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Abstract. We introduce the moduli space of marked, complete, Nielsen-convex hyperbolic
structures on a surface of negative, but not necessarily finite, Euler characteristic. The
emphasis is on the case in which the surface is of infinite type, the aim being to study the
mapping class group of such a surface via its action on this marked moduli space. We define
a topology on the marked moduli space and prove that it reduces to the usual Teichmüller
space in case the surface is of finite type. We prove that the action of the mapping class
group on this marked moduli space is continuous.

1. Introduction

The Teichmüller space of a fixed finite type surface can be thought of as the moduli space
of either marked Riemann surface structures or marked complete hyperbolic structures on
the surface. The two viewpoints are equivalent due to the uniformisation theorem and
the fact that the isometries of the hyperbolic plane are exactly its biholomorphisms. The
mapping class group of the surface acts on the Teichmüller space by change of marking. This
action has been studied classically, with important consequences for the mapping class group
such as the Nielsen–Thurston classification of mapping classes, the geometric classification
of mapping tori, the solution to the Nielsen realisation problem, et cetera (see [Thu88],
[Ber78], [FM11], [Hub06], [Hub16], [Hub22], [Thu98], [Ker83]). In this paper, we introduce
the moduli space T (S) of marked, complete, Nielsen-convex (that is, having empty ideal
boundary) hyperbolic structures on a surface S of negative Euler characteristic. We also refer
to T (S) as the marked moduli space, and to a point in it as a marked hyperbolic structure.
We are especially interested in studying the marked moduli spaces of infinite type surfaces
S. In analogy with Teichmüller space, we show that the mapping class group MCG(S) of
the surface S, a topological group, acts on the marked moduli space by change of marking.
The main result of this paper is that the action of MCG(S) on T (S) is continuous. We also
prove that the space T (S) reduces to the usual Teichmüller space in case S is a finite type
surface.

In fact, the Teichmüller space of a surface has already been defined and studied even
when the surface is of infinite type, and it dates back to the early days of Teichmüller theory
(see [Ber63, p333] or [Ber64, §1.3]). However, it is defined for a Riemann surface X rather
than its underlying topological surface S (whether of finite or infinite type), and is known
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as the quasiconformal Teichmüller space, denoted Tqc(X). In particular, the Teichmüller
space depends on the quasiconformal class of the ‘basepoint’ Riemann surface structure on
S, namely the one provided by X. Consequently, the quasiconformal mapping class group
QMCG(X), consisting of quasiconformal self homeomorphisms of the Riemann surface X
modulo homotopy relative to its ideal boundary, acts on Tqc(X) by change of marking. Now
the relationship between QMCG(X) and MCG(S) is complicated since the ideal boundary is
considered in one and disregarded in the other, but is nice in the absence of ideal boundary.
In general, there is the obvious group morphism from QMCG(X) to MCG(S) obtained by
forgetting the quasiconformality of the homeomorphism. If X is Nielsen-convex, this group
morphism is injective, and so QMCG(X) is a subgroup of MCG(S). However, in case the
surface is of infinite type, QMCG(X) is a proper subgroup of MCG(S), and MCG(S) does
not act on Tqc(X) by change of marking. On the other hand, the MCG(S) does act on
T (S), so we expect T (S) to be a useful space for studying MCG(S). Note that if the
surface is of finite type, there is only one quasiconformal class of Nielsen-convex Riemann
surfaces, and therefore only one Teichmüller space associated with the topological surface; the
quasiconformal mapping class group coincides with the mapping class group, which therefore
acts on the Teichmüller space, leading to a rich theory. Another reason to consider T (S)
is a theorem of Thurston ([Thu86, Corollary 5.4]) that there exists an essentially unique
earthquake between any two relative hyperbolic structures on a complete hyperbolic surface.
In fact, our definition of T (S) is inspired by this paper.

Organisation of the paper: In Section 2, we define the marked moduli space as a set,
and state the main results of this paper. In Section 3, we fix notation and recall some basic
facts of hyperbolic geometry and algebraic topology. In Section 4, we prove a key proposition
about homeomorphisms at infinity, a tool that will be used repeatedly. In Section 5, we define
the topology on the marked moduli space using homeomorphisms at infinity. In Section 6, we
prove that the action of the mapping class group on the marked moduli space is continuous.
In Section 7, we prove that the topology on the marked moduli space agrees with the topology
coming from injecting it into the PSL(2,R)-character space of the fundamental group. It
follows that the topology of the marked moduli space reduces to the usual topology of the
Teichmüller space in case the surface is of finite type.

Acknowledgements: I would like to thank my advisor Prof. Jason Manning for his
constant support, encouragement and many helpful conversations about the subject matter.
I would also like to thank Jason Manning and Olu Olorode for a careful reading of the
manuscript, and would like to thank Assaf Bar-Natan, Yassin Chandran, Katie Mann and
Nick Vlamis for helpful conversations. I would also like to thank the anonymous referee who
carefully read an earlier version of this manuscript and suggested changes that improved the
exposition.

2. Definitions and Statement of Results

As in the introduction, fix a connected, oriented surface S with negative Euler character-
istic, or equivalently, a nonabelian fundamental group. The Euler characteristic need not
be finite; as mentioned in the introduction, our emphasis is on infinite type surfaces, those
whose Euler characteristic is χ(S) = −∞, or equivalently, surfaces whose fundamental group
is not finitely generated. In this paper, a surface is a two dimensional manifold, connected
and without boundary unless otherwise specified. All surfaces in this paper are oriented and
all homeomorphisms between surfaces (including isometries between hyperbolic surfaces) are
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orientation preserving; all self homeomorphisms of the circle are also orientation preserving,
and we suppress mention of orientation. We now define the set T (S).

Definition 2.1 (The set underlying the marked moduli space).

(1) T (S) :=

{
(X, f)

∣∣∣∣X is a complete Nielsen-convex hyperbolic surface

f : S → X is a homeomorphism

}/
∼

where (X1, f1) ∼ (X2, f2) if there is an isometry ϕ : X1 → X2 homotopic to f2 ◦ f−1
1 .

As is standard in finite type Teichmüller theory, we call the homeomorphism f the mark-
ing map. Here and henceforth in this paper, the phrase ‘complete’ hyperbolic surface always
means a ‘geodesically complete’ hyperbolic surface. The adjective Nielsen-convex applied
to a complete hyperbolic surface is discussed and characterised in Section 3.4 and Proposi-
tion 3.1. One should think of a complete Nielsen-convex hyperbolic surface as one which has
empty ‘ideal boundary’, recalled in Section 3.2.

The next proposition says that the theory of the marked moduli space is not a trivial
theory.

Proposition 2.2. The set T (S) is nonempty.

Proof. Take a topological pants decomposition P of S, where a pant is a surface of zero
genus, b boundary components and n punctures with b + n = 3. Such a decomposition
exists since χ(S) < 0. For each pant in the scheme P , consider a hyperbolic pair of pants
with geodesic boundary, whose components are called cuffs, and with cusps at punctures.
The geometry of the hyperbolic pairs of pants is chosen so that the lengths of any two cuffs
that get glued in the scheme P are equal. This allows the hyperbolic pairs of pants to be
glued according to the scheme P to produce a hyperbolic surface X homeomorphic to S
via a marking map f : S → X. If the cuff lengths are all bounded above as well as below
by two fixed finite positive numbers, then the injectivity radius of points in X is bounded
below by a fixed positive number, and therefore X is complete. Further, since X is a union
of hyperbolic pairs of pants, Proposition 3.1 asserts that X is a complete, Nielsen-convex
hyperbolic surface. Therefore [X, f ] ∈ T (S), and so T (S) is nonempty. �

Remark 2.3. Even if the cuff lengths are arbitrary, [Ba19, Theorem 5.1] asserts that the
hyperbolic pairs of pants may be glued with particular choices of twists in such a way that
the resulting surface X is geodesically complete.

Observe that if S is a closed surface, then T (S) as above reduces, as a set, to the usual
Teichmüller space. This is because a closed hyperbolic surface has empty ideal boundary,
and does not have visible ends (or any ends at all). This observation holds true for finite type
surfaces also. Indeed, if S is a finite type surface, then in the usual definition of Teichmüller
space, the hyperbolic surface X is constrained to have finite area. Then each end of X has
cusped geometry and so is not a visible end, which means that X has empty ideal boundary.
Thus T (S) is an extension of the usual Teichmüller space to infinite type surfaces, as a set.
In Corollary 7.6, we strengthen this observation by showing that T (S) is an extension of the
usual Teichmüller space as a topological space as well.

The mapping class group of the surface S is MCG(S) = Homeo+(S)
/

Homeo0(S) . The

group Homeo+(S) is a topological group with the compact-open topology, which agrees, for
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Figure 1. The action of MCG(S) on T (S) is well defined.

any metric on S, with the topology of uniform convergence on compact subsets. The sub-
group Homeo0(S) of homeomorphisms isotopic to the identity is a closed subgroup. Hence
the quotient MCG(S) is a topological group with the quotient topology (see [AV20, Sec-
tion 2.3]). It is clear that MCG(S) acts on T (S) by change of marking. We denote the
action of the mapping class [ψ] by the function A[ψ] from T (S) to itself. The action is
defined precisely in equation (2) below.

Proposition 2.4. There is a well defined group action A : MCG(S)× T (S) → T (S), cur-
rying which yields, for every mapping class [ψ] ∈ MCG(S), a function A[ψ] : T (S)→ T (S),
defined by

(2) A[ψ][X, f ] = A([ψ], [X, f ]) := [X, f ◦ ψ−1]

Proof. We need to show that A([ψ], [X, f ]) is independent of two choices made in the defini-
tion of A, namely, the choice of the representative (X, f) of the marked hyperbolic structure,
and the choice of the representative homeomorphism ψ of the mapping class. This follows
easily from the diagram in Figure 1, which homotopy commutes. �

The main result of this paper is the following:

Theorem 2.5. The set T (S) has a geometrically defined topology (see Definition 5.5 and
Theorem 7.5), which agrees with the usual topology on the Teichmüller space when S is of
finite type (see Corollary 7.6). With respect to this topology, the action function A is contin-
uous (see Theorem 6.6) and MCG(S) acts on T (S) by homeomorphisms (see Corollary 6.7).

Having defined the topology of the marked moduli space, it is natural to ask what geometry
it admits. In particular, we seek a metric on the marked moduli space so that the mapping
class group acts isometrically on the marked moduli space.

Question 2.6. Is there a natural (geometrically defined) MCG(S)-invariant metric on T (S)?

3. Notation and Preliminaries

In this section, we recall some basic facts of hyperbolic geometry and algebraic topology,
allowing us to fix notation of various objects used throughout the paper. The reader familiar
with these subjects may well skip Sections 3.1 to 3.5. In Section 3.4, we include a discussion
of Nielsen-convexity, which appears in the definition of T (S). In Section 3.5, we carefully
prove the existence of straight line homotopy, and in Section 3.6, we recall the ‘Douady–
Earle extension’. These will be used crucially in Section 5 while defining the topology on the
marked moduli space, as well as in Section 6 while proving the continuity of the mapping
class group action on the marked moduli space.
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3.1. The hyperbolic plane, the circle at infinity and the action of PSL(2,R). A
reference for this section is [And06, Chapters 1–2]. The hyperbolic plane may be described
as either the upper half plane or the unit disk in the Riemann sphere, and is equipped with
the Poincaré metric and the usual orientation. These two models of the hyperbolic plane
are isometric. We denote the hyperbolic plane by H2. It has a circle at infinity which is the
real projective line in the upper half plane model or the standard unit circle in the unit disk
model. We denote the circle at infinity by S1. It inherits an orientation as the boundary of
the closed disk H2 ∪ S1, and, being a topologically a circle, also possesses a corresponding
circular order. We fix, once and for all, a positively oriented triple of distinct points on S1,
such as (0, 1,∞) in the real projective line model.

The group PSL(2,R) of 2 × 2 real matrices of determinant 1, modulo ±I, acts by frac-
tional linear transformations on the upper half plane. This action induces an isomorphism
between PSL(2,R) and the group of (orientation preserving) isometries of H2. Each isometry
of H2 extends to a (an orientation preserving) homeomorphism of S1. In fact, this action
of PSL(2,R) on the circle at infinity is simply the faithful action by linear fractional trans-
formations on the real projective line. It induces an isomorphism between PSL(2,R) and a
subgroup of Homeo+(S1), which is the group of (orientation preserving) homeomorphisms
of the circle. Moreover, PSL(2,R) acts freely and transitively on positively oriented triples
of distinct points in S1. For a positively oriented triple (a, b, c) of distinct points in S1, we
denote by M(a, b, c) the unique element of PSL(2,R) that maps 0 to a, 1 to b and ∞ to c;
The function (a, b, c) 7→M(a, b, c) is continuous. In particular, the faithfulness of this action
means that an isometry of H2 is determined by its induced homeomorphism of the circle at
infinity. We will freely use the same symbol to denote an element of PSL(2,R) whether it is
viewed as an isometry of H2 or a homeomorphism of S1.

