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Orbifolds

Orbifolds are natural generalizations of manifolds, and can be roughly
described as spaces which locally look like quotients of manifolds by finite
group actions.

They were introduced by I. Satake, under the name V-manifold.

Their importance in dimension 3 emerged from the seminal work of W.
Thurston, who used them as tools for geometrizing 3-manifolds.

Orbifolds occur in many contexts, for instance as orbit spaces of group
actions on manifolds, or as leaf spaces of certain foliations.
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Orbifold Theorem

In dimension 3, an orbifold is a metrizable space in which each point has a
neighbourhood modelled on a quotients of the ball B3 by a finite subgroup
of SO(3).

The set of points having non-trivial local isotropy group is called the
singular locus of the orbifold. It is a trivalent graph.
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Cyclic branched coverings

A classical way to construct closed 3-manifolds is by taking finite cyclic
coverings of the 3-sphere S3 branched along knots.

The n-fold cyclic covering Mn(K ) of S3 branched along K admits a
periodic diffeomorphism φ of order n corresponding to the covering
translation.

The quotient Mn(K )/ < φ > is an orbifold O(K , n) with underlying space
S3, singular locus K and local model for all singular points a football.

The projection Mn(K ) → O(K , n) corresponds to the orbifold n-fold cyclic
covering of O(K , n)

We say that the covering translation φ is a hyperelliptic rotation of M
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Orbifold Theorem

Thm (W. Thurston’s Orbifold Theorem)

A compact orientable 3-orbifold without bad 2-suborbifold has a canonical
geometric decomposition along a finite collection of spherical and
euclidean essential 2-suborbifolds.

Corollary

Let K ⊂ S3 be a knot :
(1) Mn(K ) has a canonical decomposition into geometric pieces on which
the covering translation group acts equivariantly by isometries.

(2) If S3 \ K admits a completre hyperbolic structure, then for
n ≥ 3 Mn(K ) admits a hyperbolic structure, except when n = 3 and K is
the figure-8 knot where it is Euclidean.

(3) (Smith conjecture) K is the unknot iff Mn(K ) ∼= S3 for some n ≥ 2.
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Cyclic branched coverings

Given M = Mn(K ) a prime manifold there are some strong relationship
between M, K and n.

Thm (A. Salgueiro)

M and K determine n when n is prime.

Thm (B-Paoluzzi ; Zimmermann)

Given M and n an odd prime number, there are at most two knots K and
K ′ such that M ∼= Mn(K ) ∼= Mn(K ′).

Moreover this can occure for at most two odd prime numbers n.
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Cyclic branched coverings

Given a closed orientable 3-manifold M a natural question would be to
classify, up to conjugacy, its possible presentations as a cyclic branched
covering of S3.

A well-known property of the standard sphere S3 is to admit hyperelliptic
rotations of any order.

Due to W. Thurston’s orbifold theorem, one has :

Proposition

Given a closed orientable 3-manifold M :
(1) There are only finitely many knots K ⊂ S3 such that M ∼= Mn(K ) for
some n ≥ 2.

(2) If M %∼= S3 the possible degree n of the cyclic branched covering is
bounded by a constant depending on the manifold.
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2-fold coverings

Remark

A priori, the number of knots in S3 having M as a cyclic branched
covering can be arbitrarily large.

For example when M is not prime or, when n = 2 and M is not hyperbolic.

For a hyperbolic manifold Marco Reni proved :

Thm (M. Reni)

A closed orientable hyperbolic 3-manifold. M is a 2-fold covering of S3

branched along a knot for at most 9 distinct knots.

This bound is sharp (K. Kawauchi)
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Odd prime orders

Thm (BFMPZ)

The group Diff +(M) of orientation preserving diffeomorphisms of a closed,
orientable, connected, irreducible 3-manifold M %∼= S3 contains at most 6
conjugacy classes of cyclic subgroups generated by a hyperelliptic rotation
of odd prime order.

A straightforward corollary is :

Corollary

A closed orientable connected irreducible 3-manifold. M is a cyclic
covering of S3 with prime odd order and branching set a knot for at most
6 distinct knots.
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Characterization of S3

The decomposition of a closed manifold as a connected sum of prime
manifolds and the equivariant sphere theorem implies :

Corollary

A closed connected orientable 3-manifold M is homomorphic to S3 iff it
admits 7 hyperelliptic rotations with distinct odd prime orders.

Remark
The requirement that the rotations are hyperelliptic is essential since the
Brieskorn homology sphere Σ(p1, . . . , pn), n ≥ 4, admits n rotations of
pairwise distinct odd prime orders but with non-trivial quotient.
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Finite groups

Thurston orbifold theorem and some surgery arguments allow to reduce
the proof to the case of a finite group of diffeomorphisms acting on M :

Thm (BFMPZ)

A finite subgroup G ⊂ Diff +(M) of a closed orientable connected
3-manifold M contains at most 6 conjugacy classes of cyclic subgroups
generated by a hyperelliptic rotation of odd prime order.

