolved those functions by f to obtain a sequence
of polynomials:

1
Pa(x) = f x Kp(x) = /_1 f(t)K(x — t)dt

» The sequence of polynomials P, converges uniformly to f.



Picture of K,,

http://www-groups.mcs.st-andrews.ac.uk/~john/analysis/Lectures/L19.html



Sketch of Trig Weierstrass Approximation

> We follow a similar strategy: we find a sequence of 3, with
> (,(0) = o0
> Bn(x) = 0forx#0
> (x) = 0
’ us
Bn(x) =27
—T
» [,(x) are trigonometric polynomials: or at least, when
convolved with a continuous function f, they become a
trigonometric polynomial:

Ta(x) =1 x Bn(x) = /j f(t)Bn(x — t)dt
» One (3, that works is
1 sin?(nx/2)
Bn(x) = n sin?(x/2)



[Time permitting] A brief aside

» The function f has a Fourier series:

Zancos nx) + by sin(nx) Z f(n inx

n=0 n=—00

Taking

N

Snf( Zancos nx) + by, sin(nx) Z f(n inx

n=0 n=—N

and Anf(x) = & V0P Suf(x), the quantity Th(x) = An(x).



[Time permitting] Partial Fourier Series Doesn't Work

» In fact, we have nth Fourier trig polynomial

- _sin((n+1/2)x)
Snf(x) = fxn(x), n(x) = T sin(x2)
> It turns out that while [™ ~,(x)dx = 2m,

Xp = / |vn(x)|dx is unbounded.

—T

while since n(x) > 0,
/_Tf |Bn(x)|dx = _W Bn(x)dx = 2.

» Snf(x) only converges " pointwise almost everywhere” (not
even pointwise) to f(x) as N — oo. It does not converge
uniformly to f(x).



Metric Spaces

» A metric space is a set X equipped with a metric ("distance
function™) d satisfying the following properties:
> Positivity: d(x,y) >0
»> Nondegeneracy: d(x,y) =0 = x=y for x,y € X
> Reflexivity: d(x,y) = d(y, x)
» The triangle inequality: d(x,y) + d(y,z) > d(x, z)



Examples of Metric Spaces

» Distance between two real numbers: X =R, d(x,y) = |x — y|
» Euclidean distance: X = R?

d((xa.32), (v1.32)) = /(1 = 11)? + (2 — 12)?

» Euclidean distance for R™: X = R"

d(%,7) = /(a0 — 1) + (2 — y2)? -+ (%0 — y0)?

where X = (x1,x2,...,%n), ¥ = (V1, Y2, - -, ¥n)-



Proof of Euclidean Metric

P Positivity: Principle square root is positive.

» Nondegeneracy: d(x,y) =0 means

\/(Xl—}’1)2+(Xz—)/2)2—|----+(x,,—y,,)2:O

since (x; — y;)? > 0 and is 0 if and only if x; = y;, it follows
that x; = y; for all J.

> Reflexivity: Follows since
(xi = yi)? = (=(yi = x1))* = (=1)*(vi = x)* = (yi — xi)?

» Triangle Inequality: We will show

|MM=J@+é+m+ﬁwmms

X+ yll2 < lixll2 + llyll2-



Proof Continued

\/(xl +y1)? 4+ (Xn+yn)?2 = \/x12+---+x,%+\/y12+---+yn2
Squaring both sides, we have
Caty)® A (xatyn)? <xE+- - xgHyt o ya 2l x|l |2

Expanding both sides and cancelling out like terms, we get

n
S iy < IIxlallyllz = (/32 -+ x2y /2 + o 42
i=1

This is the “Cauchy-Schwarz inequality.” Replacing x with
y—x=(y1 —X1,---,¥Yn — Xn), ¥y With z — y, we see that

y —x+z—y=z—x, and since ||y — x|| = d(x, y), the triangle
inequality follows.



Normed Metric Spaces

» A Norm is a way of measuring size in a “vector space” (think
R™)
» A norm || - || satisfies the following properties:
> Positivity: ||x]| >0
> Nondegeneracy: ||x|| =0 if and only if x =0
» Scaling: ||Ax]| = |Al||x|| for A e R
> Triangle Inequality: ||x + y|| < ||x]| + |||l

» Given a norm, can form a distance d(x,y) = ||x — y||.

» R” under the “/?" or Euclidean norm ||x||2 is a Normed space.



LP spaces

> [P distance for R" for 1 < p <oo: X =R"

»
I¥llp = &/ Pal? + bale -+ [xal?.
| 4
€l = bl + -+
>
I¥loe = max ||

» To prove these, use “Holder’s inequality” in place of
Cauchy-Schwarz inequality. (look at the counting measure
section on the wikipedia page)



Other Examples of Metric Spaces

» A subspace of a metric space.
» Trivial metric on any set: d(x,y) =1 for all x,y € S

» A multiple of a metric space: if d is a metric, then 2d is also
a metric.

