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Summary

I Part 1: Riemann integrability-will discuss Riemann integration

I Part 2: Lebesgue Measures and Lebesgue Integrals-Will
discuss Lebesgue measure



Part 1: Riemann integrability



Measure Theory

I Measure theory is the study of area.

I Rigorously define area and extend the “area under the curve”
notion of integration.



Some notation

I inf is “greatest lower bound” and sup is “least upper bound”
(e.g. inf(0, 1) = 0, sup(0, 1) = 1).

I Unlike integers, bounded subsets of the real numbers don’t
have a min or a max, so we use inf and sup, respectively,
instead.

I
∫
E f (x)dx indicates integration along E , or integration as x

ranges in E .

I

1E (x) :=

{
1 x ∈ E

0 x 6∈ E



Finding the Area under the graph

I Let f : [a, b]→ R be a function. Suppose want to find “area
under the curve of f .”

I Approximate the area under f with smaller and smaller
rectangles whose base is on the x-axis and height is f
evaluated at an element of the base.

I And you take the limit as you decrease the width of those
rectangles.

(Taken from Wikipedia)



Riemann Sums
I P = {x1, x2, . . . , xn : a = x1 < x2 < · · · < xn = b} a

“partition.”

L(P, f ) =
n−1∑
i=1

min{f (x)|xi ≤ x < xi+1}(xi+1 − xi )

U(P, f ) =
n−1∑
i=1

max{f (x)|xi ≤ x < xi+1}(xi+1 − xi )

I L(f ) = supP L(P, f ), U(f ) = infP U(P, f ) take sup and inf
over all partitions.

I f is integrable if L(f ) = U(f ).

I Stewart’s definition: practical use (only use for continuous
functions):∫ b

a
f (x)dx = lim

n→∞

1

n + 1

n∑
i=0

f (a + (b − a)i/n)



Continuous Function

Speaking of Which, a function f : [a, b]→ R is continuous if

lim
x→c

f (x) = f (c).

The set of all continuous functions over R is denoted C ([a, b]).



Example

Take f (x) = x . Then limit above is∫ 1

0
f (x)dx = lim

n→∞

1

n

n∑
i=1

i

n
= lim

n→∞

n(n + 1)

2n2
=

1

2
.



Failure of Riemann Integrability

I Integral = “area under the curve.” Draw the graph of a
function and just look at the area it bounds.

I Makes sense for continuous functions but doesn’t make sense
for functions like

1Q :=

{
1 x ∈ Q
0 x 6∈ Q

I We’ll introduce a different type of integral, the Lebesgue
integral, that expands on the Riemann integral that allows us
to integrate such functions.



Riemann-Lebesgue Theorem

I A set E is a zero set if for each ε > 0 there exists intervals
(Ii = [ai , bi ])

∞
i=1 with

E ⊆
∞⋃
i=1

Ii

∞∑
i=1

(bi − ai ) < ε

Theorem
f : [a, b]→ R is integrable if and only if the set of discontinuities
of f is a zero set.



Turning the rectangles

I Suppose c ≤ f (x) ≤ d

I Q a partition of range, c = y1 < y2 < · · · < yn = d

I Let Ai = {x ∈ [a, b] : yi ≤ f (x) ≤ yi+1}
I “Side Riemann sums”

S(Q) =
k−1∑
i=1

yiµ(Ai )

µ will be defined later.

(Taken from Wikipedia)



Jordan Measures
I Riemann integrability corresponds to Jordan Measures.
I We’ll define the Jordan measure to be a function µ from

“Jordan-measureable sets” to [0,∞] with

µ([a, b)) = b − a

I For an arbitrary set S , the Jordan outer-measure is

µ∗(S) = inf
Ii

n∑
i=1

µ(Ii )

for Ii finite set of intervals that cover S and the inner measure
is

µ∗(S) = sup
Ii

n∑
i=1

µ(Ii )

Ii finite set of intervals that is contained in S .
I A set is Jordan-measurable if and only if µ∗(S) = µ∗(S) and

we define the Jordan measure µ(S) = µ∗(S).
I Q is not Jordan measurable.



