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Trig Weierstrass

I Recall Weierstrass Approximation:

Theorem
Every continuous function on an interval can be uniformly
approximated by polynomials. That is, for each f ∈ C ([a, b]) and
ε > 0 there exists a polynomial P such that for all x ∈ [a, b],

|f (x)− P(x)| < ε

I We will give a sketch of Trig Weierstrass Approximation:

Theorem
For each f ∈ C ([a, b]) and ε > 0 there exists a trigonometric
polynomial P such that for all x ∈ [a, b],

|f (x)− P(x)| < ε



Remarks

I WLOG can assume [a, b] = [−1, 1]

I Can extend f to be a continuous function [−π, π] such that
f (π) = f (−π).

I A trigonometric polynomial is a function of the form

N∑
n=0

an cos(nx) + bn sin(nx)

or if you prefer
N∑

n=−N
ane

ix



Recall Proof of Weierstrass Approximation

I Suppose [a, b] = [−1, 1]. Recall that we proved the
Weierstrass Approximation Theorem by taking a suitable
sequence of polynomials Kn such that Kn(0)→∞,
Kn(x)→ 0 for all other x , Kn(x) ≥ 0 for all x ∈ [−1, 1], and∫ 1

−1
Kn(x) = 2.

I We then convolved those functions by f to obtain a sequence
of polynomials:

Pn(x) = f ∗ Kn(x) =

∫ 1

−1
f (t)K (x − t)dt

I The sequence of polynomials Pn converges uniformly to f .



Picture of Kn

http://www-groups.mcs.st-andrews.ac.uk/˜john/analysis/Lectures/L19.html



Sketch of Trig Weierstrass Approximation

I We follow a similar strategy: we find a sequence of βn with
I βn(0)→∞
I βn(x)→ 0 for x 6= 0
I βn(x) ≥ 0
I ∫ π

−π

βn(x) = 2π

I βn(x) are trigonometric polynomials: or at least, when
convolved with a continuous function f , they become a
trigonometric polynomial:

Tn(x) = f ∗ βn(x) =

∫ π

−π

f (t)βn(x − t)dt

I One βn that works is

βn(x) =
1

n

sin2(nx/2)

sin2(x/2)



[Time permitting] A brief aside

I The function f has a Fourier series:

∞∑
n=0

an cos(nx) + bn sin(nx) =
∞∑

n=−∞
f̂ (n)e inx

Taking

SN f (x) =
N∑

n=0

an cos(nx) + bn sin(nx) =
N∑

n=−N
f̂ (n)e inx

and AN f (x) = 1
N

∑N−1
i=0 SN f (x), the quantity Tn(x) = An(x).



[Time permitting] Partial Fourier Series Doesn’t Work

I In fact, we have nth Fourier trig polynomial

SN f (x) = f ∗ γn(x), γn(x) =
sin((n + 1/2)x)

sin(x/2)

I It turns out that while
∫ π
−π γn(x)dx = 2π,

xn =

∫ π

−π
|γn(x)|dx is unbounded.

while since βn(x) ≥ 0,∫ π

−π
|βn(x)|dx =

∫ π

−π
βn(x)dx = 2π.

I SN f (x) only converges ”pointwise almost everywhere” (not
even pointwise) to f (x) as N →∞. It does not converge
uniformly to f (x).



Metric Spaces

I A metric space is a set X equipped with a metric (“distance
function”) d satisfying the following properties:
I Positivity: d(x , y) ≥ 0
I Nondegeneracy: d(x , y) = 0 =⇒ x = y for x , y ∈ X
I Reflexivity: d(x , y) = d(y , x)
I The triangle inequality: d(x , y) + d(y , z) ≥ d(x , z)



Examples of Metric Spaces

I Distance between two real numbers: X = R, d(x , y) = |x − y |
I Euclidean distance: X = R2

d((x1, x2), (y1, y2)) =
√

(x1 − y1)2 + (x2 − y2)2

I Euclidean distance for Rn: X = Rn

d(~x , ~y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

where ~x = (x1, x2, . . . , xn), ~y = (y1, y2, . . . , yn).



Proof of Euclidean Metric

I Positivity: Principle square root is positive.

I Nondegeneracy: d(x , y) = 0 means√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2 = 0

since (xi − yi )
2 ≥ 0 and is 0 if and only if xi = yi , it follows

that xi = yi for all i .

I Reflexivity: Follows since
(xi − yi )

2 = (−(yi − xi ))2 = (−1)2(yi − xi )
2 = (yi − xi )

2

I Triangle Inequality: We will show

‖x‖2 :=
√
x21 + x22 + · · ·+ x2n satisfies

‖x + y‖2 ≤ ‖x‖2 + ‖y‖2.



