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ABSTRACT 

 

The Multiple Traveling Salesmen Problem 

(MTSP) is an NP-hard combinatorial and 

scheduling optimization problem defined in 

the following way: a company has to send 

salesmen to visit m cities. The company has 

n salesmen to distribute the cities between, 

and would like to plan out the sales routes in 

the cheapest way possible. Additionally, 

they would like to make sure that the 

salesmen have balanced schedules, since if 

there are 100 cities and one salesman is 

visiting 96 of them, the company’s 

customers in those 96 cities will be upset by 

the long time gaps between visits. We can 

immediately see then that there may be 

some conflict between minimizing the total 

cost, and minimizing the cost of the most 

expensive sales route. This problem is easily 

seen to be NP-hard by noting that for the 

specific case when 𝑛 = 1, the MTSP is the 

Traveling Salesman Problem, which is NP-

hard. 

 

1.  INTRODUCTION 

The Multiple Traveling Salesman Problem 

(MTSP) is a scheduling optimization 

problem related to the Traveling Salesman 

Problem (TSP) but more similar to the  

 

 

 

 

Vehicle Routing Problem (VRP). The 

primary difference is that there is no 

common supply depot that all routes in the 

MTSP must stop at, as in the VRP. This 

makes the VRP more valuable for shipping 

and supply problems, while the MTSP is 

more valuable for planning out circuits, such 

as bus routes or police patrol routes. While 

both interest me, I chose to work on the 

MTSP over the VRP because relatively little 

work has been done on it, while the VRP is 

well-explored. 

 

I approached this problem initially with the 

intent to minimize the total cost a plan of 

routes, and use the other properties of the 

problem primarily with a focus on doing 

that. My initial algorithms are built with this 

in mind. However, I found that while this 

was doable and not terribly difficult, it 

frequently resulted in unbalanced plans, 

where a single route bore the majority of the 

cost. After trying several modifications to 

the problem while still keeping the focus on 

minimizing the total cost, I continued to run 

into this problem. Upon starting serious 

testing, I found what I suspect is the answer, 

which I will share later. 

 

2. SET-UP 

 

2.1 Method 

I created several algorithms that run using a 

combination of factors: crossover method, 

parent selection, diversity maintenance, plan 

model, and heuristic initialization. The plan 

model is the most important so we will 

address that first. Each of my algorithms 

implemented one or more of these 

techniques. 

 
2.1.1 Plan Model 

A plan is a set of routes and other properties 

associated with them such as their costs, the 

number of times each city is visited by all 

routes, and the variance in both the number 
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of cities each route visits and its cost. I 

created two plan models, the first of which 

will be referred to as a hard plan. In a hard 

plan, each city is visited exactly once by the 

set of routes, with no exceptions allowed. 

The routes are structured differently as well, 

but this will be addressed in greater detail in 

the implementation section. The second plan 

model I will refer to as a soft plan. In a soft 

plan, the number of times each city is visited 

is simply non-negative. However, there is a 

penalty for skipping a city entirely, and cost 

incentive of not visiting a city multiple times 

rapidly drives a newly initialized soft plan to 

visiting each city exactly once. While 

effectively the same, the soft plan is 

structured in a way that makes 

experimenting more easy. In practice, 

algorithms using the hard model seem to 

find slightly cheaper plans, and those using 

the soft model find more balanced ones. 

 

2.1.2 Crossover 

The next factor to consider is the crossover 

method. I experimented with two methods 

of crossover, internal and external crossover. 

External crossover takes place between two 

plans by exchanging a subset of their routes. 

This turned out to be a particularly 

ineffective technique: in the hard model the 

need to visit each city exactly once destroys 

most of the substructure of the resultant 

plans when they are cleaned into valid hard 

plans after the exchange, and the pressure 

that effectively forces soft model plans to 

visit each city exactly once means that when 

routes are exchanged, unless they contain 

the exact same subset of cities, the offspring 

incur large penalties for not visiting cities. 

They would have to be set aside and 

optimized through hill-climbing or some 

other method for several turns before they 

could be fairly evaluated. When I 

implemented external crossover on each of 

these models, both developed plans at a rate 

that put their performance several times 

worse than hill-climbing algorithms.  

 

Fortunately, the internal crossover method is 

far more effective (see Figure 1 above). The 

technique is used frequently in VRP genetic 

algorithms which was where I first saw it.  

