Euclidean Regular Six-Star with Dirichlet Boundary Conditions

The region examined here is the Euclidean Regular Six-Star of side length 1 with Dirichlet Boundary conditions. To clarify what is meant by Six-Star, we define it to be a twelve-sided polygon in R^2 with alternating concave and convex angles. A regular six-star is composed of twelve equilateral triangles where six triangles form a regular hexagon and the other six triangles share sides with the regular hexagon. A Star of David is a regular Six-Star. All Eigenvalues of the Euclidean Equilateral Triangle under Dirichlet Boundary conditions are also eigenvalue of this region, which is why we have divided the values in the table below by a factor of (4/3*pi)^2, so that we can observe the common values. This has a dual purpose of easily allowing us to check the accuracy of the Six-Star eigenvalues: since 13 = 3^2 + 1^2 + 3*1 is an eigenvalue of multiplicity two in the Equilateral Triangle, it should also be an eigenvalue of multiplicity two in the six-star, and indeed we see that our predictions for eigenvalues 85 and 86 differ from 13 by less than .0004. This was an extremely important test case for us: it allowed us to extend our theory to non-convex geometric regions of R^2 by giving us some known eigenvalues to test if our estimations were accurate, namely those shared with the Euclidean Equilateral Triangle.

Here are the counting graphs for the eigenvalue spectrum, using the predicted values. The first approximately 130 eigenvalues values were used here. The equation for the predicted counting function is N'(t) = 3sqrt(3)/4pi*t - 3/pi*sqrt(t) + 25/48.

Here are the difference graphs for the eigenvalue spectrum, using the predicted values. The first approximately 130 values were used here.

Below is the Eigenvalue spectrum for the Euclidean Regular Six-Star of side length 1 under Dirichlet Boundary conditions. We have removed a factor of (4/3*pi)^2 from the figures in order to easily compare the values to those of the Euclidean Equilateral Triangle. The calculated and predicted eigenvalue spectrum is presented here.