A non-trivial element of PSL(2,R) is one of exactly three types depending on the number
of points it fixes in H2 ∪ S1, namely, elliptic (exactly one fixed point, which is in H2),
parabolic (exactly one fixed point, which is in S1), or hyperbolic (exactly two fixed points,
both in S1). For a hyperbolic γ, we denote by γ∞, the unique attracting fixed point of γ on
S1, also known as its sink ; the function γ 7→ γ∞ is continuous. Then (γ−1)∞ is the unique
repelling fixed point of γ on S1, and is called its source. Further, note that Homeo+(S1) is a
topological group with the compact-open topology, which agrees, for any metric on S1, with
the topology of uniform convergence. Then PSL(2,R) is a closed and embedded subgroup
of Homeo+(S1).

3.2. Complete hyperbolic surfaces and Fuchsian groups. A reference for this section
is [Kat92, Chapters 2–3]. Let X be a complete (and connected and oriented) hyperbolic
surface. We denote by dX the distance function on X, and by injX the injectivity radius
as a function on X, which is well known to be a continuous function. Being a complete
hyperbolic surface, X has a (Riemannian locally isometric, orientation preserving) universal
cover pX : H2 → X, and any other such cover is of the form pX ◦ σ for some σ ∈ PSL(2,R).
We denote the deck group of the universal cover pX by ΓX , which is a group of isometries
of H2 acting freely and properly discontinuously on H2. Alternatively, as a subgroup of
PSL(2,R), ΓX is a torsion-free discrete group, also known as a torsion-free Fuchsian group.

The universal cover induces an isometry between ΓX

∖
H2

and X. For any x ∈ X, injX(x)

is the radius of the largest disk centred at x which is evenly covered by the universal cover.
Thus if dX(x, y) < injX(x), then there is a unique geodesic segment from x to y.
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The deck group ΓX , being a subgroup of PSL(2,R), acts on the circle at infinity S1 as
well. As a group acting freely and properly discontinuously by isometries on H2, ΓX cannot
contain any elliptic elements. Thus all the non-trivial elements of ΓX are either hyperbolic
or parabolic. The discreteness of ΓX implies that each element of ΓX has a root which is
primitive, that is, not a non-trivial power of another element of ΓX . If ΓX is non-trivial,
and not a cyclic group generated by a parabolic element, then it must have at least one
hyperbolic element. Any two hyperbolic elements of ΓX which have the same sink also have
the same source, and are in fact both positive powers of some hyperbolic in ΓX . We denote
by (ΓX)∞ the set of sinks of all the hyperbolic elements of ΓX , and it is easily seen to be
ΓX-invariant.

The set of accumulation points in H2 ∪ S1 of the ΓX-orbit of some (any) point in H2 is a
closed subset of S1, known as the limit set ΛX of ΓX . If ΛX is nonempty, it is the smallest
nonempty ΓX-invariant closed subset of S1. Thus ΛX is the closure of (ΓX)∞ in S1, if (ΓX)∞
is nonempty. ΓX acts freely and properly discontinuously on S1 \ ΛX , and the quotient

ΓX

∖
(S1 \ ΛX) is called the ideal boundary I(X) of X (see [Ber63, p334] or [Ber64, §1.3] or

[Hub06, Section 3.7]). The convex hull CH(ΛX) of ΛX in H2 is called the Nielsen convex
region of ΓX , easily seen to be ΓX-invariant, and its quotient by ΓX is the convex core C(X)
of X. The Fuchsian group ΓX is said to be of the first kind if its limit set ΛX is the entire
circle at infinity.

3.3. The algebraic topology of hyperbolic surfaces. A reference for this section is
[Hat02, Section 1.3]. As before, let X be a complete (and connected and oriented) hyperbolic
surface. Given the universal cover pX : H2 → X, a basepoint x ∈ X and a choice of its lift
x̃ ∈ H2, or equivalently, given a pointed universal cover pX : (H2, x̃) → (X, x), there is an
isomorphism ϕX : π1(X, x)→ ΓX , known as the holonomy representation, and it is described
as follows. If α is an oriented closed curve in X based at x, then ϕX [α] is the unique
deck transformation, called the holonomy around α, that maps x̃ to the endpoint of the
lift of α starting at x̃. If α̃ is the bi-infinite lift of α passing through x̃, then the deck
transformation ϕ[α] acts on α̃ by translation. Note that the isomorphism ϕX depends not
only on the choice of the basepoint, but also on the choice of lift x̃, and it changes with
these choices as follows. Suppose x′ ∈ X is another basepoint and x̃′ ∈ H2 is a choice of
its lift with the corresponding holonomy representation ϕ′X : π1(X, x′)→ ΓX . Then the two

holonomy representations satisfy the relation ϕ′X = ϕX ◦ cβ. Here β is the projection p(β̃)

of a continuous path β̃ from x̃ to x̃′, and cβ is ‘conjugation by β’, that is, cβ[α′] = [β · α′ · β]
for all [α′] ∈ π1(X, x′). If α, based at x, is homotopic to α′, based at x′, and β is the
track of x under this homotopy, then [α] = cβ[α′]. Combining these two observations, we
see that ϕX [α] = ϕ′X [α′]. In other words, if two closed curves are homotopic, then the
holonomies around them (with respect to appropriate choices of lifts of basepoints under the
same universal cover) are equal. Conversely, if the holonomies around two curves are equal,
then the curves are free homotopic.

If X, Y are complete hyperbolic surfaces with universal covers pX : H2 → X and pY : H2 →
Y , then any homeomorphism f : X → Y lifts to a homeomorphism f̃ : H2 → H2. This
induces an isomorphism f∗ : ΓX → ΓY between the two deck groups, which is ‘conjugation
by f̃ ’, that is, f∗(γ) = f̃ ◦ γ ◦ f̃−1 for all γ ∈ ΓX . Note that the isomorphism f∗ depends on

the choice of the lift f̃ , but we denote it by f∗, suppressing the lift from the notation. We
also write the above relation as f̃ ◦γ = f∗(γ)◦ f̃ for all γ ∈ ΓX . Collecting all these equalities
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together, we have an equality of sets f̃ ◦ ΓX = ΓY ◦ f̃ . This set is the set of all lifts of f .
Conversely, if F : H2 → H2 satisfies F ◦ΓX = ΓY ◦F , then F descends to a homeomorphism
from X to Y . In this situation, we say that f̃ (or F ) is equivariant under the action of the

deck groups. If ϕX and ϕY (with respect to basepoints ỹ = f̃(x̃) and y = pY (ỹ)) are the
holonomy representations of X and Y respectively, then we have f∗(ϕX [α]) = ϕY (f∗[α]).
Here the f∗ on the left hand side is the isomorphism between the deck groups, whereas on
the right hand side, f∗ is the π1 functor. In other words, if γ ∈ ΓX is the holonomy around
the oriented closed α ⊂ X, then f∗(γ) ∈ ΓY is the holonomy around the oriented closed
curve f(α).

3.4. Nielsen-convexity for complete hyperbolic surfaces. We have adopted the term
Nielsen-convex from work of Alessandrini, Liu and others (see [ALP+11, Definition 4.3]).
They actually define a notion of Nielsen-convexity for hyperbolic surfaces which may or may
not be complete. However, we are interested only in complete hyperbolic surfaces. So instead
of recalling their original definition, we simply characterise Nielsen-convexity for complete
hyperbolic surfaces in multiple different but equivalent ways in Proposition 3.1 below. Note
that in [ALP+11], the hyperbolic pair of pants with three cusps is treated separately due to
technical reasons concerning their definition of Nielsen-convexity. However, since it satisfies
the conditions below, we will call it Nielsen-convex. Notation from Section 3.2 is used, and
the objects in some of the conditions below are defined post the choice of a pointed universal
cover.

Proposition 3.1 (Nielsen-convexity). Let X be a complete hyperbolic surface. Then the
following are equivalent.

(1) X is Nielsen-convex according to [ALP+11, Definition 4.3].
(2) The ideal boundary I(X) of X is empty.
(3) The convex core C(X) of X equals X.
(4) The limit set ΛX of the deck group ΓX , or equivalently, of the action of π1(X) on the

universal cover H2, is the entire circle at infinity S1.
(5) The set (ΓX)∞ of sinks of hyperbolic elements in ΓX is dense in S1.

(6) X is isometric to ΓX

∖
H2

for some torsion-free Fuchsian group ΓX of the first kind.

(7) X can be constructed by gluing hyperbolic pairs of pants (possibly with cusps) along
their boundary components.

(8) X has no visible ends.

Proof. The equivalence of the first and the third conditions is [ALP+11, Proposition 4.6]
(applied to complete hyperbolic surfaces), and that of the first and the seventh conditions
is part of [ALP+11, Theorem 4.5]. The equivalence of the third and the fourth conditions

follows easily from the definitions in Section 3.2 above. Indeed, since C(X) = ΓX

∖
CH(ΛX)

and X = ΓX

∖
H2

, C(X) = X if and only if CH(ΛX) = H2, which is equivalent to ΛX = S1.

The sixth condition is really just a restatement of the fourth, and the equivalence of the
second and the fourth conditions also follows straight from definitions. To see the equivalence
of the fourth and the fifth conditions, first observe that neither the hyperbolic plane nor its
quotient by a single parabolic satisfy either of the two conditions. Thus ΓX contains at least
one hyperbolic. The set (ΓX)∞ is nonempty, and hence dense in ΛX . Thus ΛX = S1 if and
only if (ΓX)∞ is dense in S1, establishing the equivalence. For a discussion of visible ends,
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see [Ba19, Section 2]. The equivalence of the third and the eighth conditions above follows
easily from Lemma 2.2 there. �

3.5. Straight line homotopy. We will have occasion to use a straight line homotopy be-
tween two maps from a topological space into a hyperbolic surface, and we explain this term
in this section. We provide a detailed proof of the facts that any two maps to a hyperbolic
surface are connected by a unique straight line homotopy if they are sufficiently close.

Definition 3.2 (Straight line homotopy). Let Z be a topological space, X a complete hyper-
bolic surface and h0, h1 : Z → X be continuous functions. We say that a homotopy ht between
h0 and h1 is a straight line homotopy if for every q ∈ Z, there is a unique shortest geodesic
segment in X from h0(q) to h1(q), and that t 7→ ht(q) is a constant speed parametrisation of
this geodesic segment.

It is clear that if a straight line homotopy exists between two maps, then it is unique,
although this uniqueness will not have any consequences for our purpose. We are concerned
only with the existence of the straight line homotopy. The main thrust of the proposition
below is that ht(q) as described above is actually jointly continuous in q and t, that is, the
function h : Z× [0, 1]→ X given by h(q, t) := ht(q) is continuous with respect to the product
topology on Z × [0, 1].

Proposition 3.3 (Straight line homotopy on hyperbolic surfaces). Use the notation of Def-
inition 3.2, and assume that

(3) for each q ∈ Z, we have dX(h0(q), h1(q)) < injX(h0(q))

Then there is a straight line homotopy between h0 and h1.

Proof. For each q ∈ Z, since h1(q) is contained in the disk centred at h0(q) of radius equal
to its injectivity radius, there is a unique geodesic segment joining h0(q) to h1(q) (possibly
degenerate of of zero length, a degeneracy that occurs exactly when h1(q) coincides with
h0(q)). So we can define ht(q) by declaring that t 7→ ht(q) parametrises this geodesic seg-
ment with constant speed dX(h0(q), h1(q)). It remains to be shown that the function h is
continuous.

First we prove continuity in the case when the hyperbolic surface is H2. Note that the
injectivity radius at any point on the hyperbolic plane is infinite, so the inequality (3) is
always satisfied for any Z, h0, h1. let TH2 be the tangent bundle of H2 and π : TH2 → H2 be
the natural projection. The function Θ: TH2 → H2 ×H2 given by Θ(v) = (π(v), exp(v)) is
continuous because of continuous dependence of solutions of ordinary differential equations
on initial values, and bijective because there is a unique geodesic segment between any
pair of points on H2. Thus Θ is a continuous bijection between manifolds of the same
dimension, and hence is a homeomorphism. Then the required straight line homotopy is
ht(q) = exp(tΘ−1(h0(q), h1(q))), and h is clearly continuous.

Now we tackle the case of an arbitrary hyperbolic surface X. Suppose that pX : H2 → X is
a universal cover, and let q0 ∈ Z be an arbitrary point. We construct an open neighbourhood
U of q0 in Z as follows, and then show that h is continuous over U × [0, 1]. The disk B of
radius injX(h0(q0)) centred at h0(q0) is evenly covered by the universal cover, so the function
pX has a local inverse P : B ↪→→ B̃. That is, P maps B diffeomorphically onto a disk B̃ ⊂ H2.
Now pX and P are Riemannian isometries, so they map Riemannian geodesics to Riemannian
geodesics. However, note that pX and P are not necessarily metric isometries; they may not
preserve the restriction to B of the distance function dX .