Remark

Any finite group acts on a closed orientable rational (hyperbolic) homology
sphere (D.Cooper and D. Long)
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Hyperbolic manifolds

In a closed hyperbolic manifold each hyperelliptic rotation is conjugated
into the group of isometries which is finite. Combining Marco Reni’s and
our results :

Corollary

Let M be a closed orientable connected hyperbolic 3-manifold. Then M is
a cyclic cover of S3 with prime order and branching set a knot for at most
15 distinct knots.
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Sylow subgroups

One interesting aspect of the proof of this result is the use of finite group
theory and of the classification of finite simple groups.

The proof splits in various cases, according to the structure of the
normalizer of the p-Sylow subgroups, containing a hyperelliptic rotation of
odd prime order p.

This structure is reflected in the symmetries of the orbifold On(K ).
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Sylow subgroups

If G ⊂ Diff +(M) is a finite group, one can choose a Riemannian metric on
M which is invariant by G .

The normaliser NG (< φ >) of a (hyperelliptic) rotation φ in G must leave
the circle of fixed points Fix(φ) invariant.

Hence NG (< φ >) is a finite subgroup of Z/2! (Za ⊕ Zb), for some non
negative integer a and b :

The element of order 2 acts by sending each element of the product
Za ⊕ Zb to its inverse.

The elements of NG (< φ >) are precisely those that rotate about Fix(φ),
translate along Fix(φ), or inverse the orientation of Fix(φ).

In the last case the elements have order 2 and non empty fixed-point set
meeting Fix(φ) in two points.
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Sylow subgroups

Lemma

Let G ⊂ Diff +(M) be a finite group which contains a hyperelliptic
rotation of odd prime order p, then :
(1) The Sylow p-subgroup Sp of G is either cyclic or of the form
Z/pα ⊕ Z/pβ.

(2) The normalizer NG (Sp) is solvable.
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Steps of the proof

First step : Prove the result for G ⊂ Diff +(M) a solvable finite group.
The bound in this case is 3

Second step : study solvable normal covers of the finite group G .

Let G be a non-solvable finite group and π the set of odd primes dividing
|G |. A collection C of solvable subgroups of G is a solvable normal π-cover
of G if every element of G of prime order belongs to ∪H∈C and for every
g ∈ G ,H ∈ C gHg−1 ∈ C.

We denote by γsπ(G ) the smallest number of conjugacy classes of
subgroups in a solvable normal π-cover of G.

Since Sylow subgroups are solvable, γsπ(G ) ≤ |π|.

For q an odd prime power, γsπ(PSL2(q)) = 2.

Cornell -2014 24 juin 2014 16 / 24



Steps of the proof

First step : Prove the result for G ⊂ Diff +(M) a solvable finite group.
The bound in this case is 3

Second step : study solvable normal covers of the finite group G .

Let G be a non-solvable finite group and π the set of odd primes dividing
|G |. A collection C of solvable subgroups of G is a solvable normal π-cover
of G if every element of G of prime order belongs to ∪H∈C and for every
g ∈ G ,H ∈ C gHg−1 ∈ C.

We denote by γsπ(G ) the smallest number of conjugacy classes of
subgroups in a solvable normal π-cover of G.

Since Sylow subgroups are solvable, γsπ(G ) ≤ |π|.

For q an odd prime power, γsπ(PSL2(q)) = 2.

Cornell -2014 24 juin 2014 16 / 24



Steps of the proof

First step : Prove the result for G ⊂ Diff +(M) a solvable finite group.
The bound in this case is 3

Second step : study solvable normal covers of the finite group G .

Let G be a non-solvable finite group and π the set of odd primes dividing
|G |. A collection C of solvable subgroups of G is a solvable normal π-cover
of G if every element of G of prime order belongs to ∪H∈C and for every
g ∈ G ,H ∈ C gHg−1 ∈ C.

We denote by γsπ(G ) the smallest number of conjugacy classes of
subgroups in a solvable normal π-cover of G.

Since Sylow subgroups are solvable, γsπ(G ) ≤ |π|.

For q an odd prime power, γsπ(PSL2(q)) = 2.

Cornell -2014 24 juin 2014 16 / 24



Steps of the proof

First step : Prove the result for G ⊂ Diff +(M) a solvable finite group.
The bound in this case is 3

Second step : study solvable normal covers of the finite group G .

Let G be a non-solvable finite group and π the set of odd primes dividing
|G |. A collection C of solvable subgroups of G is a solvable normal π-cover
of G if every element of G of prime order belongs to ∪H∈C and for every
g ∈ G ,H ∈ C gHg−1 ∈ C.

We denote by γsπ(G ) the smallest number of conjugacy classes of
subgroups in a solvable normal π-cover of G.

Since Sylow subgroups are solvable, γsπ(G ) ≤ |π|.

For q an odd prime power, γsπ(PSL2(q)) = 2.

Cornell -2014 24 juin 2014 16 / 24



Steps of the proof

First step : Prove the result for G ⊂ Diff +(M) a solvable finite group.
The bound in this case is 3

Second step : study solvable normal covers of the finite group G .