Proof Continued

√
(x1 + y1)2 + · · ·+ (xn + yn)2 =

√
x21 + · · ·+ x2n+

√
y21 + · · ·+ y2n

Squaring both sides, we have

(x1+y1)2+ · · ·+(xn+yn)2 ≤ x21 + · · ·+x2n +y21 + · · · y2n +2‖x‖2‖y‖2

Expanding both sides and cancelling out like terms, we get

n∑
i=1

xiyi ≤ ‖x‖2‖y‖2 =
√

x21 + · · ·+ x2n

√
y21 + · · ·+ y2n .

This is the “Cauchy-Schwarz inequality.” Replacing x with
y − x = (y1 − x1, . . . , yn − xn), y with z − y , we see that
y − x + z − y = z − x , and since ‖y − x‖ = d(x , y), the triangle
inequality follows.



Normed Metric Spaces

I A Norm is a way of measuring size in a “vector space” (think
Rn)

I A norm ‖ · ‖ satisfies the following properties:
I Positivity: ‖x‖ ≥ 0
I Nondegeneracy: ‖x‖ = 0 if and only if x = 0
I Scaling: ‖λx‖ = |λ|‖x‖ for λ ∈ R
I Triangle Inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖.

I Given a norm, can form a distance d(x , y) = ‖x − y‖.
I Rn under the “`2” or Euclidean norm ‖x‖2 is a Normed space.



Lp spaces

I Lp distance for Rn for 1 ≤ p ≤ ∞: X = Rn

I
‖~x‖p = p

√
|x1|p + |x2|p + · · ·+ |xn|p.

I
‖~x‖1 = |x1|+ · · ·+ |xn|

I
‖~x‖∞ = max

1≤i≤n
|xi |.

I To prove these, use “Hölder’s inequality” in place of
Cauchy-Schwarz inequality. (look at the counting measure
section on the wikipedia page)



Other Examples of Metric Spaces

I A subspace of a metric space.

I Trivial metric on any set: d(x , y) = 1 for all x , y ∈ S

I A multiple of a metric space: if d is a metric, then 2d is also
a metric.

I Let X = {0, 1}N the space of all infinite sequences
x = (x1, x2, x3, x4, . . . ) with xi is either 0 or 1. Define

d(x , y) =
∞∑
i=1

|xi − yi |
2i

=
|x1 − y1|

2
+
|x2 − y2|

22
+ · · ·

I More on this example later.



Topology - Open sets

Certain subsets of a space X are called open sets.

Intuition
In a open set, no one is at the
border - you can always draw a
little disk around yourself such that
the disk is completely inside the set.

Definition
A set V is a neighborhood of p if you can draw
a disk Br (p) around p such that Br (p) ⊂ V .

An open set is a neighborhood of all of its points.

Image Credit: Oleg Alexandrov / Public domain.

https://commons.wikimedia.org/wiki/File:Neighborhood illust1.svg



Metric Space Terminology

I Open balls: Br (x0) = {x : d(x , x0) < r}.
I Closed balls: B r (x0) = {x : d(x , x0) ≤ r}.
I Open sets U. A subset U of X is open if for all x ∈ U, there

exists r such that Br (x) ⊂ U.

I (0, 1) is open in R. While [0, 1] is not open in R (look at the
endpoints).

I Closed sets contain all its limit points. [0, 1] is closed. [0, 1) is
neither closed nor open.

I Another definition of Closed Sets: complements of open sets



More examples of Open and Closed Sets

I Any union of open intervals are open in R
I The entire space and the empty set are open and closed for

any metric space.

I The trivial metric on any set: d(x , y) = 1 for all x , y ∈ S : all
subsets of S are open and closed.

I Finite union of closed intervals are closed.

I {0} is not an open subset of R.



Properties of Open and Closed Sets

I For a metric space (M, d), M and ∅ are both open and closed.

I The union of any number (countable, uncountable) of open
sets is open.

I The intersection of any number (countable, uncountable) of
closed sets is closed.

I The finite union of closed sets is closed.

I The finite intersection of open sets is open.

I Infinite intersections of open sets are not open:

∞⋂
n=1

(−1/n, 1/n) = {0}

which is not open.



Continuity: ε− δ Definition
I A function f : R→ R is continuous at x0 if for all ε > 0, there

exists δ such that

|x − x0| < δ =⇒ |f (x)− f (x0)| < ε.

Letting d(x , y) = |x − y |, we can reformulate this:

d(x , x0) < δ =⇒ d(f (x), f (x0)) < ε.