Euclidean Six-Star under Dirichlet Boundary Conditions       
  Refinement      
#Initial Value12345 Predicted Value
10.2748174890.2607283570.2565636780.2552569620.2548333770.254692963 0.2546452
20.7105605850.6552021540.640309840.6360408240.6347676530.634375597 0.63424223
30.7111872820.6553404760.6403508750.6360539890.6347720420.634377136 0.63424279
41.2660834591.1386494191.1052920031.0963139261.0938298221.093124019 1.0928839
51.2680348481.139052361.10539631.0963421951.0938378011.093126355 1.0928843
61.5065671481.3215969681.2766135161.264840211.2616393021.260742914 1.260438
71.6366341581.4775068451.4339303841.4228029241.4199913941.419284622 1.4190442
82.3270518191.9767036581.8930227591.8722264651.8669537431.865602378 1.8651427
92.3304866831.9777195041.8932738141.8722891581.866969531.865606367 1.8651426
102.7078834022.1730592492.0488673222.0163877152.0073985252.004817589 2.0039396
112.7576467562.3052057692.1926474012.1644018732.1571627722.155281997 2.1546422
122.7588071372.3061517412.1929206832.1644710062.1571794142.155285873 2.1546417
133.3823811622.7267019752.5739581822.5368377352.5276129922.525306023 2.5245212
144.1227928863.2865128443.0702812283.0174785993.0043641873.001090727 2.9999771
154.2526800833.3284581613.0971782413.0392989463.0242860913.020309849 3.0189572
164.2929228433.3331850033.0980144453.039476653.0243294633.020321247 3.0189577
174.3931853923.3595233123.1107864993.0490569743.0329944763.028693999 3.027231
184.4035995823.3624715113.1116805513.049318233.03306683.028713833 3.027233
195.3243923964.2057828573.8711840743.7883534563.7674732683.762157801 3.7603496
205.3417560484.2111224333.8723306063.7886261113.7675401783.762174329 3.7603489
215.6612816784.3978441274.0309779223.9413595883.9189085553.913217275 3.9112812
225.6830837294.4012193764.0316049043.9415001333.9189427513.913225824 3.911281
236.8706207464.5835291724.17312114.0699467714.0435781994.036683394 4.0343379
247.0368128174.5971794344.2116200974.1182208374.0948586554.089004317 4.0870128
257.6029094055.1157901144.6084954844.4855488584.4543327894.446222434 4.4434634
267.6398768825.4809235564.9500768994.8204795134.7883571384.78034162 4.7776149
277.8670402425.8327677875.2237807655.0771774725.040835215.031717899 5.0286163
287.921018475.8397021465.2254643435.0776044085.0409428135.0317448 5.0286158
297.9396540955.9876045415.3042152775.137818035.0953547595.084226387 5.0804407
308.8628920876.1795905795.5206198095.3608660275.321306335.311427078 5.3080663
318.9252619886.1852306235.5219118445.3611932255.3213886285.311447652 5.3080659
329.1115652386.4569187545.6990044285.5149708175.4683550245.456277431 5.4521688
339.1778243536.4716799845.7022460295.5157558415.4685507395.456326616 5.4521681
3410.558545927.0387722426.1949855735.9929202935.9431401825.93073733 5.9265181
3511.065070977.0570602096.1986034995.9937694915.9433493475.930789193 5.9265164
3617.049725547.6381254826.6360021096.3979017616.3388870476.323994733 6.3189286
3707.8138849966.7623901546.5150130286.4537938196.438338982 6.4330815
3808.1333727267.0242127686.7563654066.6896611756.672723946 6.6669621
3908.161354097.0296248396.7575941796.6899592496.672797467 6.6669593
4008.5313474547.3702234077.0913900437.02277547.005689419 6.999877
4108.5818456787.3818961777.0940949387.0234331027.00585242 6.9998717
4208.7516459877.4361798887.120350557.0404079467.019537619 7.0124378
4308.7619571917.4388483087.1210601157.0406034337.019592332 7.0124447
4409.3281569367.9450587577.6156678957.5347205027.514511865 7.5076372
4509.3369492727.9467423357.616126697.5348401877.514542641 7.5076377
4609.7686770628.317807747.9638915797.8767678367.855065408 7.8476826
4709.7941723858.3228522057.9650559497.8770528027.85513608 7.8476803
4809.9682996158.4955813928.1265392458.0351586838.01233577 8.0045717
49010.247182568.6413493938.2491190068.1519941038.127483622 8.1191455
50010.706683699.0015781178.58891918.4876576338.462451835 8.4538772
51010.713316569.0022341088.5891140178.4877077878.462464374 8.4538769
52010.976227179.1617967358.7262959978.618771558.591657052 8.5824331
53010.998569639.1667876268.7274871548.6190633558.591728863 8.5824301
54011.76378789.6368342029.1285833979.0010207248.967918523 8.9566576
55012.1462170710.070475829.5592134999.4338348049.402613948 9.3919931
56012.1778169410.077882659.5609660399.4342673829.402721665 9.3919903
57012.3777683410.269065099.7401098089.6092386819.57638611 9.5652101
58012.6112978410.35883739.8202701259.6885281439.65577531 9.6446333