Here crossover is performed between routes 

within a plan. It is easy to implement, as 

each route is effectively a string of city 

number or can be converted to one, and 

prevents the possibility of a plan no longer 

possessing a city and incurring a penalty or 

having the substructure destroyed. I used 

two point crossover on the routes. One of 

the drawbacks to this method is that there is 

no point in keeping a population of plans 

unless the algorithm is modeled on a beam 

search, since there is no operator that allows 

the plans to interact with or affect each 

other. 

 
2.1.3 Parent Selection 

I used two methods of selecting parents for 

new routes. The first was to look at the ratio 

of route cost to number of cities visited, with 

a smaller ratio being preferred. I used 

roulette sampling to do that. I created the 

second method when I began trying to fix 

the problem of unbalanced schedules. In this 

method, parents are ranked on their size. 

The choice of first parent ranked larger 

Figure  1: Internal Crossover 



routes well, while the choice of second 

parent ranked smaller routes well. Using the 

cost of the parent routes as their size was 

more effective than their number of cities. 

The point of this type of selection was to 

provide more opportunities to redistribute 

the cities in larger routes, and it was 

effective. 

 
2.1.4 City Redistribution 

Diversity maintenance was a more difficult 

topic to address. It is difficult to determine 

the similarity of two routes that share no 

common cities. We could look at the 

variance of the number of cities between 

routes, but since we want that to be low it is 

not something to fix. It is better to consider 

what I eventually did not as diversity 

maintenance but as wealth redistribution, 

except in the sense that several routes 

consisting of one or two nodes each are not 

particularly diverse. Whenever a route 

obtained more cities than a certain threshold, 

determined by both the number of cities and 

the total number of routes, all cities were 

removed from it. The cities were then 

redistributed uniformly at random into all 

routes, including the now empty one. Before 

this happened the old plan was preserved, 

but it did happened regardless of how much 

more expensive the new plan was. This 

operator is an improvement, but the 

threshold needs to be adjusted. 

 
2.1.5 Heuristic Drafting 

I experimented with one other operator, a 

heuristic draft. Here, routes are selected 

uniformly at random. If they are empty then 

they are given an unvisited city uniformly at 

random. If they are not empty, then they are 

given the unvisited city the shortest distance 

from the city they most recently acquired. 

This continues until all cities are drafted. 

The point of this draft was to give the plan 

enough substructure that the formation of a 

giant route would be likely to be more 

expensive and thus would be less likely to 

occur quickly, but not enough for the plan to 

be stuck optimizing that substructure if 

something more beneficial was nearby. The 

results were mixed: As expected, 

performance was extremely good in short 

term, but the algorithms that implemented 

drafting had very highly varying 

performance over time. 

 

2.2 Related Work 

This project is very closely related to work 

being done on the VRP. Genetic algorithms 

are a common technique for solving, though 

they are not the optimal. On average, 

depending on how large the problem is, 

solutions from genetic algorithms range 

from 4.16 to 11.79% higher than best known 

solutions depending on the problem
1
. I do 

not remember in which article I first read 

about internal crossover, the technique is 

fairly common in solving both the MTSP 

and VRP, but a detailed explanation can be 

found in the paper Solve the Vehicle Routing 

Problem with Time Windows via a Genetic 

Algorithm
2
 which I found helpful when I 

was formulating my initial algorithm. 

However, in addition to work done on the 

VRP, in recent years there has been a surge 

of interest in using genetic algorithms on the 

MTSP. One must be careful though in how 

it is defined. Several papers define it as a 

relaxation of the VRP where the salesmen 

have a common depot but no fuel, load, or 

time restrictions
3
, and the goal is just to 

minimize cost. This is very different from 

the problem that I addressed, where there is 

no common depot and the time it takes for 

each route, while not restricted, is one of the 

factors we would like to optimize. 

Additionally, while there are papers that 

address the same problem that I do
4
, they all 

seem to be addressing it as a single objective 

problem, minimize the total cost, rather than 

also working to create a balanced plan. 