Jordan Measure



Properties of the Jordan Measure

I µ(∅) = 0

I µ(A ∪ B) ≤ µ(A) + µ(B)

I A ⊂ B =⇒ µ(A) ≤ µ(B)

I µ(A) ≥ 0



Riemann Integrals

I A Jordan-Simple function is a sum

h(x) =
n∑

i=1

ai1Ai
(x)

where 1Ai
is the indicator function for the set Ai and Ai are

Jordan measurable.

I We define the Riemann integral of h as∫
h(x)dx =

n∑
i=1

aiµ(Ai ).

I A function f : [a, b]→ R is Riemann integrable if there exists
a sequence of Jordan simple functions fi that approximate it
and whose integrals fi converge.

I Compare to the usual definition of using left and right sums.



Part 2: Lebesgue Measure and Lebesgue Integral



Lebesgue Measure

I We define the Lebesgue outer measure as

µ∗(S) = inf{
∞∑
i=1

µ(Ii ) :
⋃

Ii ⊇ S}

and inner measure similarly.

I Difference between Lebesgue and Jordan is you allow infinitely
many intervals whereas Jordan only allows finitely many.

I Define Lebesgue measurable sets similarly: where outer and
inner measures coincide.

I Approximated by Lebesgue simple functions =⇒ Can take its
integral.



Properties of Lebesgue Measure

I µ(∅) = 0

I A ⊂ B =⇒ µ(A) ≤ µ(B)

I
∑
µ(Ai ) ≥ µ(

⋃
Ai ) “countable subadditivity” (if Ai are

disjoint then inequality is equality)

I The last point is the only difference between Lebesgue and
Jordan: that you can take “countable” sums.

I A function satisfying these general axiom for sets in a
measureable space is known as a measure.



Countable?

I Look up numberphile video “infinity is bigger than you think.”

I Means you can list them out.

I N is countable: 1, 2, 3, 4 . . .

I Z is countable: 0, 1,−1, 2,−2, 3,−3, . . .

I R is not countable (Cantor diagonal argument)



Q is countable

(from https://math.stackexchange.com/questions/501782/

is-the-infinite-table-argument-for-the-countability-of-q-unsound)

https://math.stackexchange.com/questions/501782/is-the-infinite-table-argument-for-the-countability-of-q-unsound
https://math.stackexchange.com/questions/501782/is-the-infinite-table-argument-for-the-countability-of-q-unsound


Measure of a Countable set is 0

I Let E = {e1, e2, . . . , } be a countable set, ε > 0.

I Then E can be covered with

F =
∞⋃
i=1

[
ei −

ε

2i+1
, ei +

ε

2i+1

]
and by countable subadditivity,

µ(F ) ≤
∞∑
i=1

ε

2i
= ε

and since E ⊂ F , µ(E ) ≤ µ(F ) ≤ ε.
I Hence µ(Q) = 0. ∫

1Q(x)dx = 0.



Cantor Set
I Take [0, 1].

I Take away middle third (1/3, 2/3). End up with
[0, 1/3] ∪ [2/3, 1].

I Repeat for each of those two intervals.

(Taken from Wikipedia)

I Let C be the Cantor set. It is “totally disconnected” (it has
no intervals of positive length in it) and has uncountably
many elements: it consists of all numbers between 0 and 1
whose base 3 expansion only has 0’s and 2’s.



Measure of Cantor Set

I µ([0, 1]) = 1

I µ([0, 1]− (1/3, 2/3)) = 1− 1/3

I µ([0, 1]− (1/3, 2/3)− (1/9, 2/9)− (7/9, 8/9)) = 1−1/3−2/9

µ(C ) = 1−
∞∑
n=0

1

3

(
2

3

)n

= 0.



Fat Cantor Set

I Take [0, 1]

I Remove middle 1/4 to get [0, 3/8] ∪ [5/8, 1]

I Remove middle 1/4n from each 2n−1 remaining intervals.

(Taken from Wikipedia)

I “Looks like” (or is homeomorphic to, the technical term) the
Cantor set.



Measure of Fat Cantor Set

µ(Cfat) = 1−
∞∑
i=1

2i−1

4i
=

1

2
> 0



Further Reading

I Real Mathematical Analysis by Pugh

I Real and Complex Analysis by Rudin

I Real and Functional Analysis by Lang

I Measure and Category by John Oxtoby