A MODULI SPACE OF MARKED HYPERBOLIC STRUCTURES FOR BIG SURFACES 9

Let U be the set of all points q ∈ Z such that h0(q), h1(q) ∈ B and dH2(P◦h0(q), P◦h1(q)) <
injX(h0(q)), which contains q0 due to hypothesis and the construction of B and P . To show
that U is open, consider the sets U0 = h−1

0 B and U1 = h−1
1 B, which are open because

h0 and h1 are continuous functions. Therefore P ◦ h0 and P ◦ h1 are functions defined on
U0 ∩ U1, and are continuous on this domain of definition. Thus the real valued function
η(q) = injX(h0(q))− dH2(P ◦ h0(q), P ◦ h1(q)) is defined and continuous on U0 ∩ U1, and the
preimage U = η−1(0,+∞) is an open set in Z. Since q0 ∈ U as noted above, U is an open
neighbourhood of q0 in Z.

Next, let q ∈ U be arbitrary. There is a unique geodesic segment γ from P ◦ h0(q) to
P ◦ h1(q) in B̃ ⊂ H2, parametrised by γ(t) = exp(tΘ−1(P ◦ h0(q), P ◦ h1(q))) as above. Note
that here the parameter t takes values in [0, 1], and the parametrisation is at constant speed
equal to the length l(γ) of γ. Now the length l(γ) is equal to the hyperbolic distance between
the two endpoints P ◦h0(q) and P ◦h1(q), and is less than injX(h0(q)) due to the definition of
U . Since pX is a Riemannian isometry and its inverse is P , pX maps γ to a geodesic segment
pX ◦ γ from h0(q) to h1(q) in X, which has the same length l(pX ◦ γ) = l(γ), and which is
also parametrised at the same constant speed l(γ). Since l(pX ◦ γ) = l(γ) < injX(h0(q)), we
conclude that pX ◦ γ is in fact the unique shortest geodesic segment from h0(q) to h1(q) in
X, and so its length l(pX ◦ γ) equals the distance dX(h0(q), h1(q)). But we defined ht by
declaring t 7→ ht(q) to be the parametrisation of this unique shortest geodesic segment at
constant speed dX(h0(q), h1(q)). Therefore

(4) h(q, t) = ht(q) = pX ◦ exp(tΘ−1(P ◦ h0(q), P ◦ h1(q)))

As q ∈ U and t ∈ [0, 1] are arbitrary, this expression of ht(q) holds for all (q, t) ∈ U × [0, 1].
Thus we have found an expression for h over the domain U × [0, 1] which is built by

composing continuous functions, homeomorphisms, diffeomorphisms, scalar multiplication
in finite dimensional vector spaces, and functions into product spaces whose components are
continuous. By standard point set topology, h is continuous over U × [0, 1], and in particular
continuous at all points in {q0}×[0, 1] ⊂ Z×[0, 1]. Since q0 ∈ Z was arbitrary, h is continuous
over all of Z × [0, 1], and therefore defines a straight line homotopy as claimed. �

Remark 3.4. Proposition 3.3 holds for arbitrary Riemannian manifolds X if quantified
suitably stringently. That is, in the inequality (3), injX(h0(q)) should be replaced by a suitable
smaller quantity.

3.6. The Douady–Earle extension. In this section, we recall the Douady–Earle extension
from [DE86]. The Douady–Earle extension is a construction that extends homeomorphisms
of S1 to homeomorphisms of H2 ∪ S1 in a conformally natural way. This means that the
extension of an element of PSL(2,R) as a homeomorphism of S1 is the same element, now
viewed as a homeomorphism of H2; and that the extension respects composition on the left
or right side by elements of PSL(2,R). However, note that this construction does not yield
a group homomorphism. More precisely,

Theorem 3.5 (see [DE86, Sections 3–4]). There is a function, ‘the Douady–Earle extension’
DE: Homeo+(S1)→ Homeo+(H2 ∪ S1) such that all the following hold:

(1) For every f ∈ Homeo+(S1), we have DE(f)|S1 = f . Thus DE(f) extends f .
(2) DE(idS1) = idH2∪S1.
(3) ( Conformal naturality) For every f ∈ Homeo+(S1) and every σ1, σ2 ∈ PSL(2,R), we

have DE(σ1 ◦ f ◦ σ2) = σ1 ◦DE(f) ◦ σ2.
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(4) DE is continuous (when Homeo+(H2 ∪ S1) is given the compact-open topology, or
equivalently, the topology of uniform convergence on compact sets).

The results proved in [DE86] are significantly stronger, but the above statement is sufficient
for our purpose.

4. A Key Tool: The Homeomorphism at Infinity

In this section, we provide a detailed proof of the Proposition 4.1 (Homeomorphism at
infinity), which is actually a special case of [Thu86, Proposition 5.3]. In that paper, Thurston
used it to reduce the earthquake theorem for general hyperbolic surfaces to a version of the
earthquake theorem for their universal covers (that is, the hyperbolic plane). We will use
homeomorphisms at infinity repeatedly in the rest of the paper.

Proposition 4.1 (Homeomorphism at infinity). Let X, Y be complete hyperbolic surfaces.
Fix universal covers pX : H2 → X, pY : H2 → Y , and let ΓX ,ΓY be the respective deck
groups. Let f : X → Y be a homeomorphism with a lift f̃ : H2 → H2 to the universal covers,
which induces an isomorphism f∗ : ΓX → ΓY of deck groups. Assume that both X and Y are
Nielsen-convex. Then

(1) The lift f̃ extends to a homeomorphism at infinity ∂f̃ : S1 → S1.

(2) The function f̂ which equals f̃ on H2 and ∂f̃ on S1 is a homeomorphism of H2 ∪S1.

(3) The homeomorphism ∂f̃ is equivariant under the action of the deck groups. That is,

for every γ ∈ ΓX , we have (∂f̃) ◦ γ = f∗(γ) ◦ (∂f̃). Thus in Homeo+(S1), the left

coset (∂f̃) ◦ ΓX equals the right coset ΓY ◦ (∂f̃).

(4) If ft is an isotopy which lifts to an isotopy f̃t, then ∂f̃0 = ∂f̃1.
(5) Suppose Z is another complete, Nielsen-convex hyperbolic surface with a universal

cover pZ : H2 → Z, and g : Y → Z is a homeomorphism with lift g̃. Then ∂(g̃ ◦ f̃) =

(∂g̃) ◦ (∂f̃).

(6) If σ ∈ PSL(2,R), then σ ◦ f̃ also extends to a homeomorphism at infinity, and

∂(σ ◦ f̃) = σ ◦ (∂f̃).

Remark 4.2. Note that if X, Y are closed surfaces, then f̃ is a quasi-isometry and so extends
to a (quasi-symmetric) homeomorphism of S1. However, for infinite type surfaces X, Y , f̃
may not be a quasi-isometry. The proposition asserts that nevertheless, it extends to a (not
necessarily quasi-symmetric) homeomorphism of S1.

Remark 4.3. Note that the homeomorphism ∂f̃ depends on the choice of the lift f̃ . The
other choices of the lift of f are γ ◦ f̃ for γ ∈ ΓY or f̃ ◦ γ for γ ∈ ΓX , leading to the
homeomorphism at infinity γ ◦ (∂f̃) or (∂f̃) ◦ γ by part (6) of the proposition.

The outline of the proof is as follows. First, in Lemma 4.4, we prove that f∗ preserves
the type (hyperbolic or parabolic) of elements of the deck group. Next, in Definition 4.5, we

define ∂f̃ on the set (ΓX)∞ of sinks of hyperbolic elements of ΓX , which is dense in S1, and

give an alternate characterisation in Lemma 4.7. Then, in Lemma 4.8, we show that ∂f̃ is
monotonic, that is, it preserves that circular order of points in S1. In Lemma 4.9 we show
that ∂f̃ has no jump discontinuities, allowing us to extend it to a unique homeomorphism of
S1. Finally, in Lemma 4.10, we show that the extension yields a homeomorphism of H2∪S1.
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Figure 2. f∗ is a type preserving isomorphism.

Lemma 4.4. Keep the hypotheses of Proposition 4.1. Then f∗ is a type preserving isomor-
phism. That is, for every γ ∈ ΓX , f∗(γ) ∈ ΓY is hyperbolic (resp. parabolic) if γ is hyperbolic
(resp. parabolic).

Proof. It is enough to prove that f∗ preserves the type of primitive elements, since powers
of hyperbolic and parabolic elements of PSL(2,R) are hyperbolic and parabolic respectively,
and every element of ΓX and ΓY has a root which is a primitive element. Suppose, for the
sake of contradiction, that there is a primitive element γ ∈ ΓX such that γ and f∗(γ) are
not of the same type. Note that group isomorphisms map primitive elements to primitive
elements and so f∗(γ) is also a primitive element in ΓY . As the torsion-free Fuchsian groups
ΓX and ΓY cannot have elliptics, one of γ and f∗(γ) is hyperbolic and the other is parabolic.
Replacing f with f−1 if necessary, assume that γ is hyperbolic and f∗(γ) is parabolic. The
idea of the proof here is that the parabolic f∗(γ) is the holonomy around a simple closed
curve which is peripheral, that is, one of the components of its complement is topologically
an annulus. Since f is a homeomorphism, the same then holds for the hyperbolic γ, which
contradicts the Nielsen-convexity of X. We provide details below, carefully constructing
these annuli.

There is a horodisk in H2 about the fixed point of f∗(γ) which projects, under pY , to a cusp
neighbourhood U of an end e of Y . See Figure 2. Let L ⊂ H2 be the axis of the hyperbolic
element γ and l ⊂ X be its projection under pX . Then l is a closed geodesic of X and hence
compact. Thus its image f(l) is also compact. Hence there exists a horocyclic oriented closed
curve α ⊂ U ⊂ Y , in a sufficiently small neighbourhood of the end e, that is disjoint from
f(l), and such that the holonomy around α is f∗(γ). Since f∗(γ) is a primitive element, α is a
simple closed curve. Further, α cuts Y into two components, one of which is (topologically)
an annulus A1 ⊂ U , and the other contains f(l). Since f is a homeomorphism, f−1(α) cuts
X into two components, one of which is the annulus A2 = f−1(A1), and the other contains
l.

Now l and f−1(α) are closed curves in the same free homotopy class, since the holonomy
around each is γ. The geodesic representative in this class is l, which is a simple curve
because f−1(α) is also a simple curve. Further, l and f−1(α) are disjoint because f(l) and
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α are disjoint. Thus l and f−1(α) are disjoint and isotopic, and hence bound an annulus
A3 ⊂ X \ A2. Thus l cuts X into two components, one of which is A = A2 ∪ f−1(α) ∪ A3,
an annulus. The closure of A is a complete hyperbolic surface with geodesic boundary
l. Topologically it is an annulus with one boundary component, and thus is a hyperbolic
funnel. That is, it is the quotient of the half plane in H2 bounded by L by the isometry γ
translating along L. But then the cyclic subgroup generated by γ acts freely and properly
discontinuously on the arc Ω of the circle at infinity cut out by L, and elements of ΓX outside
this subgroup move Ω off of itself. Therefore Ω is contained in the complement of the limit
set ΛX , and its quotient by γ is a circle. Hence the ideal boundary I(X) is nonempty, and
contains a circle component γ\Ω. Another way to view this situation is that L is part of the
boundary of the convex hull CH(ΛX), and therefore l is part of the boundary of the convex
core of X. Hence A is not part of the convex core. Due to Proposition 3.1, this contradicts
the hypothesis that X is a complete, Nielsen-convex hyperbolic surface. We conclude that
f∗, the induced map between deck groups, is type preserving. �

Let (ΓX)∞ and (ΓY )∞ be the sets of sinks of all the hyperbolic elements of ΓX and ΓY
respectively. Now we define ∂f̃ on (ΓX)∞.

Definition 4.5. Suppose q ∈ (ΓX)∞, and γ ∈ ΓX is a hyperbolic element such that q = γ∞.

By Lemma 4.4, f∗ is type preserving, so f∗(γ) is also a hyperbolic element. We define ∂f̃(q)
to be the sink (f∗(γ))∞.

Lemma 4.6. For each q ∈ (ΓX)∞, ∂f̃(q) is a well defined element of (ΓY )∞. Thus the

definition above yields a well defined function ∂f̃ : (ΓX)∞ → (ΓY )∞, and it is a bijection.