 



My overarching goal in this project was to 

develop an algorithm that encourages the 

routes to co-evolve into a balanced plan. I 

believe that my algorithm which uses a soft-

model plan and all three of the balancing 

methods above can reasonably be said to do 

that. It did better on all medium and small 

city sets in creating a balanced plan than any 

other algorithm except a hill climber which 

is willing to take massive penalties for 

skipping cities in order to lower the cost of 

the highest route. This was especially 

notable on the small sets: it was the only 

algorithm to never once create a plan that 

had one route visit all but two cities, which 

were continuously occupied by other routes, 

and still maintain a very low total cost. On 

the large data set, two algorithms managed 

to create slightly balanced plans, but only 

one had a lower total cost. The combination 

of these mechanisms seems to strongly 

encourage the co-evolution of these routes 

into a balanced and cheap plan. 

 

 

2.3 System Architecture and 

Implementation 
All coding for this project was done in an 

object-oriented environment in MATLAB. 

This was done to take advantage of the 

remote access provided to Cornell 

Mathematics computers. 

 
2.3.1 Hard-Model Plans 

I came up with the idea of hard plans before 

soft plans, and as one might expect there are 

significant differences in their 

implementation. A hard plan is an object of 

type MTSPRoutes2. The hard plan tracks its 

routes as a matrix of route numbers and 

positions. A route number 𝑟 and position 𝑝 

in column 𝑖 means that 𝑖 is the 𝑝𝑡ℎ city in 

route 𝑟. Additionally, the hard plan contains 

a distance matrix between cities, a penalty 

matrix representing the cost of stopping at 

each city, and other expected items such as 

its total cost, the costs of its routes, etc. that 

it needs in order to allow functions to 

operate on it. Hard plans are randomly 

initiated assigning the 𝑛 cities to the 𝑟 routes 

uniformly at random but in order, and 

randomly swapping the contents route 

numbers and positions in the route matrix 

between cities 𝑛 log 𝑛 times, so that we can 

expect to have involved each city in a swap 

at least twice. There are two forms of 

mutation operators: mutate1 swaps the 

positions of two cities within a route. 

Mutate2 takes a city from 𝑟1 and inserts it in 

𝑟2. Technically this is a crossover, but if it 

was not included the hill-climbing 

algorithms would be incapable of altering 

the amount or number of cities in the routes. 

The crossover operator is given two routes. 

It randomly chooses break points on each 

and performs two point crossover. The 

operation is simplified by the fact the two 

routes share no common elements, so the 

cities later in the route just need to have 

their positions in the route raised or lowered 

by the appropriate amount. 

 
2.3.2 Soft-Model Plans 

A soft plan is an object of type Plan. The 

soft plan tracks its routes as an array of 

Salesman objects. Salesman objects contain 

a matrix of the distances between cities and 

a penalty matrix of the cost of stopping at 

each city. They also contain the expected 

fields such as their route, a matrix where the 

city at position 𝑖 is the 𝑖𝑡ℎ stop in the route, 

the number of cities they visit, the total 

number of cities, how many unique cities 

they visit (no other salesmen) and the ratio 

of the cost of their route to the number of 

cities they visit. In addition to the array of 

Salesman, soft plans also carry the distance 

and penalty matrix as well as the number of 

times each city is visited, the penalty for 

missing a city, the variance in the number of 

cities and route cost of each salesman, a 

matrix of the cities per route, and a pareto 



score and rank. The latter two are from 

before the external crossover attempts 

proved unsuccessful. Plans can be initialized 

in two ways. The first is randomly, each 

Salesman includes each city with probability 

𝑝, and they are then swapped until the order 

is sufficiently random. The second is semi-

randomly, if an algorithm is using Heuristic 

drafting. Routes are selected uniformly at 

random. If they are empty then they are 

given an unvisited city uniformly at random. 

If they are not empty, then they are given the 

unvisited city the shortest distance from the 

city they most recently acquired. This 

continues until all cities are drafted. 

 

Soft plans also have static functions that 

inflict mutation, handle the redistribution 

operator, and evaluate their costs after a 

change. There are four kinds of mutation, all 

of which are handled by calling a Salesman 

static function. The first randomly swaps 

two cities within a Salesman’s route. The 

second adds a city at random into the 

Salesman’s route. The third inverts two 

cities in a route, and the fourth removes a 

city from a route, provided the route is not 

empty. 

 

2.3.3 Algorithms 

All algorithms are combinations of the 

factors plan model, redistribution, crossover, 

selection, and heuristic drafting. The plan 

models have static functions to handle these, 

although the MTSPRoutes2 object does not 

have functions implemented for 

redistribution or heuristic drafting. 