> Let X = {0,1}" the space of all infinite sequences
x = (x1, X2, X3, Xa, ... ) with x; is either 0 or 1. Define

o0
Xi—yil _ Pa—nl -yl
d(x,y):z 5 = 5 + > 4.
i=1

> More on this example later.



Topology - Open sets

Certain subsets of a space X are called open sets.

Intuition

In a open set, no one is at the
border - you can always draw a
little disk around yourself such that
the disk is completely inside the set.

Definition
A set V is a neighborhood of p if you can draw
a disk B,(p) around p such that B,(p) C V.

’An open set is a neighborhood of all of its points.

Image Credit: Oleg Alexandrov / Public domain.
https://commons.wikimedia.org/wiki/File:Neighborhood_illust1.svg



Metric Space Terminology

» Open balls: B.(xp) = {x : d(x,x0) < r}.

Closed balls: B,(xp) = {x : d(x,x0) < r}.

» Open sets U. A subset U of X is open if for all x € U, there
exists r such that B,(x) C U.

» (0,1) is open in R. While [0, 1] is not open in R (look at the
endpoints).

v

» Closed sets contain all its limit points. [0, 1] is closed. [0,1) is
neither closed nor open.

» Another definition of Closed Sets: complements of open sets



More examples of Open and Closed Sets

v

Any union of open intervals are open in R

The entire space and the empty set are open and closed for
any metric space.

The trivial metric on any set: d(x,y) =1 for all x,y € S: all
subsets of S are open and closed.

Finite union of closed intervals are closed.

{0} is not an open subset of R.



Properties of Open and Closed Sets

v

For a metric space (M, d), M and () are both open and closed.

The union of any number (countable, uncountable) of open
sets is open.

The intersection of any number (countable, uncountable) of
closed sets is closed.

The finite union of closed sets is closed.
The finite intersection of open sets is open.

Infinite intersections of open sets are not open:

((~1/n,1/n) = {0}

n=1

which is not open.



Continuity: € — ¢ Definition
» A function f : R — R is continuous at xg if for all ¢ > 0, there
exists ¢ such that

Ix —x0| <0 = |f(x) — f(x0)| <e.

Letting d(x,y) = |x — y|, we can reformulate this:

d(x,%0) <3 = d(f(x), f(x0)) < €|

» A function f : R — R is continuous if it's continuous at all
points.

> A function f : R — R is uniformly continuous if given € > 0
there exists § such that for all x,y € R,

Ix —y| <d = |f(x) —f(y)| <e.
» Can reformulate for metric:

d(x,y) <d = d(f(x),f(y)) <e.



Continuity

» Given two metric spaces (X, dx), (Y, dy), a function
f : X — Y is continuous at a point xg if for all € > 0 there
exists ¢ such that

dx(X,Xo) <) = dy(f(X), f(Xo)) < €. (*)

» A function f : X — Y is continuous if it's continuous at all
points.
» Similarly, a function f : X — Y is uniformly continuous if

given any € > 0, there exists § such that for all x,y € X,
dx(x,y) <6 = dy(f(x),f(y)) <e.



Continuity

Equivalently,
Definition
1. A function between two metric spaces is continuous if every
preimage of an open set is open.

2. A function between two metric spaces is continuous if every
preimage of an open ball is open.

» 1 — 2: all open balls are open sets.

» 2 = 1: every open set is a (arbitrary) union of open balls,
and the preimage of a union is the union of preimages.

» U = B.(f(x0)) is an open ball, and the definition (*) says

f (Bs(x0))) C U.



Limit Points

Definition
A point p is a limit point of a set S if every open set containing p
also contains a point g € S such that g # p.

>
>
>

Recall

1 is a limit point of [0,1).

L is not a limit point of {1,2,3,...}. Take By/5(1) = (%, %)
Every x € R is a limit point of Q. In particular every x € Q is
a limit point of Q.

Closed sets contain all of its limit points.

If we take a set S and union it with the set of limit points of
S, we get its closure, denoted S.
Nontrivial fact: The set S contain all of its limit points.

Definition
A point p is an isolated point of a set S if p € S but is not a limit
point of S.



Cauchy Sequences

Definition
Take a metric space (M, d). A sequence {a;}?°, in it is Cauchy if

Ve >0,IN €N, s.it. Vm,n> N, |am — an| < €. (1)
Equivalently:

Ve >0,IN e N;x € M, s.it. YVm > N, ap, € B(x). (2)

Proof of equivalence. Fix ¢ > 0.
» (1) = (2). Take the N for € from (1). Let x = an41.

VmeN, an, € B(ans1)-
» (2) = (1). Take the N and x for § from (2). Ym,n € N,

am,an € B.jo(x) = |am — an| < diameter(B,/»(x)) = e.



Complete Metric Space

» Cauchy sequences provides a way to characterize “converging”
sequences without having the construct the limit first.

Definition
A sequence {a;}ien converges to x if

Ve > 0,3N €N, st. Ym > N, d(am, x) < €.
Definition

A metric space (M, d) is complete if every Cauchy sequence in it
converges to a point in it.



Close vs Complete

Closure of subsets is relative to the entire set, while completeness
of a metric space is relative to the metric.