Let G be a non-solvable finite group and π the set of odd primes dividing
|G |. A collection C of solvable subgroups of G is a solvable normal π-cover
of G if every element of G of prime order belongs to ∪H∈C and for every
g ∈ G ,H ∈ C gHg−1 ∈ C.

We denote by γsπ(G ) the smallest number of conjugacy classes of
subgroups in a solvable normal π-cover of G.

Since Sylow subgroups are solvable, γsπ(G ) ≤ |π|.

For q an odd prime power, γsπ(PSL2(q)) = 2.

Cornell -2014 24 juin 2014 16 / 24



Steps of the proof

First step : Prove the result for G ⊂ Diff +(M) a solvable finite group.
The bound in this case is 3

Second step : study solvable normal covers of the finite group G .

Let G be a non-solvable finite group and π the set of odd primes dividing
|G |. A collection C of solvable subgroups of G is a solvable normal π-cover
of G if every element of G of prime order belongs to ∪H∈C and for every
g ∈ G ,H ∈ C gHg−1 ∈ C.

We denote by γsπ(G ) the smallest number of conjugacy classes of
subgroups in a solvable normal π-cover of G.

Since Sylow subgroups are solvable, γsπ(G ) ≤ |π|.

For q an odd prime power, γsπ(PSL2(q)) = 2.

Cornell -2014 24 juin 2014 16 / 24



Solvable case

Proposition

Let G ⊂ Diff +(M) be a finite solvable group acting on a 3-manifold
M %= S3. Then :

(1) If G contains n ≥ 3 hyperelliptic rotations of odd prime orders, then,
up to conjugacy, they commute.

(2) Up to conjugacy, G contains at most three hyperelliptic rotations of
odd prime orders.

(3) Either their orders are pairwise distinct or there are at most two such
conjugacy classes of rotations.
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Solvable case

If M admits four commuting hyperelliptic rotations with pairwise distinct
odd prime orders.

Fix one of these rotations φ and consider the covering projection
π : M −→ Op(K ) branched along the knot K = π(Fix(φ)).

The three remaining rotations commute with ψ and thus induce 3 full
rotational symmetries of K (i.e. with quotient a trivial knot) and
distinct prime orders.

Thm (B-Paoluzzi)

A knot K which admits three full rotational symmetries with pairwise
distinct orders > 2, is the unknot.
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Z-Homology spheres

Corollary

A finite subgroup G ⊂ Diff +(M) of a ZHS M %∼= S3 contains at most 3
conjugacy classes of cyclic subgroups generated by a hyperelliptic rotation
of prime odd order.

The number 3 is realized by a Briekorn sphere
Σ(p, q, r) = {X p +Y q + Z q = 0}∩ {|X |2 + |Y |2 + |Z |2 = 1} where p, q, r
are 3 distinct odd primes.

It is also realized by some hyperbolic ZHS.

3 is expected to be the maximal number in any cases.
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Z-Homology spheres

In the ZHS case, the proof uses strongly the restrictions on finite groups
acting on integral homology 3-spheres.

Lemma

Let M be a ZHS. If a finite subgroup G ⊂ Diff +(M) contains a rotation
of prime order p ≥ 7, then G is solvable.
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Z-Homology spheres

According to Mecchia and Zimmermann a finite group G acting on a ZHS
is solvable or isomorphic to a group of the following list :

A5, A5 × Z/2, A∗
5 ×Z/2 A∗

5 or A∗
5 ×Z/2 C .

- A5 is the dodecahedral group (alternating group on 5 elements), A∗
5 is

the binary dodecahedral group (isomorphic to SL2(5)).

- C is a solvable group with a unique involution and which acts freely on
M.

- ×Z/2 denotes a central product, i.e. the quotient of the two factors in
which the two central involutions are identified.
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Z-Homology spheres

If G is not solvable, it cannot contain a rotation of prime order p ≥ 7, or
we are in the last case and the rotation of prime order p ≥ 7 is contained
in the solvable factor C .

Since the elements of C act freely, they cannot be rotations.
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General case

A case by case analysis using the structure of the maximal semisimple
normal subgroup E (G ) of G shows that :

Either there are at most 6 conjugacy classes of hyperelliptic involution

or γsπ(G ) ≤ 6.

Moreover when γsπ(G ) > 2, each solvable subgroup of the normal cover of
G contains at most one conjugacy class of hyperelliptic rotation.

Semisimple means perfect and the factor group E (G )/Z (E (G ) is a
product of non abelian simple groups. That is where the classification of
simple groups occurs.
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Questions

1- Is 3 the sharp bound for the number of conjugacy classes of
hyperelliptic rotations with odd prime orders ?

2- For hyperbolic manifolds is there a uniform bound on the number of
conjugacy classes of hyperelliptic rotations without any assumption on
their orders ?

3- What about commensurability classes of the orbifolds On(K ) ?

Are there finitely many such orbifolds in the same commensurability class ?

If so is there a uniform bound on the number ?
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