 
3. EXPERIMENTATION 

 

3.1 Methodology 

Results (plans) are evaluated by their total 

cost and by the cost of the most expensive 

route within the plan. We seek to minimize 

both. The strategy for most of my algorithms 

is to evaluate based on total cost but to 

implement breeding selection based on 

maximum route cost. This resulted in some 

algorithms on average created slightly more 

expensive plans than a hill-climber that 

seeks only minimize total cost, but 

considerably more balanced ones. . I did 

experiment with a linear combination of the 

total and maximum route costs, but it 

appears to be too dependent on the geometry 

of the cities. 

 

Independent variables are the routes within 

the plans. They are manipulated by the 

algorithms in order to measure the 

maximum and total cost, the dependent 

variables. While work on the MTSP is not 

uncommon, all examples I have been able to 

find focus on the single-variable 

optimization of the total cost. Since most 

treat it as a relaxation of the route cost 

restraint in the VRP, this is not unexpected, 

but my project is the only one I have found 

that seeks to encourage these restraints to 

grow rather than enjoy the liberation from 

them. In this my goal was at least somewhat 

unique.  

 

My final algorithm, SpSzHeuGA, which 

utilizes a soft-plan model, city 

redistribution, size-based selection, and 

heuristic drafting, was on average dominated 

only twice across all the city sets I tested on. 

In both cases, it dominates the other 

algorithm on a different city set. It on 

average dominates the  effective hill-

climbing algorithm on all but on data set I 

tested on. 

 

3.2 Results 

Due to size constraints, all tables are placed 

on the two pages following the interpretation 

subsection. Table 1 explains how to interpret 

the names of the algorithms in Table 2. 

Using this table, we see that HpRrGA is a 

genetic algorithm that runs on hard plans 

and utilizes Ratio Roulette selection. I tested 



the six genetic and two hill-climbing 

algorithms on the following data sets 

 

Self-Travel cost in Table 2 is the cost 

incurred if a route travels from the city to 

itself. It is an experiment meant to 

discourage small isolated routes. The results 

are summarized in the following table: 

 

Table 3 contains the experimental results of 

running the algorithms on the data sets. A 

dash in a cell means that this information is 

not available. For Average Total Costs this 

is because, due to the long computation time 

of some of the algorithms and sets, trials for 

one algorithm and set were run across 

multiple computers, and the results 

sometimes were not rejoined properly. If 

only an Average Max Cost cell is 

unavailable, this may be caused by the same 

problem, but is more likely caused by the 

fact that I initially did not foresee that 

unbalanced plans would be a common 

occurrence, and had not started tracking 

them yet.  

 

3.3 Interpretation 

 

3.3.1 Interpretation across City Sets 

Looking at the data, it seems that the 

algorithms with the best combination of 

balance and total cost are SpRrHeuGA, 

SpSzHeuGA, and possibly HpSzGA, though 

it is difficult to tell with the lack of data. 

One trend that is clear however is that the 

smaller the set of cities, the more likely one 

large route will visit almost all of them. 

SpRrHeuGA produced a Total to Max cost 

ratio of 1 on average on the set M2, meaning 

that on average it had one route visit all but 

two of the cities, and stationed the other two 

permanently at cities. It nearly did the same 

thing every time on XY3. In contrast, on 

large city sets the routes are more likely to 

distribute the work evenly. Every algorithm 

produces a reasonably well balanced plan 

for this city set, but the most notable is 

MC1: MC1 only tries to optimize the total 

cost through hill-climbing and has no 

mechanisms to direct the production of well-

balanced plans. This is the same MC1 which 

began producing unbalanced plans before 

any other algorithm I tried. It has 7 routes, 

and the total cost to maximum cost ratio is 

6.66, meaning that the cost is almost 

perfectly distributed between the routes, and 

suggesting that the key to creating balanced 

plans may not be in correction mechanisms, 

but in picking the right number of routes for 

a given set, as the ratio of routes to cities is 

significantly lower than in other tests.. This 

does however require knowledge of the set, 

which can be a problem of its own.  