Proof. We need to show that ∂f̃(q) is independent of the choice of the hyperbolic element

γ ∈ ΓX in the definition of ∂f̃ . Let γ′ be another hyperbolic element in the Fuchsian group
ΓX such that γ′∞ = q. Then γ, γ′ are in fact positive powers of some hyperbolic element
γ′′ ∈ ΓX . Thus f∗(γ) and f∗(γ

′) are positive powers of f∗(γ
′′) and hence all three have the

same sink. Thus ∂f̃(q) is unambiguously defined and is a sink of a hyperbolic element of

ΓY , so lies in (ΓY )∞. For the second assertion, note that ∂(f̃−1) is an inverse, and hence the

function ∂f̃ so defined is a bijection from (ΓX)∞ to (ΓY )∞. �

There is another way of viewing the function ∂f̃ (so far defined on the subset (ΓX)∞) as

follows. If L is an oriented geodesic line whose forward endpoint is q ∈ (ΓX)∞, then ∂f̃(q)

is the forward endpoint of f̃(L).

Lemma 4.7. Keep the hypotheses of Proposition 4.1. Let γ∞ be the sink of a hyperbolic
element γ ∈ ΓX , and suppose L is an oriented geodesic line in H2 whose forward endpoint
on the circle at infinity is γ∞. Then the oriented curve f̃(L) has forward endpoint (f∗(γ))∞
on the circle at infinity.

Proof. Let L′ be the axis of γ, oriented from its source (γ−1)∞ to its sink γ∞. First we
prove the lemma for the oriented geodesic line L′. To do so, note that γ acts by translation
along L′. Hence f∗(γ) acts by translation along f̃(L′). Now the images of any point in H2

under larger and larger positive powers of f∗(γ) limit to its attracting fixed point (f∗(γ))∞.

Therefore the forward endpoint on the circle at infinity of f̃(L′) is the sink (f∗(γ))∞.
Now we tackle the case of an arbitrary oriented geodesic line L with forward endpoint γ∞.

The idea of the proof here is that L is asymptotic to L′, and thus the projection pX(L) is
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Figure 3. The forward endpoint of f̃(L) is (f∗(γ))∞.

eventually a bounded distance from the closed curve pX(L′). Due to uniform continuity of f

on compact sets, actually the lift f̃(L) of f(pX(L)) is also eventually at a bounded distance

from the lift f̃(L′) of f(pX(L′)). Thus f̃(L) has the same forward endpoint as f̃(L′), which
we have shown above to be (f∗(γ))∞. We provide the details below, carefully lifting f(pX(L))

and f(pX(L′)) to f̃(L) and f̃(L′) respectively.
Let K̃ denote the closed 1-neighbourhood of the axis L′ in H2, that is, the set of points

of distance at most 1 from L′. Let K = pX(K̃), so that K is the closed 1-neighbourhood
of the closed geodesic pX(L′) in X. The set K is compact, and so is its image f(K) ⊂ Y .
Since injectivity radius is a continuous function on any Riemannian manifold, the injectivity
radius of points in f(K) is bounded below by a number ε > 0. Also since K is compact,
f |K is uniformly continuous. Let δ > 0 be such that for all x, y ∈ K, dX(x, y) < δ implies
dY (f(x), f(y)) < ε. Reducing δ if necessary, assume that δ ≤ 1. Since L and L′ are oriented
geodesic lines with the same forward endpoint, they are asymptotic. Let L1 be a subray of
L that is within the δ-neighbourhood of L′.

Take an arbitrary point ỹ ∈ L1. There exists a point x̃ ∈ L′ such that dH2(x̃, ỹ) < δ. Since
δ ≤ 1, we have dH2(x̃, ỹ) < 1 and so x̃, ỹ ∈ K̃. See Figure 3. Let α be the geodesic segment
from x̃ to ỹ, and let x = pX(x̃), y = pX(ỹ). Since pX is a Riemannian local isometry,
dX(x, y) ≤ dH2(x̃, ỹ) < δ. Hence by uniform continuity as above, dY (f(x), f(y)) < ε. In
fact, the diameter of pX(α) is less than δ so f(pX(α)) is a curve that lies entirely in the
ε-neighbourhood of the point f(x) in Y . Since the injectivity radius at f(x) is at least
ε, this ε-neighbourhood of f(x) in Y is evenly covered by the universal cover pY , and one

component of its pY -preimage is the ε-neighbourhood of f̃(x̃) in H2. Hence f(pX(α)) lifts to

a curve contained in this ε-neighbourhood of f̃(x̃). But the endpoint of this lifted curve is

f̃(ỹ), so dH2(f̃(x̃), f̃(ỹ)) < ε. But f̃(ỹ) is an arbitrary point on f̃(L1) and f̃(x̃) lies on f̃(L′),

so we conclude that the curve f̃(L1) is at a bounded distance from f̃(L′). Therefore f̃(L1)

limits to a point on S1 and moreover, the forward endpoints of f̃(L1) and f̃(L′) are the same,

namely (f∗(γ))∞. Thus f̃(L) has forward endpoint (f∗(γ))∞ on the circle at infinity. �

Lemma 4.8. Keep the hypotheses of Proposition 4.1, and consider the function ∂f̃ of Def-
inition 4.5, defined on the subset (ΓX)∞. Then ∂f̃ is monotonic, that is, it preserves the
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circular order on S1. In particular, if a, b, c ∈ (ΓX)∞ and (a, b, c) is a positively oriented

triple, then so is the triple (∂f̃(a), ∂f̃(b), ∂f̃(c)).

Proof. Suppose a, b, c ∈ (ΓX)∞ such that (a, b, c) is a positively oriented triple. Let L1, L2, L3

be oriented geodesic lines joining a to b, b to c and c to a respectively, and let T be the
ideal geodesic triangle with vertices a, b, c. Then by Lemma 4.7, f̃ maps T to an ideal
triangle f̃(T ) (whose sides f̃(L1), f̃(L2), f̃(L3) are not necessarily geodesics) with vertices at

∂f̃(a), ∂f̃(b), ∂f̃(c). Now L1, L2, L3 form the boundary of the triangle T , with its induced

border orientation. Since f is orientation preserving and hence so is f̃ , we conclude that the
orientation of f̃(L1)∪ f̃(L2)∪ f̃(L3) matches the orientation induced as the boundary of the

triangle f̃(T ). Therefore the vertices (∂f̃(a), ∂f̃(b), ∂f̃(c)) of the image triangle f̃(T ) form

a positively oriented triple. This concludes the proof of monotonicity of ∂f̃ . �

Lemma 4.9. Keep the hypotheses of Proposition 4.1, and consider the function ∂f̃ of Defi-
nition 4.5, defined on the subset (ΓX)∞. Then ∂f̃ can be extended uniquely to a homeomor-
phism of S1, hence part (1) of the proposition.

Proof. Note that (ΓX)∞ and (ΓY )∞ are both dense in S1 by Proposition 3.1, since X and Y

are complete, Nielsen-convex hyperbolic surfaces. Since ∂f̃ is monotonic, it can be extended
uniquely and continuously to the closure (ΓX)∞, unless there are jump discontinuities. How-

ever the image ∂f̃((ΓX)∞) = (ΓY )∞ is dense in S1, and therefore there cannot be any jump

discontinuities. So ∂f̃ can be extended uniquely and continuously to the closure (ΓX)∞,

which is S1. Thus the extension is defined over all of S1, and ∂f̃ : S1 → S1 is continuous.
The function ∂f̃ is monotonic because ∂f̃ |(ΓX)∞ is monotonic, and hence injective. The im-

age ∂f̃(S1) is compact and hence closed in S1, but contains the dense set (ΓY )∞, and so is

all of S1, making ∂f̃ surjective. Thus ∂f̃ is a continuous bijection between one dimensional
manifolds, so is a homeomorphism of S1, proving part (1) of the proposition. �

Lemma 4.10. Keep the hypotheses of Proposition 4.1, and consider the function ∂f̃ of
Lemma 4.9. Let f̂ be the function which equals f̃ on H2 and ∂f̃ on S1. Then f̂ is a
homeomorphism of H2 ∪ S1, that is, part (2) of the proposition.

Proof. Note that f̂ is already continuous on the open set H2 of H2∪S1 and has a continuous
inverse on its image H2, being equal to the homeomorphism f̃ there. It remains to show

that f̂ is continuous at points of S1, so that its inverse, being equal to f̂−1 will also be
continuous at points of S1, concluding the proof. Toward that end, let q be an arbitrary
point on S1, at which we prove the continuity of f̂ . For three distinct points a, b, c ∈ S1,
we denote by H(a, b; c) the union of the open hyperbolic half plane on the c side of the
geodesic joining a and b, and the open arc containing c of the circle at infinity cut out
by a and b. A basis of neighbourhoods at f̂(q) in H2 ∪ S1 is the set {H(a, b; f̂(q))|a, b ∈
(ΓY )∞, and a, b, f̂(q) are distinct}, since (ΓY )∞ is dense in S1 by Proposition 3.1.

Let a, b be arbitrary distinct points in (ΓY )∞. We need to show that f̂−1H(a, b; f̂(q))

is an open set in H2 ∪ S1 containing q. By Lemma 4.7 applied to f̃−1, the f̂ -preimage of
the geodesic line joining a and b (including the endpoints a and b) is a curve embedded in

H2 ∪S1 joining ∂f̃−1(a) and ∂f̃−1(b) whose interior lies entirely in H2. This curve separates

H2 ∪ S1 into two open sets, and we denote by U the one which contains q. Since f̃ is a
homeomorphism, it is clear that f̃−1(H(a, b; f̂(q)) ∩ H2) = U ∩ H2. Similarly since ∂f̃ is a
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circular order preserving homeomorphism, we have ∂f̃−1(H(a, b; f̂(q))∩S1) = U ∩S1. Then

it is clear that f̂−1H(a, b; f̂(q)) = U , which is an open set containing q, concluding the proof
of part (2) of the proposition. �

Proof of Proposition 4.1 parts (3)–(6). The function ∂f̃ is equivariant because it is a contin-

uous extension of the equivariant map f̃ to the closure of its domain. Since f∗(γ) ranges over

all of ΓY as γ ranges over ΓX , we collect the two sides of the equality (∂f̃) ◦ γ = f∗(γ) ◦ (∂f̃)

into an equality of sets (∂f̃)◦ΓX = ΓY ◦ (∂f̃) in PSL(2,R), proving part (3). Next, we prove

part (4). If ft is an isotopy which lifts to an isotopy f̃t, then we have f0∗ = f1∗, and hence

for every hyperbolic γ ∈ ΓX , ∂f̃0(γ∞) = f0∗(γ)∞ = f1∗(γ)∞ = ∂f̃1(γ∞), using Definition 4.5.

Therefore the continuous functions ∂f̃0 and ∂f̃1 agree on the dense set (ΓX)∞, and hence are
equal. Next, we prove part (5). We compute, using Definition 4.5, that for every hyperbolic

γ ∈ ΓX , ∂(g̃ ◦ f̃)(γ∞) = ((g ◦ f)∗(γ))∞ = (g∗(f∗(γ)))∞ = ∂g̃((f∗(γ))∞) = (∂g̃) ◦ (∂f̃)(γ∞).

Again the continuous functions ∂(g̃ ◦ f̃) and (∂g̃) ◦ (∂f̃) agree on the dense set (ΓX)∞, and
hence are equal. For the final part (6), note that σ ∈ PSL(2,R), as an isometry of H2,
also extends to a homeomorphism of S1, which we are denoting by the same symbol σ as
mentioned in Section 3.1. Therefore σ ◦ f̃ extends to a homeomorphism at infinity, and
∂(σ ◦ f̃) = σ ◦ (∂f̃). �

5. The Topology of the Marked Moduli Space

In this section, we define the topology on the set T (S) using homeomorphisms at infinity.
The analogue in Teichmüller theory, the idea of representing marked Riemann surface struc-
tures by induced homeomorphisms at infinity, has existed since the early days of Teichmüller
theory (see [Ahl63]), although obtaining the topology from homeomorphisms at infinity is a
delicate matter. To define the topology, fix a universal cover p : H2 → S with deck group
Γ ⊂ PSL(2,R), which is a torsion-free Fuchsian group of the first kind. The universal cover

p induces a homeomorphism between S and Γ

∖
H2

, which is a complete Nielsen-convex hy-

perbolic surface by Proposition 3.1. We define a topological space T (p) associated to the
universal cover p, and a bijective function Φp : T (S)→ T (p), which we then declare to be a
homeomorphism, yielding a topology on T (S).

Definition 5.1 (The space T (p)).

T (p) := PSL(2,R)

∖
T̃ (p) where

T̃ (p) :=
{
F ∈ Homeo+(S1)

∣∣F ◦ Γ ◦ F−1 ⊂ PSL(2,R)
}(5)

T (p) is naturally a Hausdorff topological space as follows. T̃ (p) inherits a topology as a
subspace of Homeo+(S1) with the compact-open topology. T (p) has the quotient topology,

where PSL(2,R) acts on T̃ (p) by composition on the left. Since Homeo+(S1) is a topological

group and PSL(2,R) is a closed subgroup, the right coset space Homeo+(S1)

∖
PSL(2,R)

is Hausdorff (see [Mun00, p146, 7(d)]). Therefore its subspace T (p) is also Hausdorff. We

denote by πp the quotient map T̃ (p)→ T (p).
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Figure 4. Φp[X, f ] is well defined.