59012.6989647210.402520299.8537746989.7200567629.686836586 9.6755356
60012.9301033610.571491919.9908056469.8479494269.811984459 9.7997497
61013.0352671510.6948530510.114750399.9717323139.935788433 9.9235608
62013.0506319310.704846810.117381779.9723985639.935955423 9.923558
63013.8808485311.2963327110.6602912610.5045357710.46574053 10.452543
64013.8919661911.2995459810.6610982810.504738110.46579125 10.452542
65014.2191234911.4466487610.7812062510.6184349110.57765459 10.563782
66014.246076711.4489695210.7817083610.6185665610.57768992 10.563784
67014.4012913111.6152453810.9318990310.765302310.72382724 10.709718
68015.2928137512.1735937411.4181122811.2335695511.18733499 11.171607
69015.310110612.1742668311.4182678811.2336157211.18734867 11.171609
70015.6144603812.4385903111.6639893511.4746905411.42728476 11.411158
71015.6934215612.4552853111.667798211.4756183911.42751502 11.411151
72016.2131627613.0967097712.2697355112.067094612.01675197 11.999626
73016.648856713.2673478812.4029063112.1893945312.13573888 12.117486
74016.70911913.2803138212.4048372412.1897929112.13583406 12.117478
75016.753125713.3502170812.4703081412.2556177412.20187318 12.18359
76016.758089813.3631482612.4743472512.2566686912.20213877 12.183588
77017.2981331113.4176605112.4983470712.2737637912.21705901 12.197769
78017.5434248513.6895053812.7606774912.5360788312.48034464 12.461385
79017.7720660414.1370755613.1627186812.9236346312.86374222 12.843368
80017.7962995414.1436451613.1645059912.9240928612.86385849 12.843368
81018.1409075814.3035782413.3188075813.0791940613.01976615 12.99955
82018.2178198514.3151877513.3209881413.0797144113.01989552 12.999546
83018.4182078214.7043655813.6762208413.4234817913.36056818 13.339166
84019.0492612314.9321279413.8509926613.5880204913.52257296 13.500309
85019.0975509714.9450904613.8543028213.5888525913.52278099 13.500304
86019.6240669515.3630606714.222017613.9442448813.8750717 13.85154
87019.8192565715.4268970114.281413614.0016415613.93180726 13.908051
88019.8491836815.4337225114.282461714.0018746613.93186425 13.908048
89020.2094192515.5525874614.3949177714.1156523914.04649119 14.022964
90020.2343030315.5571400714.3962035314.1159698514.04656984 14.022961
910016.1490750814.8508836114.5351745314.4558332 14.428842
920016.8387168915.4824966915.1538518715.07207922 15.044261
930016.8497017615.485144615.1544964615.07223766 15.044254
940016.9676388615.6284219915.3013296715.22016 15.192547
950017.0730152315.6960939715.3633598915.28064343 15.252504
960017.0764758515.6972309815.3636459915.28071638 15.252505
970017.429063516.0027565315.6579792215.57266045 15.543636
980017.4425811416.0059846215.6587674415.57285594 15.54363
990017.6177171516.0890327815.7146982515.61978639 15.587499
1000017.8105569516.3234103415.9632796415.87407508 15.843729
1010017.8216757516.326464615.9640615915.8742717 15.843726
1020018.1926208916.6105538716.2266615916.13091592 16.098345
1030018.1947239416.6116287716.2269539616.13098944 16.098344
1040018.5338674716.9110959416.5207480316.42417368 16.39132
1050018.6506590117.0415430316.6509836916.55426628 16.521364
1060018.719177917.0873393216.6974462316.60110897 16.568336
1070018.865812217.210288416.8129491416.71477671 16.68138
1080019.3625184717.6338017617.2162407717.11297143 17.077841
1090019.3814367817.6386701217.2174535817.11327406 17.077834
1100019.9181157818.0622028617.6085566417.49533972 17.456825
1110019.9477573518.066247117.6204699217.51039161 17.472945
1120020.0742365918.1858472617.7301680917.61662858 17.578004
1130020.0969090418.1905412117.7313011117.61691127 17.577998
1140020.5087479218.5745531918.1113076117.99686932 17.957939
1150020.5152365918.5760355818.1116689417.99695823 17.957935
11600019.2271602718.7246532418.59907108 18.55635
11700019.2357833418.7264946918.59951277 18.556315
11800019.295773218.776083318.64630359 18.602154
11900019.3004101718.7772157518.64658172 18.602142
12000019.6791405819.1640614319.0357037 18.992038
12100019.6839775919.1642814219.03578805 18.992076
12200019.6868335219.168857419.0420875 18.998962
12300019.6927414319.1713206519.04271044 18.998959
12400020.3229895319.7753176919.63967281 19.593528
125000019.77873519.64051631 19.593496
126000019.9221275319.78366776 19.736566
127000019.9234560419.7840006 19.73656
128000020.2243115620.08123763 20.032566
129000020.2259079420.08163259 20.032552
130000020.2993447720.1443245 20.091589
1310000020.14708981  
1320000020.49548504 

Return to index