 

Ultimately, the choice of which algorithm is 

ideal lies in the hands of the user, who will 

have his or her own toleration of how 

unbalanced a plan can be. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

  

Table 1: Algorithm Name Prefixes 

Sp/Hp Soft plan/Hard plan 

Rr/Sz Ratio Roulette selection/Size-

based selection 

Heu Utilized Heuristic drafting 

GA Genetic Algorithm 

MC Mountain/Hill-Climbing 

Algorithm 

Table 2: Algorithms 

 

Sets 

Dimension 

of cost 

Self-

Travel 

Cost 

Number of 

Clusters Cities Comments 

     

1 XY1 ℝ2 0 6 100 

A set of 6 

approximately equal 

clusters with 

normally distributed 

points around them. 

salesmen 

3 XY2 ℝ2 0.1 1 400 

Large number of 

points generated 

uniformly at random 

on [0,2],[0,2] 

4 M1 

Money/ 

Time 0 N/A 100 

Distances between 

points generated on 

[.05,.25]. d(a,b) is not 

d(b,a). 

7 M2 

Money/ 

Time 0 N/A 30 Smaller data set 

8 XY3 ℝ2 0 1 30 Smaller data set 

10 TSP1 ℝ2 0 1 50 

The first set of points 

from PS1 



Table 3: Experimental Results 

Algorithm 

 

TSP1 

5 routes 

XY1 

6 routes 

XY2 

7 routes 

M1 

6 routes 

M2 

3 routes 

XY3 

3 routes 

SpSzGA 

Average Total 

Cost 6.40388 10.16345 12.90057 6.400703 0.990499 4.60914 

Average Max 

Cost 3.329641 4.512979 3.217837 3.157434 0.892947 2.922013 

Total/Max 1.923295 2.252049 4.009081 2.027185 1.109248 1.577385 

        

SpRrHeuGA 

Average Total 

Cost 6.258195 8.997842 10.6932 5.768342 0.953001 4.200755 

Average Max 

Cost 3.644405 4.682768 2.8128 - 0.953001 4.172339 

Total/Max 1.717206 1.921479 3.801623 - 1 1.006811 

        

SpSzHeuGA 

Average Total 

Cost 6.32155 9.53567 10.77815 5.754412 0.986291 4.531848 

Average Max 

Cost 2.528371 2.675127 3.008697 - 0.626666 2.73549 

Total/Max 2.500246 3.564567 3.582332 - 1.573871 1.656686 

        

SpRrGA 

Average Total 

Cost 6.41733 9.708967 13.26037 6.084225 - 4.470141 

Average Max 

Cost 4.435756 4.939646 - 3.948465 - 3.382964 

Total/Max 1.446727 1.965519 - 1.540909 - 1.321368 

        

MC1 

Average Total 

Cost 6.5049 9.378834 12.9316 6.256445 1.027664 4.66619 

Average Max 

Cost 3.810352 3.853928 1.942982 2.460268 0.62628 2.928141 

Total/Max 1.707165 2.433578 6.655545 2.542993 1.640902 1.593567 

        

MC2 

Average Total 

Cost 26.46663 52.52583 12.99778 15.3793 2.532472 14.93759 

Average Max 

Cost 4.572403 - - 3.335593 0.582543 3.745948 

Total/Max 5.788342 - - 4.610664 4.347269 3.987667 

        

HpRrGA 

Average Total 

Cost 5.829443 8.942541 12.30794 5.907503 - 4.139495 

Average Max 

Cost 4.577871 - 4.144159 - - - 

Total/Max 1.273396 - 2.96995 - - - 

        

HpSzGA 

Average Total 

Cost 6.071382 9.015548 12.28372 6.140266 0.9338 4.348048 

Average Max 

Cost 3.471329 - - - 0.851812 - 

Total/Max 1.749008 - - - 1.096251 - 



3.3.2 TSP1-Specific Interpretation 

We would like to consider the following 

graphs pertaining to the running of all 

algorithms on TSP1: 

 

Figure 2 tracks the average total cost of the 

routes produced by each of the eight 

algorithms. MC2 is not pictured because its 

average cost was approximately 26 on this 

city set. If we were concerned only with 

minimizing the total cost, this would be the 

only graph necessary.  

Figure 3 is a graph of the most expensive 

route over time produced by each algorithm: 

This graph is more useful in the context of 

the previous graph. For instance, we can see 

that HpRrGA has maybe the single most 

expensive route at slightly over 4.5. Looking 

at the previous graph, we can also see that 

its total cost is approximately 5.8 on average 

for the set TSP1, which tells us that while it 

is cheap, it is also highly unbalanced. 