Definition 5.2 (The function Φp). Suppose [X, f ] ∈ T (S) is a marked hyperbolic structure.
Choose a universal cover pX : H2 → X. The marking map f : S → X lifts to a homeomor-
phism f̃ : H2 → H2, which, by Proposition 4.1(1), extends to a homeomorphism at infinity

∂f̃ : S1 → S1. We define Φp[X, f ] to be the right coset [∂f̃ ] = PSL(2,R) ◦ (∂f̃) of PSL(2,R)
in Homeo+(S1).

Lemma 5.3. For each [X, f ] ∈ T (S), Φp[X, f ] is a well defined element of T (p). Thus the
definition above yields a function Φp : T (S)→ T (p).

Proof. First we need to show that Φp[X, f ] is independent of the three choices made in the
definition of Φp, namely, the choice of the representative (X, f) of the marked hyperbolic

structure, the choice of the universal cover pX , and the choice of the lift f̃ . We treat these
one at a time, and in reverse order.

(1) The choice of the lift f̃ of f : Any other lift of f is of the form σ ◦ f̃ , where σ ∈ ΓX
is a deck transformation. This extends to the homeomorphism at infinity σ ◦ (∂f̃),
by Proposition 4.1(6). Since σ ∈ PSL(2,R), we have an equality of right cosets

PSL(2,R) ◦ (σ ◦ (∂f̃)) = PSL(2,R) ◦ (∂f̃). That is, [∂(σ ◦ f̃)] = [σ ◦ (∂f̃)] = [∂f̃ ].
(2) The choice of the universal cover pX : H2 → X: Suppose that qX : H2 → X is

another universal cover. Since universal covers are unique up to isometry, there is a
σ ∈ PSL(2,R) such that pX = qX ◦σ. See the diagram in Figure 4a, which commutes.

Then σ ◦ f̃ is a lift of f with respect to the universal covers p and qX , which extends
to the homeomorphism at infinity σ ◦ (∂f̃), by Proposition 4.1(6). Again we have

[∂(σ ◦ f̃)] = [∂f̃ ].
(3) The choice of the representative (X, f) of the marked hyperbolic structure: Suppose

(Y, g) is another representative of the same marked hyperbolic structure. Then there
is an isometry ϕ : X → Y such that ϕ ◦ f is homotopic to g. Then ϕ lifts to an
isometry σ ∈ PSL(2,R). For a lift f̃ of f , σ ◦ f̃ is a lift of ϕ ◦ f . The homotopy from

ϕ◦f to g lifts to a homotopy from σ ◦ f̃ to a lift g̃ of g. See the diagram in Figure 4b,
in which the squares commute and the top and bottom triangles homotopy commute.
By Proposition 4.1, parts (4) and (6), we have ∂g̃ = ∂(σ ◦ f̃) = σ ◦ (∂f̃). Therefore

again we have [∂g̃] = [σ ◦ (∂f̃)] = [∂f̃ ], so that Φp[X, f ] is a well defined right coset
of PSL(2,R) in Homeo+(S1).
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Next, to show that Φp[X, f ] is actually an element of the subspace T (p) of the right coset

space PSL(2,R)

∖
Homeo+(S1) , we use Proposition 4.1(3) to obtain (∂f̃) ◦Γ = ΓX ◦ (∂f̃), or

in other words, (∂f̃) ◦Γ ◦ (∂f̃)−1 = ΓX ⊂ PSL(2,R). Therefore ∂f̃ ∈ T̃ (p), and [∂f̃ ] ∈ T (p).
So the codomain of Φp is T (p) indeed. �

Lemma 5.4. Φp : T (S)→ T (p) is a bijection.

Proof. To see that Φp is injective, suppose Φp[X, f ] = Φp[Y, g]. Let f̃ , g̃ denote the lifts of f, g

with respect to universal covers pX : H2 → X and pY : H2 → Y . Note that (∂f̃)◦Γ◦(∂f̃)−1 =

ΓX and (∂g̃) ◦ Γ ◦ (∂g̃)−1 = ΓY by Proposition 4.1(3). Also, [∂g̃] = [∂f̃ ], so there exists an

element σ of PSL(2,R) such that ∂g̃ = σ◦(∂f̃). Thus we have σ◦ΓX = σ◦(∂f̃)◦Γ◦(∂f̃)−1 =

(∂g̃) ◦ Γ ◦ (∂f̃)−1 = ΓY ◦ (∂g̃) ◦ (∂f̃)−1 = ΓY ◦ σ. Thus σ is equivariant, not only as a
homeomorphism of S1, but also as an isometry of H2, and hence descends to an isometry
ϕ : X → Y . Further, for every γ ∈ Γ, we have (ϕ ◦ f)∗(γ) = (σ ◦ (∂f̃)) ◦ γ ◦ (σ ◦ (∂f̃))−1 =
(∂g̃) ◦ γ ◦ (∂g̃)−1 = g∗(γ). Therefore (ϕ ◦ f)∗ and g∗ are equal as isomorphisms from Γ to
ΓY , and hence are equal as the π1 functor as well. Since S is a K(π1(S), 1) classifying space,
ϕ ◦ f is homotopic to g. Therefore [X, f ] = [Y, g] in T (S), so Φp is injective.

To see that Φp is surjective, suppose [F ] ∈ T (p). Define ΓX = F ◦Γ◦F−1. Since F ∈ T̃ (p),
we have ΓX ⊂ PSL(2,R). ΓX is discrete because conjugation by F is a homeomorphism of
Homeo+(S1), and because Γ is also discrete. ΓX is also torsion-free because it is isomorphic
to Γ, which is torsion-free. Further, F maps the limit set of Γ to the limit set of ΓX , which

is therefore all of S1. Hence X = ΓX

∖
H2

is a complete, Nielsen-convex hyperbolic surface

by Proposition 3.1. The Douady–Earle extension (recall Theorem 3.5) of F is conformally
natural and thus equivariant, hence descends to a homeomorphism f : S → X. Clearly
Φp[X, f ] = [F ], so Φp is surjective. This completes the proof of bijectivity of Φp. �

The above proposition allows us to define a topology on T (S), and then we check that it
actually does not depend on the choice of the universal cover p that we used in the definition.

Definition 5.5 (Topology of the Marked Moduli Space). The topology on T (S) is defined by
declaring the bijection Φp : T (S) → T (p) to be a homeomorphism. In other words, a subset
U ⊂ T (S) is open if and only if Φp(U) ⊂ T (p) is open.

Proposition 5.6. If p′ : H2 → S is another universal cover with deck group Γ′ ⊂ PSL(2,R),
a torsion-free Fuchsian group of the first kind, then Φp′ ◦ Φ−1

p : T (p) → T (p′) is a homeo-
morphism. Thus the topology on T (S) does not depend on the choice of the universal cover
p. Moreover, T (S) is a Hausdorff space.

Proof. The identity map of S lifts, with respect to the covers p′ and p, to a map h : H2 → H2

such that p ◦ h = p′. By Proposition 4.1(1), h extends to a homeomorphism at infinity
∂h. Note that h is not necessarily an isometry, because the two universal covers p and
p′ can possibly induce different hyperbolic metrics on S, although both are complete and
Nielsen-convex by Proposition 3.1.

Let [X, f ] ∈ T (S) be a marked hyperbolic structure and pX : H2 → X be a universal cover.

The marking map f lifts to f̃ with respect to the covers p and pX , so that Φp[X, f ] = [∂f̃ ].

That is, the right PSL(2,R)-coset Φp[X, f ] is represented by the homeomorphism ∂f̃ . Then

the map f̃ ′ defined by f̃ ′ = f̃ ◦ h is a lift of f with respect to the covers p′ and pX . See
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p is induced by multiplication

by ∂h on the right.

Figure 5. Φp′ ◦ Φ−1
p is a homeomorphism.

the diagram in Figure 5a, which commutes. Thus Φp′ [X, f ] is represented by ∂(f̃ ◦ h),

which equals (∂f̃) ◦ (∂h) due to Proposition 4.1(5). Thus Φp′ ◦ Φp[∂f̃ ] = [∂f̃ ] ◦ (∂h). In
other words, Φp′ ◦ Φ−1

p : T (p) → T (p′) is induced simply by multiplication on the right by
∂h. Multiplication on the right by the fixed map ∂h is a homeomorphism of the topological

group Homeo+(S1), and it restricts to a homeomorphism from T̃ (p) to T̃ (p′), which descends
to a homeomorphism Φp′ ◦Φ−1

p of the spaces of right cosets T (p) and T (p′). See the diagram
in Figure 5b, which commutes, and in which the top two vertical arrows are embeddings and
the bottom two vertical arrows are quotient maps.

Now we can show that the topology of T (S) does not depend on the universal cover
p. Indeed, for another universal cover p′ and any subset U ⊂ T (S), the condition Φp(U)
is open in T (p) is equivalent, since Φp′ ◦ Φ−1

p is a homeomorphism, to the condition that

Φp′(U) = Φp′ ◦ Φ−1
p (Φp(U)) is open in T (p′).

Finally, T (S) is Hausdorff because it is homeomorphic to T (p), which is Hausdorff as
remarked after Definition 5.1. �

6. Continuity of the Action

Recall the action function A, and the action A[ψ] of a mapping class [ψ], from equation (2).
Now that we have a well defined topology on T (S), we can ask if the action of MCG(S) on
T (S) is continuous, and in this section, we answer it in the affirmative. We can also ask if
the action representation MCG(S) → Homeo(T (S)) is continuous. However, we have not
defined any topology on the codomain. For infinite type surfaces S, we do not expect T (S)
to be locally compact in general. So the compact-open topology may not be very useful.
Instead we prove that the action function A : MCG(S)×T (S)→ T (S) is continuous. It will
follow that for each mapping class [ψ] ∈ MCG(S), its action on T (S), that is, the function
A[ψ] : T (S) → T (S), is a homeomorphism. We remark that the continuity of the action
function A is straightforward for the mapping class group of a finite type surface acting
on the Teichmüller space. In this case, the mapping class group is discrete, and so A is
continuous if and only if for all [ψ] ∈ MCG(S), A[ψ] is continuous. But this is true because
A[ψ] is an isometry. In order to prove continuity of A, we must compute A in terms of
homeomorphisms at infinity, since the topology on T (S) is defined via homeomorphisms at
infinity. This is achieved by showing that mapping classes induce homeomorphisms at infinity
as well. The idea of studying homeomorphisms of surfaces via the induced homeomorphisms
at infinity dates to work of Nielsen (see [HT85] and the references therein).
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First we fix a universal cover p : H2 → S with deck group Γ ⊂ PSL(2,R), a torsion-free
Fuchsian group of the first kind as before. Recall that Γ is also naturally a subgroup of
Homeo+(S1). Let N(Γ) be the normaliser of Γ in Homeo+(S1) and let πN be the quotient
map N(Γ)→ N(Γ)/Γ. We now define a function Ψp : MCG(S)→ N(Γ)/Γ which will enable
us to compute the action function in terms of homeomorphisms at infinity.

Definition 6.1 (The function Ψp). Suppose [ψ] ∈ MCG(S) is a mapping class. The homeo-

morphism ψ lifts to ψ̃ : H2 → H2 which, by Proposition 4.1(1), extends to a homeomorphism

at infinity ∂ψ̃ : S1 → S1. We define Ψp[ψ] to be the right coset [∂ψ̃] = Γ ◦ (∂ψ̃) of Γ in
Homeo+(S1).

Lemma 6.2. For each [ψ] ∈ MCG(S), Ψp[ψ] is a well defined element of N(Γ)/Γ. Thus the
definition above yields a function Ψp : MCG(S)→ N(Γ)/Γ.

Proof. First, we need to show that Ψp[ψ] is independent of two choices made in the definition
of Ψp, namely, the choice of the representative homeomorphism ψ of the mapping class, and

the choice of its lift ψ̃. We treat these one at a time, and in reverse order.

(1) The choice of the lift ψ̃ of ψ: Any other lift of ψ is of the form σ ◦ ψ̃, where σ ∈ Γ is

a deck transformation. This extends to the homeomorphism at infinity σ ◦ (∂ψ̃), by

Proposition 4.1(6). Since σ ∈ Γ, we have an equality of right cosets Γ ◦ (σ ◦ (∂ψ̃)) =

Γ ◦ (∂ψ̃). That is, [∂(σ ◦ ψ̃)] = [σ ◦ (∂ψ̃)] = [∂ψ̃].
(2) The choice of the representative ψ of the mapping class [ψ]: Suppose ψ′ is another

representative of the same mapping class. Then ψ is homotopic to ψ′. This homotopy
lifts to a homotopy between ψ̃ and a lift ψ̃′ of ψ′. By Proposition 4.1(4), we have ∂ψ̃′ =

∂ψ̃, so [∂ψ̃] = [∂ψ̃], so that Ψp[ψ] is a well defined right coset of Γ in Homeo+(S1).