I A function f : R→ R is continuous if it’s continuous at all
points.

I A function f : R→ R is uniformly continuous if given ε > 0
there exists δ such that for all x , y ∈ R,

|x − y | < δ =⇒ |f (x)− f (y)| < ε.

I Can reformulate for metric:

d(x , y) < δ =⇒ d(f (x), f (y)) < ε.



Continuity

I Given two metric spaces (X , dX ), (Y , dY ), a function
f : X → Y is continuous at a point x0 if for all ε > 0 there
exists δ such that

dX (x , x0) < δ =⇒ dY (f (x), f (x0)) < ε. (∗)

I A function f : X → Y is continuous if it’s continuous at all
points.

I Similarly, a function f : X → Y is uniformly continuous if
given any ε > 0, there exists δ such that for all x , y ∈ X ,
dX (x , y) < δ =⇒ dY (f (x), f (y)) < ε.



Continuity

Equivalently,

Definition

1. A function between two metric spaces is continuous if every
preimage of an open set is open.

2. A function between two metric spaces is continuous if every
preimage of an open ball is open.

I 1 =⇒ 2: all open balls are open sets.

I 2 =⇒ 1: every open set is a (arbitrary) union of open balls,
and the preimage of a union is the union of preimages.

I U = Bε(f (x0)) is an open ball, and the definition (*) says

f (Bδ(x0))) ⊂ U.



Limit Points

Definition
A point p is a limit point of a set S if every open set containing p
also contains a point q ∈ S such that q 6= p.

I 1 is a limit point of [0, 1).

I 1 is not a limit point of {1, 2, 3, . . .}. Take B1/2(1) =
(
1
2 ,

3
2

)
.

I Every x ∈ R is a limit point of Q. In particular every x ∈ Q is
a limit point of Q.

Recall Closed sets contain all of its limit points.

I If we take a set S and union it with the set of limit points of
S , we get its closure, denoted S .
Nontrivial fact: The set S contain all of its limit points.

Definition
A point p is an isolated point of a set S if p ∈ S but is not a limit
point of S .



Cauchy Sequences

Definition
Take a metric space (M, d). A sequence {ai}∞i=1 in it is Cauchy if

∀ε > 0, ∃N ∈ N, s.t. ∀m, n > N, |am − an| < ε. (1)

Equivalently:

∀ε > 0,∃N ∈ N, x ∈ M, s.t. ∀m > N, am ∈ Bε(x). (2)

Proof of equivalence. Fix ε > 0.

I (1) =⇒ (2). Take the N for ε from (1). Let x = aN+1.

∀m ∈ N, am ∈ Bε(aN+1).

I (2) =⇒ (1). Take the N and x for ε
2 from (2). ∀m, n ∈ N,

am, an ∈ Bε/2(x) =⇒ |am − an| < diameter(Bε/2(x)) = ε.



Complete Metric Space

I Cauchy sequences provides a way to characterize “converging”
sequences without having the construct the limit first.

Definition
A sequence {ai}i∈N converges to x if

∀ε > 0, ∃N ∈ N, s.t. ∀m > N, d(am, x) < ε.

Definition
A metric space (M, d) is complete if every Cauchy sequence in it
converges to a point in it.



Close vs Complete

Closure of subsets is relative to the entire set, while completeness
of a metric space is relative to the metric.

Take the Euclidean distance metric:

I Every set is closed relative to itself. The open interval (0, 1) is
closed relative to (0, 1), but not relative to [0, 1).

I Q is closed relative to Q.

I Q is not closed relative to R.

I Q is not complete, R is complete, Rn is complete for n ∈ N.

I R is closed relative to Rn for all n ∈ N.

Fact. A metric space is complete iff it is closed in every space
containing it.



Compact Metric Spaces

Definition
A metric space is compact if for all sequences (xn), there exists a
subsequence of (xn) that converges to an element of that metric
space.

I [0, 1] is compact (Try to find a monotone subsequence for any
sequence!)

I (0, 1) is not compact: 1
2 ,

1
3 ,

1
4 , . . . is a subsequence that does

not converge.

I All closed and bounded subsets of Rn are compact. All other
sets are not compact.

I RN is not compact. Let ~ei be the i th unit vec; take {~ei}i∈N.

I It turns out that the space {0, 1}N is compact.(What metric?)



Continuity Revisited

Theorem
Every continuous function on a compact set is uniformly
continuous.

Theorem
Every continuous function on a compact set achieves its supremum
and infimum ( thus we speak of their maximum and minimum in
this case.

Theorem
Every continuous function maps compact sets to compact sets.