Neither graph could indicate this alone. 

Consequently, we can also guess that while 

SpRrHeuGA may be slightly cheaper on 

average than SpSzHeuGA, it is likely less 

well balanced. 

 

Figure 4 is a graph which is a measure of 

how well balanced the plans produced be 

each algorithm are on average: Ideally, our 

algorithm would produce a graph that is 

slightly less than 5 over time, since there are 

5 routes which the costs are distributed 

between. This graph also gives us a hint as 

to why MC2 performs so badly: the only 

way that the total cost over the maximum 

cost can be greater than the total number of 

routes is if the plan is incurring penalties for 

skipping cities. This is part of why most of 

my algorithms evaluate on the total cost, but 

focus on reducing the maximum cost. 

 

3.4 Discussion of Results 
One of the biggest problems I faced was in 

attempting to keep algorithms from evolving 

plans that had one huge routes and several 

small routes consisting of two or three or 

even one city. Having run my tests and 

Figure 2: Total Cost over time 

Figure 3: Average Maximum Route Cost over Time 

Figure 4: TotalCost/Max Cost over Time 



looked at the balance discrepancy between 

plans on M2 and SY2, I believe I may have 

an answer from Graph Theory. 

 

Consider an optimal sales route 𝑆1,1 on a 

small set of cities 𝐶 which does not exhibit 

clustering, and suppose that for all pairs of 

cities 𝑐𝑖, 𝑐𝑗 we have that the distance from 𝑖 

to 𝑗 is the same as 𝑗 to 𝑖. Now suppose we 

select one city 𝑐𝑖 and remove it from 𝑆1,1, 

making it the sole city in a new route 𝑆2,2 

and setting 𝑆1,2 to be 𝑆1,1 without 𝑐1. We 

will assume that the distance from a city to 

itself is zero and that this is an improvement 

to the total cost of all routes, i.e. that 

𝑑(𝑐𝑖−1, 𝑐𝑖) + 𝑑(𝑐𝑖, 𝑐𝑖+1) ≥ 𝑑(𝑐𝑖−1, 𝑐𝑖+1) 
(this is guaranteed if the cities are in a space 

with the triangle inequality). We now want 

to consider crossover between 𝑆1,2 and 𝑆2,2. 

We assume that the cities {𝑐𝑗+1, 𝑐𝑗+2, … , 𝑐𝑘} 

have been selected from 𝑆1,2 to be inserted 

into 𝑆2,2. If the set of cities ∅ has been 

selected to be inserted into 𝑆1,2 from 𝑆2,2, 

then this crossover will only produce an 

improvement if 𝑑(𝑐𝑗 , 𝑐𝑗+1) + 𝑑(𝑐𝑘, 𝑐𝑘+1) ≥

𝑑(𝑐𝑖, 𝑐𝑗+1) + 𝑑(𝑐𝑘, 𝑐𝑖) + 𝑑(𝑐𝑗−1, 𝑐𝑘+1). 

Intuitively, this seems highly unlikely since 

𝑆1,1 was an optimal route on 𝐶, and  𝐶 does 

not exhibit clustering. Because 𝐶 is small, it 

seems even more unlikely that it contains a 

set of points that fulfil that inequality, 

especially if 𝐶 is in a space such as ℝ𝑛 

where the triangle inequality holds. If the set 

of cities from 𝑆2,2 is {𝑐𝑖} then the crossover 

will only produce an improvement if 

𝑑(𝑐𝑗 , 𝑐𝑗+1) + 𝑑(𝑐𝑘, 𝑐𝑘+1) ≥ 𝑑(𝑐𝑗 , 𝑐𝑖) +

𝑑(𝑐𝑖, 𝑐𝑘+1) + 𝑑(𝑐𝑘, 𝑐𝑗+1), which seems 

intuitively unlikely without clustering for 

the same reasons as above. 

 

It seems then that if two routes on a small 

set perform crossover and one route is left 

with only one city, the resulting plan will 

probably improve its total cause and so the 

change will be accepted. And if it is 

accepted then it will very difficult to break 

out of this arrangement. And since 

probabilistically it is only a matter of time 

until such an exchange occurs, we can 

assume that multiple routes on small sets 

will tend this way over time. 