Next, to show that Ψp[ψ] is actually an element of the subspace N(Γ)/Γ of the right coset

space Γ

∖
Homeo+(S1) , we use Proposition 4.1(3) to obtain Γ ◦ (∂ψ̃) = (∂ψ̃) ◦ Γ, or in other

words, (∂ψ̃) ◦Γ ◦ (∂ψ̃)−1 = Γ. Therefore ∂ψ̃ lies in the normaliser N(Γ), and [∂ψ̃] ∈ N(Γ)/Γ.
So the codomain of Ψp is N(Γ)/Γ indeed. �

Note that the left and right cosets of Γ by ∂ψ̃ are equal, and our notation N(Γ)/Γ suggests
left coset space. This is in keeping with the convention for group quotients by normal
subgroups.

Lemma 6.3. Ψp : MCG(S)→ N(Γ)/Γ is a group isomorphism.

Proof. A similar argument as with Φp in Lemma 5.4 shows that Ψp is a bijection. To see
that Ψp is a group homomorphism, suppose that ψ1, ψ2 ∈ Homeo+(S) are homeomorphisms

with lifts ψ̃1, ψ̃2 to the universal cover. Then ψ̃1 ◦ ψ̃2 is a lift of ψ1 ◦ ψ2, and we compute
Ψp([ψ1] · [ψ2]) = Ψp[ψ1 ◦ψ2] = [∂(ψ̃1 ◦ ψ̃2)] which equals [(∂ψ̃1)◦ (∂ψ̃2)] by Proposition 4.1(5),

and hence equals [∂ψ̃1] ◦ [∂ψ̃2] = Ψp[ψ1] · Ψp[ψ2]. Hence Ψp is a group homomorphism and,
since it is a bijection as well, is a group isomorphism. �

We are ready to compute the action function in terms of homeomorphisms at infinity. The
general idea is that Φp(A([ψ], [X, f ])) = Φp[X, f ] ◦ (Ψp[ψ])−1. However, Φp[X, f ] and Ψp[ψ]
are right cosets of PSL(2,R) and Γ respectively in Homeo+(S1) and N(Γ) respectively. In
order to avoid dealing with multiplication of cosets, we state the computation in the following
manner:
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Proposition 6.4. Suppose [X, f ] ∈ T (S) and [ψ] ∈ MCG(S). If Φp[X, f ] = [F ] and
Ψp[ψ] = [G], then we have

(6) Φp(A([ψ], [X, f ])) = [F ◦G−1]

Proof. Let f̃ be a lift of the marking map f , and let ψ̃ be a lift of the homeomorphism ψ of
S. Then Φp[X, f ] = [∂f̃ ] and Ψp[ψ] = [∂ψ̃]. We have A([ψ], [X, f ]) = [X, f ◦ ψ−1]. Then the

modified marking map f ◦ψ−1 lifts to the map f̃ ◦ ψ̃−1 which, by Proposition 4.1(5), extends

to the homeomorphism at infinity ∂(f̃ ◦ ψ̃−1) = (∂f̃)◦(∂ψ̃)−1. Therefore Φp(A([ψ], [X, f ])) =

Φp[X, f ◦ ψ−1] = [(∂f̃) ◦ (∂ψ̃)−1]. If F is any other representative of the right coset [∂f̃ ] of

PSL(2,R) in Homeo+(S1), then F = σ ◦ (∂f̃) for some σ ∈ PSL(2,R). Similarly if G is any

other representative of the (left or right) coset [∂ψ̃] of Γ in N(Γ), then G = (∂ψ̃) ◦ γ−1 for

some γ ∈ Γ. Then F ◦ G−1 = (σ ◦ (∂f̃)) ◦ ((∂ψ̃) ◦ γ−1)−1 = σ ◦ (∂f̃) ◦ γ ◦ (∂ψ̃)−1, which

equals, by Proposition 4.1(3), σ ◦ f∗(γ) ◦ (∂f̃) ◦ (∂ψ̃)−1. Since σ, f∗(γ) ∈ PSL(2,R), we have

[F ◦ G−1] = [(∂f̃) ◦ (∂ψ̃)−1] as right cosets of PSL(2,R) in Homeo+(S1). In other words,
Φp(A([ψ], [X, f ])) = [F ◦G−1]. �

Thus in terms of homeomorphisms at infinity, the action of the mapping class group is
simply by multiplication on the right by the inverse. Since inversion and multiplication are
continuous operations in the topological group Homeo+(S1), the formula (G,F ) 7→ F ◦G−1

defines a continuous function on N(Γ)× T̃ (p) ⊂ Homeo+(S1)×Homeo+(S1). This descends

to the action function A, which is continuous as long as [∂ψ̃] depends continuously on [ψ].
That is, we need to show that Ψp is continuous, which we now do in Lemma 6.5.

Lemma 6.5. Ψp : MCG(S)→ N(Γ)/Γ is a homeomorphism.

Proof. Fix a basepoint s̃ ∈ H2 and let s = p(s̃). Let d be any path metric on S1, for example,
the visual metric on S1 induced by the basepoint s̃. Since we have fixed a universal cover
p : H2 → S, we have access to the complete hyperbolic metric dS on S and its injectivity
radius function injS, which is a continuous function on S.

For the continuity of Ψp, we only need to show that Ψp is continuous at the identity
[idS] ∈ MCG(S), since Ψp is a group isomorphism. Note that Ψp[idS] = [∂idH2 ] = [idS1 ]. Let
U be an open neighbourhood of [idS1 ] in N(Γ)/Γ. We have to show that Ψ−1

p (U) is an open
neighbourhood of [idS] in MCG(S). Since the quotient πN : N(Γ) → N(Γ)/Γ is continuous,
the preimage π−1

N (U) is open in N(Γ), and hence is the intersection with N(Γ) of an open
neighbourhood U1 of idS1 in Homeo+(S1). Therefore there is an ε such that the ball in
Homeo+(S1) (in the metric of uniform convergence)

Bd(idS1 , ε) = {θ ∈ Homeo+(S1) | d(θ(q), q) < ε for all q ∈ S1}

is contained in U1. Reducing ε if necessary, assume that ε is less than half the d-length of
S1.

We will construct an open neighbourhood V1 of idS in Homeo+(S) and for all ψ ∈ V1,

construct a lift ψ̃ such that ∂ψ̃ ∈ Bd(idS1 , ε). Since Bd(idS1 , ε) ⊂ U1, this means that

Ψp[ψ] = [∂ψ̃] ∈ πN(U1 ∩ N(Γ)) = U . Since quotienting by the group action of Homeo0(S) is
an open map, the projection V of V1 in MCG(S) is an open set. It follows that V is an open
neighbourhood of [idS] and is contained in Ψ−1

p (U). It will follow that Ψp is continuous at
[idS].
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Figure 6. Lifts of the homeomorphisms in V1 and their extensions to the
circle at infinity.

To obtain the open neighbourhood V1, we choose a finite set of points in (Γ)∞ which
is ε

2
-dense in S1. This is possible because S1 is compact and (Γ)∞ is dense in S1 due

to Proposition 3.1. Represent these points as sinks (γ1)∞, (γ2)∞, . . . , (γn)∞ of hyperbolic
elements γ1, γ2, . . . , γn ∈ Γ. Relabelling if necessary, and removing duplicates, assume that
(γ1)∞, (γ2)∞, . . . (γn)∞ are distinct and in positive circular order. These points divide the
circle at infinity into n intervals, each of length at most ε. For each j = 1, 2, . . . , n, choose
an oriented closed curve αj in S based at the point s such that the holonomy around αj is
ϕ[αj] = γj, where ϕ : π1(S, s) → Γ is the holonomy representation induced by the pointed
universal cover p : (H2, s̃) → (S, s). Since the set

⋃n
j=1 αj is a compact set, the continuous

function injS has a minimum value δ > 0 on it. We define V1 to be the set

V1 =

{
ψ ∈ Homeo+(S)

∣∣∣∣∣dS(ψ(q), q) < δ for all q ∈
n⋃
j=1

αj

}
which is a basic open neighbourhood of idS of Homeo+(S) in the topology of uniform con-
vergence on compact sets.

Now let ψ ∈ V1. Since dS(ψ(s), s) < δ ≤ injS(s), there is exactly one lift of ψ(s) in the

δ-neighbourhood of the lift s̃ of s. Define ψ̃ to be the unique lift of ψ that maps s̃ to this
point. Further, for each j = 1, 2, . . . , n and each q ∈ αj, since dS(ψ(q), q) < δ ≤ injS(q),
there is a unique shortest geodesic segment from q to ψ(q). Moving every point q along this
geodesic segment at constant speed yields the straight line homotopy H from the curve αj
to the curve ψ(αj) (recall Proposition 3.3). Therefore the holonomy around ψ(αj) equals
the holonomy γj around αj, but it also equals ψ∗(γj), using facts from Section 3.3. We infer

that ψ∗(γj) = γj. Consequently, ∂ψ̃((γj)∞) = (ψ∗(γj))∞ = (γj)∞, using Definition 4.5. Since

j was arbitrary, this is true for all j = 1, 2, . . . , n. See Figure 6, which shows the lift H̃ of
the homotopy H. Here H̃ is a homotopy from the (bi-infinite) lift α̃j of αj through s̃ to the

lift ψ̃(α̃j) of ψ(αj) through ψ̃(s̃). Note that the forward endpoints of both αj and ψ̃(α̃j) are

equal, and hence ∂ψ̃ fixes (γj)∞.

Next, we show the membership ∂ψ̃ ∈ Bd(idS1 , ε) as promised. For any q ∈ S1, if q = (γj)∞
for some j, then trivially d(∂ψ̃(q), q) = 0 < ε. Otherwise, q lies in an interval component
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of S1 \ {(γ1)∞, (γ2)∞, . . . , (γn)∞} bounded by two sinks (γj)∞ and (γj+1)∞ (subscripts of

the letter γ being modulo n). Since the homeomorphism ∂ψ̃ preserves the circular order

on S1 and fixes both (γj)∞ and (γj+1)∞, we conclude that ∂ψ̃(q) lies in the same interval

as does q. Hence d(∂ψ̃(q), q) < ε, as both lie in an interval of length less than ε. Thus

d(∂ψ̃(q), idS1(q)) < ε for all q ∈ S1, and so ∂ψ̃ ∈ Bd(idS1 , ε). This concludes the proof of
continuity of Ψp.

We show that the inverse Ψ−1
p : N(Γ)/Γ→ MCG(S) is continuous by describing it explic-

itly. Let DE: Homeo+(S1)→ Homeo+(H2) denote the Douady-Earle extension restricted to
H2 (recall Theorem 3.5). Suppose G ∈ N(Γ) ⊂ Homeo+(S1) and γ ∈ Γ ⊂ PSL(2,R). Then
since G normalises Γ and DE is conformally natural, we have DE(G) ◦ γ = DE(G ◦ γ) =
DE(γ′ ◦ G) = γ′ ◦ DE(G) for some γ′ ∈ Γ. Note that in this chain of equalities, the γ
and γ′ within parentheses are homeomorphisms of S1, those without are isometries of H2.
Thus DE(G) normalises Γ, now viewed as a group of homeomorphisms of H2. We denote
the normaliser of Γ in Homeo+(H2) by Homeo+

Γ (H2). This is precisely the set of equivari-
ant homeomorphisms of H2, or equivalently, the set of lifts of homeomorphisms of S. Let
π : Homeo+

Γ (H2) → Homeo+(S) be the function defined by π(f̃) = f for every homeomor-

phism f of S and every lift f̃ of f , so that π ◦ DE(G) is a homeomorphism of S for each
G ∈ N(Γ). Now each γ ∈ Γ is a deck transformation of the universal cover p : H2 → S.
Hence for each G ∈ N(Γ) and γ ∈ Γ, we have π ◦ DE(G ◦ γ) = π(DE(G) ◦ γ) = π ◦ DE(G),
and so π ◦ DE descends to a function πDE: N(Γ)/Γ → MCG(S). For [G] ∈ N(Γ)/Γ, a lift
of πDE[G] to H2 is simply DE(G), which extends to the homeomorphism at infinity G, so
Ψp ◦ πDE[G] = [G]. As [G] ∈ N(Γ)/Γ was arbitrary, Ψp ◦ πDE is the identity on N(Γ)/Γ.
Hence πDE is a right inverse to Ψp. But we already know that Ψp is a bijection, so in fact
πDE = Ψ−1

p .