Take the Euclidean distance metric:

» Every set is closed relative to itself. The open interval (0,1) is
closed relative to (0,1), but not relative to [0, 1).

> Q is closed relative to Q.

> Q is not closed relative to R.

» Q is not complete, R is complete, R" is complete for n € N.
» R is closed relative to R" for all n € N.

Fact. A metric space is complete iff it is closed in every space
containing it.



Compact Metric Spaces

Definition

A metric space is compact if for all sequences (x,), there exists a
subsequence of (x,) that converges to an element of that metric
space.

| 2

>

[0,1] is compact (Try to find a monotone subsequence for any
sequence!)

(0,1) is not compact: % 1 1

5>35 75+ 1S a subsequence that does
not converge.

All closed and bounded subsets of R"” are compact. All other
sets are not compact.

RY is not compact. Let & be the i unit vec; take {&}en.
It turns out that the space {0, 1} is compact.(What metric?)



Continuity Revisited

Theorem
Every continuous function on a compact set is uniformly
continuous.

Theorem

Every continuous function on a compact set achieves its supremum
and infimum ( thus we speak of their maximum and minimum in
this case.

Theorem
Every continuous function maps compact sets to compact sets.



Cantor’s Intersection Theorem

Theorem
Take a space S. The intersection of nested compact, closed

subsets of S is nonempty.

Example

> @ has no compact subsets.

NPl =003

neN neN

» Consider {Sk}xen, Sk C RY where

» Compare

Sk = {0}* x [0, 1]

» Take R. The intersection of nested closed, bounded subsets of
R is nonempty. Consider the construction of Cantor set.



Cantor Set

The Cantor set can be defined by:

L L Cn—l g Cn—l +
G :=1[0,1], C,:= 3 U<3+ 3 >Vn€Z

C .= ﬁ C,'
i=0

» C, are all closed - a union of 2" closed intervals.
» WTS: C, are nested, i.e. C, C C,_1Vn e Z+.
True for n = 1; By WOP, the least bad n > 2 and C,—1 C Cp_».

Cn—l Cn—2 2 Cn—l 2 Cn—2
3 -3 <3+3)C(3+3>




Cantor Set

» Elements of C are exactly those with only digit 0 or 2 in (one
of) their ternary expansion.

{5

» We can also see the elements of Cantor set as infinite
0, 2—sequences.

ti € {0,2}}.

» Cantor set is closed and bounded in R, thus compact.

» Cantor set is a complete metric space w.r.t. the absolute
value metric.
» Cantor set has no isolated points.

> What is
C+C:={a+blabe(C}?



Cantor Set vs {0, 1}

Definition
Two spaces X, Y are homeomorphic if we have a continuous map
X — Y with a continuous inverse.

Theorem
The Cantor set is homeomorphic to {0, 1} if we give {0, 1} the

metric -
Ixi — yil
d(X7 y) = Z I 2, ’

i=1

» The natural map we'll use:

f:C—{0,1}", (t1,t2,t3...)¢—>(5 23



Cantor Set vs {0, 1}

Proof.

> f is continuous: Take € > 0 and f(x) € {0, 1}, If % <,
then everything who agrees with x up to digit k is within €
from x.

Take § = 3% ensures the preimage agrees with x up to k digits.

> 1 |s continuous: Similarly, take k such that € > 3. The

f‘
6= 2k would suffice.



Definitions of U.D.

1. A sequence (xp) € [0, 1] is uniformly distributed (U.D.) if for
any subinterval [a, b] one has

1< n<
N—oo N

a.

Definition
2. A sequence (xp) € [0,1] is uniformly distributed if for all
f € C°([0,1]), i.e. continuous functions f : [0,1] — R,

Definition
3. A sequence (x,) € [0,1] is uniformly distributed if for all
Riemann integrable f, (3) holds.



Equivalence of definitions

» 2. — 1. All indicator functions are continuous. Note that

N
1 H{xn:1<n<N}nJa,b
Nzgl[a,b](xi) = N

> 3. = 2. All continuous functions are Riemann integrable.

» 1. = 3. Riemann integrable functions can be approximated
by Jordan-Simple functions, and Jordan-Simple functions can
be approximated by step functions. Allow €/3 error for each of
the above two approximations
For the step functions Y 7 ; ci1[s ;1(x), take N; for each i s.t.

HXHZ].SHS N}ﬂ[sivti” _

€
ti—si)| < —
N (ti = si)| < 357,

VYN > N;

and take N = max; ;.



The set of terms vs U.D. of the sequence

» You can enumerate Q N (0, 1] so that it is U.D.

Write rationals as § for coprime a, b and arrange them by
lexicographical order on the pair (b, a). Equivalently, arrange
by the order they are inserted in a Farey sequence.

» You can enumerate Q N (0, 1] so that it is not U.D.

Take the sequence from above, break it into two subsequences
with terms in (0, 3] and in (3, 1], then merge the two
subsequences by taking two terms in the first sequence for
every term in the second sequence.