 

This is not of course a formal mathematical 

proof, but it is a reasonable hypothesis for 

the trouble I was having initially. Also in 

support of this is the fact that my initial test 

cases were all sets of 50 cities in ℝ2 that did 

not exhibit clustering, and I typically tried 

them with five routes. I believe the data and 

my experiences support this idea, and I plan 

to continue testing to determine if it is likely 

true. 

 

4. FUTURE WORK 

There were two main weaknesses to my 

work. The first was time: the MTSP was not 

my first choice for my term project. I 

originally worked on the Social Golfer 

problem, which meant that when I 

discovered that it does not respond well to 

genetic algorithms I had lost two weeks. 

Fortunately the remedy to that is easy: I’m 

planning to continue working on this 

project, as I believe that this would be a 

good subject to expand to a senior thesis 

next semester. The second weakness is more 

project inherent that circumstantial: without 

some working form of external crossover, 

my algorithm options are severely limited. It 

is difficult to rank routes of a plan by 

anything other than ratio, and even then 

there are limits. For instance, if a route is 

bad it cannot just be dropped because since 

the problem is to find a set of routes for 𝑛 

salesmen, not 𝑛 − 1. That however would be 

a very interesting expansion of the MTSP: 

What is the optimal number and routing of 

salesmen if each charges 𝑑 dollars an hour? 

Getting back to the weakness though, I have 

found a solution. In early-mid December I 



found an article on the VRP which proposes 

a method of external crossover based on 

creating an offspring by choosing the routes 

with the best ratios that do not share cities 

with routes that have already been selected. 

Unfortunately due to conflicts with school 

and exams, I have been unable to implement 

it yet. I also found another simpler proposed 

method of crossover
5
 for the MTSP earlier 

this week, so I am eager to try that out as 

well. Additionally, since seeing the result of 

MC1 on the set XYI want to begin 

experimenting varying numbers of routes on 

the same city set to see if that can resolve 

the balancing issue. 

 

5. CONCLUSION 
This project was an important stab into an 

aspect of the MTSP that is rarely 

considered: the idea of balancing the total 

cost of the plan across all the routes. This is 

unsurprising, as most people who work with 

the MTSP with or without genetic 

algorithms have a great deal of experience 

working with the VRP: if they need to 

balance the costs they can transform the 

project into the VRP, impose cost 

restrictions, and use known techniques. 

However, this project focused on enticing 

the routes to co-evolve co-operatively, rather 

than antagonistically and impose these 

restrictions without actually imposing them. 

This dual objective of evolving a cheap plan 

and a balanced one without actually 

imposing restrictions is uncommon in the 

VRP, where a frequent technique is to 

creatively impose restrictions that force your 

algorithm more quickly in the direction you 

want. From a practical standpoint, it is 

probably less efficient at creating a good 

solution for the MTSP than adapting some 

of the more advanced VRP algorithms, 

especially since MTSP is very close to the 

VRP and genetic algorithms have been 

shown to implement less efficiently on the 

VRP than more specialized algorithms
1
, but 

the idea of imposing restrictions without 

actually imposing them is very interesting, 

and I would like to see if I can come up with 

another place to apply it.  
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Appendix 

 

File Description 

InsertionSort.m Implements insertion sort on the current generation of plans. Used only 

for external crossover, so no longer utilized often. 

MasterControl.m Runs all algorithms under user specifications on a specified city set 

HpExGA.m Runs a genetic algorithm using external crossover in the hard plan 

model 

HpGA.m Runs a genetic algorithm using user specified selection and the hard 

plan model. 

MountClimb.m Hill-climbing algorithm for total cost optimization 

MountClimbBalance.m Hill-climbing algorithm for max cost optimization 

MTSPRoutes2.m The hard plan model object class. 

NextGeneration.m Creates the next generation using external crossover and the hard plan 

model 

NextGeneration5.m Crates the next generation using external crossover and the soft plan 

model. 

 

Plan.m The soft plan object class 

Salesman.m The soft plan route class 

SalseSizeCrossover2.m Implements crossover using size based selection. On soft plans 

SpExGA.m Runs the soft plan external crossover genetic algorithm 

SpHeuGA.m Runs the soft plan internal crossover algorithms with heuristic drafting 

SpGA.m Runs the soft plan internal crossover algorithms 

StochPointers.m Generates pointer for stochastic universal sampling 

 

 