We show that π is continuous. Suppose Gi → G as i→∞ in Homeo+
Γ (H2), which has the

topology of uniform convergence on compact sets. To show the π(Gi)→ π(G) as i→∞ in
Homeo+(S) in the topology of uniform convergence on compact sets, we show the uniform
convergence on an arbitrary compact set K ⊂ S. There exists a large enough closed disk
D ⊂ H2 such that K is contained in p(D). Since D is compact, Gi|D → G|D uniformly as
i→∞. Now p is a Riemannian local isometry, and therefore contracts distances. Therefore
π(Gi)|K → π(G)|K uniformly as i→∞, and so π is continuous. Since DE is also a continuous
function, the composition π◦DE is continuous, and passing the quotient, πDE is continuous.
Therefore Ψ−1

p is continuous, and Ψp is a homeomorphism. �

We are ready to prove the continuity of the action function A. The thrust of the argument
is already proved in Lemma 6.5, we only need to finish up the point set topological details.

Theorem 6.6. The action function A : MCG(S) × T (S) → T (S) given by equation (2) is
continuous.

Proof. As before, fix a universal cover p : H2 → S with deck group Γ ⊂ PSL(2,R), a torsion-
free Fuchsian group of the first kind. See the diagram in Figure 7, which commutes. The
proposition is that the function in the bottom row is continuous. This is equivalent to the
continuity of the function in the third row just above it, because Φp is a homeomorphism
by definition, and Ψp is a homeomorphism by Lemma 6.5. The function in the top row is
certainly continuous, because multiplication and inversion are continuous functions of the
topological group Homeo+(S1). Restricting to subspaces in the second row, we see that the
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Homeo+(S1)× Homeo+(S1) Homeo+(S1)

N(Γ)× T̃ (p) T̃ (p)

N(Γ)/Γ× T (p) T (p)

MCG(S)× T (S) T (S)

(G,F ) 7→ F ◦G−1

(G,F ) 7→ F ◦G−1

πN × πp πp

([∂ψ̃], [∂f̃ ]) 7→ [(∂f̃) ◦ (∂ψ̃)−1]

([ψ], [X, f ]) 7→ [X, f ◦ ψ−1]

A

Ψp × Φp ∼= Φ−1
p

∼=

Figure 7. Continuity of the action function A.

function in the second row is continuous as well. The quotient maps πN : N(Γ) → N(Γ)/Γ

and πp : T̃ (p) → T (p) are open, because they are quotients by the group actions of Γ and
PSL(2,R) respectively. Therefore the product map πN×πp is also open and surjective, hence
a quotient map. By the universal property of quotients, the map in the second row descends
to the function in the third row which is therefore continuous, as required. Thus the action
function A is continuous. �

Corollary 6.7. The mapping class group acts on the marked moduli space by homeomor-
phisms.

Proof. Recall from equation (2) that for each fixed mapping class [ψ] ∈ MCG(S), its action
on the marked moduli space is given by the function A[ψ] : T (S)→ T (S) which is A[ψ][X, f ] =
A([ψ], [X, f ]). Then A[ψ] is continuous by Theorem 6.6, and A[ψ−1] is evidently a continuous
inverse, so A[ψ] is a homeomorphism. �

7. Embedding the Marked Moduli Space into the Character Space

In this section, we prove that the marked moduli space T (S) embeds into the PSL(2,R)-
character space X(π1(S),PSL(2,R)) = Hom(π1(S),PSL(2,R))/PSL(2,R) of the fundamen-
tal group. Here the PSL(2,R)-representation space Hom(π1(S),PSL(2,R)) has the topology
of pointwise convergence. The quotient is by the conjugation action of PSL(2,R), and a char-
acter is simply a conjugacy class of representations. The character spaceX(π1(S),PSL(2,R))
has the quotient topology. The embedding will imply that in case the surface S is of finite
type, the topology on T (S) coincides with the usual topology on Teichmüller space. The
marked moduli space injects into the character space in the obvious way via the character
of a holonomy representation. We describe the injection Φat as follows. First fix a basepoint
s ∈ S.

Definition 7.1 (The function Φat). Suppose [X, f ] ∈ T (S) is a marked hyperbolic structure.
Take the basepoint on X to be x = f(s), so that the marking map f : S → X induces an
isomorphism of fundamental groups f∗ : π1(S, s) → π1(X, x). Choose a pointed universal

cover pX : (H2, x̃) → (X, x) with deck group ΓX ⊂ PSL(2,R), and let ϕX : π1(X, x)
∼=−→
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ΓX ↪→ PSL(2,R) be the corresponding holonomy representation. Composing the two group
morphisms yields the representation ρ[X,f ] := ϕX ◦ f∗ : π1(S, s) → PSL(2,R). We define
Φat[X, f ] to be the character [ρ[X,f ]] in X(π1(S, s),PSL(2,R)).

Lemma 7.2. For each [X, f ] ∈ T (S), Φat[X, f ] is a well defined character of PSL(2,R)-
representations of π1(S, s). Further, Φat : T (S) → X(π1(S, s),PSL(2,R)) is an injective
function.

Proof. First, we have to show that the character [ρ[X,f ]] is independent of two choices made in
the definition of Ψat, namely, the choice of the representative (X, f) of the marked hyperbolic
structure, and the choice of the pointed universal cover pX . We treat these one at a time,
and in reverse order.

(1) The choice of the pointed universal cover pX : (H2, x̃) → (X, x): A different pointed
universal cover is of the form pX ◦ σ−1 : (H2, σ(x̃))→ (X, x) for some σ ∈ PSL(2,R).
Let ρ′[X,f ] be the representation obtained using the new pointed universal cover. Sup-

pose γ is a loop in S based at s, so that [γ] ∈ π1(S, s). Suppose that the lift of f(γ)
to the universal cover, with respect the covering map pX , starting at x̃, has endpoint
x̃′, so that the deck transformation ρ[X,f ][γ] maps x̃ to x̃′. Then the lift of the same
curve, with respect to the covering map pX ◦σ−1, starting at σ(x̃) has endpoint σ(x̃′).
Consequently, the deck transformation sending σ(x̃) to σ(x̃′) is σ ◦ρ[X,f ][γ]◦σ−1. But
this deck transformation is precisely the holonomy ρ′[X,f ][γ] with respect to the new

pointed universal cover, so ρ′[X,f ][γ] = σ ◦ ρ[X,f ][γ] ◦ σ−1. In other words, since this is

true for all [γ] ∈ π1(S, s), ρ′[X,f ] is the conjugate of ρ[X,f ] by σ ∈ PSL(2,R), and so

[ρ′[X,f ]] = [ρ[X,f ]].

(2) The choice of the representative (X, f) of the marked hyperbolic structure: Suppose
that (Y, g) is another representative of the same marked hyperbolic structure. The
choice of a pointed universal cover pY : (H2, ỹ) → (Y, y), where y = g(s), leads to
a holonomy representation ϕY : π1(Y, y) → ΓY ↪→ PSL(2,R). The equality [X, f ] =
[Y, g] means that there exists an isometry ψ : X → Y such that g is homotopic

to ψ ◦ f . This homotopy lifts to universal covers as a homotopy from g̃ to ψ̃ ◦ f̃ ,
where ψ̃, ψ f̃ and g̃ are lifts of ψ, f and g respectively, and let s̃ ∈ H2 be such
that g(s̃) = ỹ. Let the endpoint of the track of s̃ under the lifted homotopy be ỹ′,
and let y′ = pY (ỹ′) = ψ ◦ f(s). The pointed universal cover p : (H2, ỹ′) → (Y, y′)
leads to a holonomy representation ϕ′Y : π1(Y, y′) → ΓY ↪→ PSL(2,R). For every
closed curve γ in S based at s, g(γ) is homotopic to ψ ◦ f(γ) in Y . Since the
holonomies around homotopic curves are equal, ϕY (g∗[γ]) = ϕ′Y ((ψ ◦f)∗[γ]) for every
[γ] ∈ π1(S, s). Thus for every [γ] ∈ π1(S, s), we compute ρ[Y,g][γ] = ϕY (g∗[γ]) =
ϕ′Y ((ψ ◦ f)∗[γ]) = ϕ′Y (ψ∗(f∗[γ])) = ψ∗(ϕX(f∗[γ])) = ψ∗(ρ[X,f ][γ]). Note that in the
fourth equality, ψ∗ denotes the π1 functor on the left and the isometry between deck
groups induced by ψ̃ on the right. However, ψ∗ : ΓX → ΓY is conjugation by ψ̃, so
ρ[Y,g][γ] = ψ∗(ρ[X,f ][γ]) = ψ̃ ◦ ρ[X,f ][γ] ◦ ψ̃−1. In words, ρ[Y,g][γ] is the conjugate of

ρ[X,f ][γ] by ψ̃ ∈ PSL(2,R). This holds for all [γ] ∈ π1(S, s), so we conclude that the
representation ρ[Y,g] is conjugate to ρ[X,f ] by some element of PSL(2,R). That is,
[ρ[Y,g]] = [ρ[X,f ]], so that Φat[X, f ] is a well defined character.

Finally, we show that Φat is injective. Suppose [X, f ], [Y, g] ∈ T (S) are marked hyperbolic
structures such that [ρ[X,f ]] = [ρ[Y,g]]. This means that there is an element σ ∈ PSL(2,R)
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such that σ ◦ ρ[X,f ][γ] ◦ σ−1 = ρ[Y,g][γ] for every [γ] ∈ π1(S, s). Thus σ ◦ ΓX ◦ σ−1 = ΓY ,
which we rearrange to σ ◦ ΓX = ΓY ◦ σ, so σ is equivariant. Hence σ descends to an
isometry ψ : X → Y . Further, for every [γ] ∈ π1(S, s), we have ϕY ◦ g∗[γ] = ρ[Y,g][γ] =
σ ◦ ρ[X,f ][γ] ◦ σ−1 = ψ∗ ◦ ϕX ◦ f∗[γ] = ϕY ◦ ψ∗ ◦ f∗[γ]. In the last equality, ψ∗ denotes
the isomorphism of deck groups on the left and the π1 functor on the right. Since ϕY is an
isomorphism, (ψ◦f)∗ = g∗ as homomorphisms π1(S, s)→ π1(Y, y). Since S is a K(π1(S, s), 1)
classifying space, we conclude that ψ ◦ f is homotopic to g. Therefore [X, f ] = [Y, g], and
Φat is injective. �

Since the topology on T (S) is defined using a universal cover p and the function Φp, in
order to prove Φat is an embedding, we must compute Φat in terms of Φp. To that end,
fix a pointed universal cover p : (H2, s̃) → (S, s) with deck group Γ ⊂ PSL(2,R), which is
a torsion-free Fuchsian group of the first kind. This leads to a holonomy representation
ϕ : π1(S, s)→ Γ ↪→ PSL(2,R) as before. For any marked hyperbolic structure [X, f ] ∈ T (S)
with a pointed universal cover pX : (H2, x̃) → (X, x), where x = f(s), the marking map f

lifts to a map f̃ , which extends, by Proposition 4.1(1), to a homeomorphism at infinity ∂f̃
representing Φp[X, f ]. The rough idea is that Φat[X, f ] is the conjugate of ϕ by Φp[X, f ]. As

before, we have the representation ρ[X,f ] = ϕX ◦ f∗. This is related to ∂f̃ and ϕ as follows.