Cantor’s Intersection Theorem

Theorem
Take a space S . The intersection of nested compact, closed
subsets of S is nonempty.

Example

I Q has no compact subsets.

I Compare ⋂
n∈N

[
0,

1

n

]
vs
⋂
n∈N

(
0,

1

n

)
I Consider {Sk}k∈N,Sk ⊂ RN where

Sk := {0}k × [0, 1]N

I Take R. The intersection of nested closed, bounded subsets of
R is nonempty. Consider the construction of Cantor set.



Cantor Set

The Cantor set can be defined by:

C0 := [0, 1], Cn :=
Cn−1

3
∪
(

2

3
+

Cn−1
3

)
∀n ∈ Z+

C :=
∞⋂
i=0

Ci

I Cn are all closed - a union of 2n closed intervals.

I WTS: Cn are nested, i.e. Cn ⊂ Cn−1∀n ∈ Z+.

True for n = 1; By WOP, the least bad n ≥ 2 and Cn−1 ⊂ Cn−2.

Cn−1
3
⊂ Cn−2

3
,

(
2

3
+

Cn−1
3

)
⊂
(

2

3
+

Cn−2
3

)



Cantor Set

I Elements of C are exactly those with only digit 0 or 2 in (one
of) their ternary expansion.

C =

{ ∞∑
i=1

ti
3i

∣∣∣ ti ∈ {0, 2}
}
.

I We can also see the elements of Cantor set as infinite
0, 2−sequences.

I Cantor set is closed and bounded in R, thus compact.

I Cantor set is a complete metric space w.r.t. the absolute
value metric.

I Cantor set has no isolated points.

I What is
C + C := {a + b | a, b ∈ C}?



Cantor Set vs {0, 1}N

Definition
Two spaces X ,Y are homeomorphic if we have a continuous map
X → Y with a continuous inverse.

Theorem
The Cantor set is homeomorphic to {0, 1}N if we give {0, 1}N the
metric

d(x , y) =
∞∑
i=1

|xi − yi |
2i

I The natural map we’ll use:

f : C → {0, 1}N, (t1, t2, t3 . . .) 7→
( t1

2
,
t2
2
,
t3
2
. . .
)



Cantor Set vs {0, 1}N

Proof.
I f is continuous: Take ε > 0 and f (x) ∈ {0, 1}N. If 1

2k
< ε,

then everything who agrees with x up to digit k is within ε
from x .

Take δ = 1
3k

ensures the preimage agrees with x up to k digits.

I f −1 is continuous: Similarly, take k such that ε > 1
3k

. The

δ = 1
2k

would suffice.



Definitions of U.D.

1. A sequence (xn) ∈ [0, 1] is uniformly distributed (U.D.) if for
any subinterval [a, b] one has

lim
N→∞

|{xn : 1 ≤ n ≤ N} ∩ [a, b]|
N

→ b − a.

Definition
2. A sequence (xn) ∈ [0, 1] is uniformly distributed if for all
f ∈ C 0([0, 1]), i.e. continuous functions f : [0, 1]→ R,

lim
N→∞

1

N

N∑
i=1

f (xi ) =

∫ 1

0
f (x)dx . (3)

Definition
3. A sequence (xn) ∈ [0, 1] is uniformly distributed if for all
Riemann integrable f , (3) holds.



Equivalence of definitions

I 2. =⇒ 1. All indicator functions are continuous. Note that

1

N

N∑
i=1

1[a,b](xi ) =
|{xn : 1 ≤ n ≤ N} ∩ [a, b]|

N

I 3. =⇒ 2. All continuous functions are Riemann integrable.

I 1. =⇒ 3. Riemann integrable functions can be approximated
by Jordan-Simple functions, and Jordan-Simple functions can
be approximated by step functions. Allow ε/3 error for each of
the above two approximations
For the step functions

∑n
i=1 ci1[si ,ti ](x), take Ni for each i s.t.∣∣∣∣ |{xn : 1 ≤ n ≤ N} ∩ [si , ti ]|

N
− (ti − si )

∣∣∣∣ ≤ ε

3 · 2ici
, ∀N > Ni

and take Ñ = maxi Ni .



The set of terms vs U.D. of the sequence

I You can enumerate Q ∩ (0, 1] so that it is U.D.

Write rationals as a
b for coprime a, b and arrange them by

lexicographical order on the pair (b, a). Equivalently, arrange
by the order they are inserted in a Farey sequence.

I You can enumerate Q ∩ (0, 1] so that it is not U.D.

Take the sequence from above, break it into two subsequences
with terms in (0, 12 ] and in (12 , 1], then merge the two
subsequences by taking two terms in the first sequence for
every term in the second sequence.