Proposition 7.3 (Φat in terms of Φp). For any [γ] ∈ π1(S, s), we have

(7) ρ[X,f ][γ] = (∂f̃) ◦ ϕ[γ] ◦ (∂f̃)−1

In general, if Φp[X, f ] is represented by the homeomorphism F , then Φat[X, f ] is represented
by the representation R which satisfies, for all [γ] ∈ π1(S, s),

(8) R[γ] = F ◦ ϕ[γ] ◦ F−1

Proof. We compute ρ[X,f ][γ] = ϕX(f∗[γ]) = f∗(ϕ[γ]) = (∂f̃) ◦ ϕ[γ] ◦ (∂f̃)−1 by Proposi-
tion 4.1(3). Note that in the second equality, the f∗ on the left hand side is the π1 func-
tor, whereas on the right hand side, f∗ is the isomorphism between the deck groups Γ
and ΓX induced by f̃ . Any other homeomorphism F representing Φp[X, f ] is of the form

σ ◦ (∂f̃) for some σ ∈ PSL(2,R). Then for all [γ] ∈ π1(S), we have σ ◦ ρ[X,f ][γ] ◦ σ−1 =

σ ◦ (∂f̃) ◦ϕ[γ] ◦ (∂f̃)−1 ◦σ−1 = (σ ◦ (∂f̃)) ◦ϕ[γ] ◦ (σ ◦ (∂f̃))−1 = F ◦ϕ[γ] ◦F−1 = R[γ]. Thus
the representation R is conjugate to the representation ρ[X,f ], and hence the characters of
ρ[X,f ] and R are equal. That is, R represents Φat[X, f ] and satisfies equation (8). �

We can also compute Φp in terms of Φat, by computing the image of the homeomorphism
at infinity on the sinks of hyperbolic elements. Call an element [γ] ∈ π1(S, s) hyperbolic if
ϕ[γ] is a hyperbolic element of PSL(2,R). In this case, R[γ] = f∗(ϕ[γ]) is also hyperbolic
by Lemma 4.4 and the fact that conjugates in PSL(2,R) have the same type. Further,
a triple ([γ1], [γ2], [γ3]) of hyperbolic elements in π1(S, s) is positively oriented if the triple
((ϕ[γ1])∞, (ϕ[γ2])∞, (ϕ[γ3])∞) consists of distinct points in S1 and is positively oriented. In
this case, the triple ((R[γ1])∞, (R[γ2])∞, (R[γ3])∞) is also positively oriented by equation (8).
Thus the notions of hyperbolicity and positively oriented triple do not depend on the choice
of the universal cover p, as long as its deck group Γ is of the first kind. The rough idea is
that Φp[X, f ] maps sinks of the ϕ representation of hyperbolic elements of π1(S, s) to the
sinks of their Φat[X, f ] representation.
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Proposition 7.4 (Φp in terms of Φat). For any hyperbolic [γ] ∈ π1(S, s), we have

(9) ∂f̃((ϕ[γ])∞) = (ρ[X,f ][γ])∞

If general, if Φat[X, f ] is represented by the representation R, then Φp[X, f ] is represented
by the homeomorphism F which satisfies, for all [γ] ∈ π1(S, s),

(10) F ((ϕ[γ])∞) = (R[γ])∞

Proof. To establish equation (9), we use Definition 4.5 and compute that for hyperbolic

[γ] ∈ π1(S, s), ∂f̃((ϕ[γ])∞) = (f∗(ϕ[γ]))∞ = (ϕX(f∗[γ]))∞ = (ρ[X,f ][γ])∞. Note that in the
second equality, the f∗ on the left hand side is the isomorphism between the deck group Γ
and ΓX induced by f̃ , whereas on the right hand side, f∗ is the π1 functor. In the general
case, since Φat[X, f ] is represented by R, it follows that R is conjugate to the representation
ρ[X,f ] by some σ ∈ PSL(2,R). That is, for every hyperbolic [γ] ∈ π1(S, s), we have R[γ] =
σ◦ρ[X,f ][γ]◦σ−1. Therefore the sink (R[γ])∞ is just the image under σ of the sink (ρ[X,f ][γ])∞.

In other words, (R[γ])∞ = σ((ρ[X,f ][γ])∞), which equals, by equation (9), σ ◦ (∂f̃)((ϕ[γ])∞).

Setting F = σ ◦ (∂f̃), we see that F also represents the same right coset of PSL(2,R)

in Homeo+(S1) as that of (∂f̃), and hence represents Φp[X, f ]. Thus we have established
equation (10). �

Theorem 7.5. Φat : T (S)→ X(π1(S, s),PSL(2,R)) is a topological embedding.

Proof. We need to show that a sequence of marked hyperbolic structures [Xi, fi] converges
to [X, f ] in T (S) as i→∞ if and only if the corresponding sequence of characters Φat[Xi, fi]
converges to Φat[X, f ] in X(π1(S, s),PSL(2,R)) as i → ∞. As before, fix a universal over
p : H2 → S with deck group Γ ⊂ PSL(2,R), a torsion-free Fuchsian group of the first kind.
By Definition 5.5, Φp is a homeomorphism and so the convergence [Xi, fi]→ [X, f ] in T (S)
as i→∞ is equivalent to the convergence Φp[Xi, fi]→ Φp[X, f ] in T (p) as i→∞.

We begin with the ‘only if’ part. Suppose Φp[Xi, fi]→ Φp[X, f ] in T (p) as i→∞. We can

promote this to convergence in T̃ (p) by constructing a continuous section Σ1 : T (p)→ T̃ (p).

For any [F̂ ] ∈ T (p), let Σ1([F̂ ]) be the unique homeomorphism of S1 in the right coset

PSL(2,R)◦F̂ that fixes the three points 0, 1,∞. In fact, Σ1(F̂ ) = M(F̂ (0), F̂ (1), F̂ (∞))−1◦F̂ ,
where M(a, b, c) is the Möbius transformation mapping the triple (0, 1,∞) to the triple
(a, b, c). Since M(a, b, c) is a continuous function of a, b, c ∈ S1, evaluations at 0, 1,∞ are

continuous functions of F̂ , and compositions are continuous, we conclude that Σ1 is a contin-
uous function. Therefore Σ1(Φp[Xi, fi]) → Σ1(Φp[X, f ]) as i → ∞. Denoting Σ1(Φp[Xi, fi])

by Fi and Σ1(Φp[X, f ]) by F , we have Fi → F in T̃ (p) as i→∞.
Note that, by Proposition 7.3, Φat[X, f ] is represented by the representation ρ which

satisfies, for each [γ] ∈ π1(S, s), the relation ρ[γ] = F ◦ ϕ[γ] ◦ F−1. Similarly, Φat[Xi, fi]
is represented by the representation ρi which satisfies, for each [γ] ∈ π1(S, s), the relation
ρi[γ] = (Fi) ◦ ϕ[γ] ◦ (Fi)

−1. This ρi[γ] converges, as i → ∞, to F ◦ ϕ[γ] ◦ F−1 = ρ[γ]. Here
we are using the fact that PSL(2,R) is an embedded subspace of Homeo+(S1) On the level
of representations, this means ρi → ρ and on the level of characters, [ρi]→ [ρ] as i→∞. In
other words, Φat[Xi, fi]→ Φat[X, f ] in X(π1(S, s),PSL(2,R)) as i→∞ and therefore Φat is
continuous.

Next we prove the ‘if’ part. Suppose Φat[Xi, fi] → Φat[X, f ] in X(π1(S, s),PSL(2,R)) as
i→∞. We promote the convergence of characters to convergence of representations by con-
structing a continuous section Σ2 : Φat(T (S)) → Hom(π1(S, s),PSL(2,R)). Let (α1, α2, α3)
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be a positively oriented triple of hyperbolic elements of π1(S, s), which exists since the set
Γ∞ is dense in S1 due to Proposition 3.1. Now, for any [ρ̂] ∈ Φat(T (S)), let Σ2[ρ̂] be the
unique representation that represents the same character as ρ̂ and such that the sinks of
Σ2[ρ̂](α1),Σ2[ρ̂](α2),Σ2[ρ̂](α3) are 0, 1,∞ respectively. In fact Σ2[ρ̂] is the conjugate of ρ̂ by
the Möbius transformation M((ρ̂(α1))∞, (ρ̂(α2))∞, (ρ̂(α3))∞)−1. Since M(a, b, c) is a contin-
uous function of a, b, c ∈ S1, evaluations at α1, α2, α3 ∈ π1(S, s) are continuous functions
of the representation ρ̂, the sink of a hyperbolic element is a continuous function of the
hyperbolic element, and compositions are continuous, we conclude that Σ2 is continuous.
Therefore Σ2(Φat[Xi, fi]) → Σ2(Φat[X, f ]) as i → ∞. Denoting Σ2(Φat[Xi, fi]) by ρi and
Σ2(Φat[X, f ]) by ρ, we have ρi → ρ in Hom(π1(S, s),PSL(2,R)) as i → ∞. In particular,
this means that for all hyperbolic elements [γ] ∈ π1(S, s), we have ρi[γ] → ρ[γ], and so
(ρi[γ])∞ → (ρ[γ])∞ as i→∞.

Note that, by Proposition 7.4, Φp[X, f ] is represented by the homeomorphism F of S1,
which satisfies, for every hyperbolic [γ] ∈ π1(S, s), the relation F ((ϕ[γ])∞) = (ρ[γ])∞. Sim-
ilarly Φp[Xi, fi] is represented by the homeomorphism Fi of S1 which satisfies, for every
hyperbolic [γ] ∈ π1(S, s), the relation Fi((ϕ[γ])∞) = (ρi[γ])∞. To show that [Xi, fi] con-
verges to [X, f ], it is enough to prove that Fi converges to F as i → ∞, in the topol-
ogy of uniform convergence on S1 with respect to some path metric d, such as the visual
metric based at s̃ ∈ H2. This would imply that as i → ∞, Φp[Xi, fi] = [Fi] converges
to Φp[X, f ] = [F ]. Let ε > 0 be given. Reducing ε if necessary, assume ε is less than
half the d-length of S1. We choose a finite set of points in (ΓX)∞ which is ε

12
-dense in

S1. This is possible because S1 is compact and (ΓX)∞ is dense in S1 due to Propo-
sition 3.1. Represent these points as sinks (ρ[γ1])∞, (ρ[γ2])∞, . . . , (ρ[γn])∞ of holonomies
around hyperbolic [γ1], [γ2], . . . , [γn] ∈ π1(S, s). Relabelling if necessary, and removing du-
plicates, assume that (ρ[γ1])∞, (ρ[γ2])∞, . . . , (ρ[γn])∞ are distinct and in positive circular
order. These points divide the circle at infinity into n intervals, each of length less than
ε
6
. Now for each j = 1, 2, . . . , n, we have (ϕ[γj])∞ = F−1(ρ[γj])∞. As F−1 is an orienta-

tion preserving homeomorphism, it follows that the sinks (ϕ[γ1])∞, (ϕ[γ2])∞, . . . , (ϕ[γn])∞
are in positive circular order. Similarly for each i and each j = 1, 2, . . . , n, we have
(ρi[γj])∞ = Fi((ϕ[γj])∞), and since Fi is an orientation preserving homeomorphism, it fol-
lows that the points (ρi[γ1])∞, (ρi[γ2])∞, . . . , (ρi[γn])∞ are also in positive circular order.
Since the sink of a hyperbolic element is a continuous function of the hyperbolic element, for
each j = 1, 2, . . . , n, the convergence ρi[γj] → ρ[γj] implies (ρi[γj])∞ → (ρ[γj])∞ as i → ∞.
Therefore for all sufficiently large i, namely those larger than some index N , and for each
of the finitely many indices j = 1, 2, . . . , n, we have d((ρi[γj])∞, (ρ[γj])∞) < ε

6
. Further,

for i > N and j = 1, 2, . . . , n, we have d((ρi[γj])∞, (ρi[γj+1])∞) ≤ d((ρi[γj])∞, (ρ[γj])∞) +
d((ρ[γj])∞, (ρ[γj+1])∞) + d((ρ[γj+1])∞, (ρi[γj+1])∞) < ε

6
+ ε

6
+ ε

6
= ε

2
(subscripts of the letter

γ being modulo n). Thus for i > N , the points (ρi[γ1])∞, (ρi[γ2])∞, . . . , (ρi[γn])∞ divide S1

into intervals of length less than ε
2
.

Suppose q ∈ S1 is an arbitrary point and i > N be an arbitrary index. Then for some j,
q belongs to an interval bounded by points (ϕ[γj])∞, (ϕ[γj+1])∞. Since Fi is an orientation
preserving homeomorphism, it follows that Fi(q) is in the interval bounded by the points
(ρi[γj])∞ and (ρi[γj+1])∞. Therefore d(Fi(q), (ρi[γj])∞) is less than the length of this interval,
which is less than ε

2
. Similarly, F is an orientation preserving homeomorphism, so F (q) lies

in the interval bounded by the points (ρ[γj])∞ and (ρ[γj+1])∞, and hence d(F (q), (ρ[γj])∞)
is less than the length of this interval, which is less than ε

6
. Now we have d(Fi(q), F (q)) ≤
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d(Fi(q), (ρi[γj])∞) + d((ρi[γj])∞, (ρ[γj])∞) + d((ρ[γj])∞, F (q)) < ε
2

+ ε
6

+ ε
6
< ε. Since q ∈ S1

was arbitrary, for every i > N , the maps Fi and F are uniformly ε-close. Since ε was an
arbitrary positive number, we infer that Fi → F as i → ∞ in the topology of uniform
convergence. This concludes the ‘if’ part, that is, Φ−1

at : Φat(T (S)) → T (S) is continuous.
Hence Φat is an embedding. �

Corollary 7.6. If S is a finite type surface of negative Euler characteristic, then the topology
on T (S) agrees with the topology on Teichmüller space.

Proof. Indeed, one of the ways to describe the Teichmüller space is as the character space
of all discrete faithful representations of π1(S, s) into PSL(2,R) (see [FM11, Chapter 10]).
In particular, the topology on the Teichmüller space is defined as a subspace of the full
character space X(π1(S, s),PSL(2,R)). But this is exactly the topology on T (S) that we
have defined above. Thus T (S) reduces to the usual Teichmüller space in case S is a finite
type surface. �
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