
Using Genetic Algorithms

to solve the Multiple

Traveling Salesman

Problem through Internal

Crossover

Timothy Murray
253-302-0264

tsm78@cornell.edu

ABSTRACT

The Multiple Traveling Salesmen Problem

(MTSP) is an NP-hard combinatorial and

scheduling optimization problem defined in

the following way: a company has to send

salesmen to visit m cities. The company has

n salesmen to distribute the cities between,

and would like to plan out the sales routes in

the cheapest way possible. Additionally,

they would like to make sure that the

salesmen have balanced schedules, since if

there are 100 cities and one salesman is

visiting 96 of them, the company’s

customers in those 96 cities will be upset by

the long time gaps between visits. We can

immediately see then that there may be

some conflict between minimizing the total

cost, and minimizing the cost of the most

expensive sales route. This problem is easily

seen to be NP-hard by noting that for the

specific case when 𝑛 = 1, the MTSP is the

Traveling Salesman Problem, which is NP-

hard.

1. INTRODUCTION

The Multiple Traveling Salesman Problem

(MTSP) is a scheduling optimization

problem related to the Traveling Salesman

Problem (TSP) but more similar to the

Vehicle Routing Problem (VRP). The

primary difference is that there is no

common supply depot that all routes in the

MTSP must stop at, as in the VRP. This

makes the VRP more valuable for shipping

and supply problems, while the MTSP is

more valuable for planning out circuits, such

as bus routes or police patrol routes. While

both interest me, I chose to work on the

MTSP over the VRP because relatively little

work has been done on it, while the VRP is

well-explored.

I approached this problem initially with the

intent to minimize the total cost a plan of

routes, and use the other properties of the

problem primarily with a focus on doing

that. My initial algorithms are built with this

in mind. However, I found that while this

was doable and not terribly difficult, it

frequently resulted in unbalanced plans,

where a single route bore the majority of the

cost. After trying several modifications to

the problem while still keeping the focus on

minimizing the total cost, I continued to run

into this problem. Upon starting serious

testing, I found what I suspect is the answer,

which I will share later.

2. SET-UP

2.1 Method

I created several algorithms that run using a

combination of factors: crossover method,

parent selection, diversity maintenance, plan

model, and heuristic initialization. The plan

model is the most important so we will

address that first. Each of my algorithms

implemented one or more of these

techniques.

2.1.1 Plan Model

A plan is a set of routes and other properties

associated with them such as their costs, the

number of times each city is visited by all

routes, and the variance in both the number

Permission to make digital or hard copies of all or part

of this work for personal or classroom use is granted
without fee provided that copies are not made or

distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on

servers or to redistribute to lists, requires prior specific

permission from the author

of cities each route visits and its cost. I

created two plan models, the first of which

will be referred to as a hard plan. In a hard

plan, each city is visited exactly once by the

set of routes, with no exceptions allowed.

The routes are structured differently as well,

but this will be addressed in greater detail in

the implementation section. The second plan

model I will refer to as a soft plan. In a soft

plan, the number of times each city is visited

is simply non-negative. However, there is a

penalty for skipping a city entirely, and cost

incentive of not visiting a city multiple times

rapidly drives a newly initialized soft plan to

visiting each city exactly once. While

effectively the same, the soft plan is

structured in a way that makes

experimenting more easy. In practice,

algorithms using the hard model seem to

find slightly cheaper plans, and those using

the soft model find more balanced ones.

2.1.2 Crossover

The next factor to consider is the crossover

method. I experimented with two methods

of crossover, internal and external crossover.

External crossover takes place between two

plans by exchanging a subset of their routes.

This turned out to be a particularly

ineffective technique: in the hard model the

need to visit each city exactly once destroys

most of the substructure of the resultant

plans when they are cleaned into valid hard

plans after the exchange, and the pressure

that effectively forces soft model plans to

visit each city exactly once means that when

routes are exchanged, unless they contain

the exact same subset of cities, the offspring

incur large penalties for not visiting cities.

They would have to be set aside and

optimized through hill-climbing or some

other method for several turns before they

could be fairly evaluated. When I

implemented external crossover on each of

these models, both developed plans at a rate

that put their performance several times

worse than hill-climbing algorithms.

Fortunately, the internal crossover method is

far more effective (see Figure 1 above). The

technique is used frequently in VRP genetic

algorithms which was where I first saw it.

Here crossover is performed between routes

within a plan. It is easy to implement, as

each route is effectively a string of city

number or can be converted to one, and

prevents the possibility of a plan no longer

possessing a city and incurring a penalty or

having the substructure destroyed. I used

two point crossover on the routes. One of

the drawbacks to this method is that there is

no point in keeping a population of plans

unless the algorithm is modeled on a beam

search, since there is no operator that allows

the plans to interact with or affect each

other.

2.1.3 Parent Selection

I used two methods of selecting parents for

new routes. The first was to look at the ratio

of route cost to number of cities visited, with

a smaller ratio being preferred. I used

roulette sampling to do that. I created the

second method when I began trying to fix

the problem of unbalanced schedules. In this

method, parents are ranked on their size.

The choice of first parent ranked larger

Figure 1: Internal Crossover

routes well, while the choice of second

parent ranked smaller routes well. Using the

cost of the parent routes as their size was

more effective than their number of cities.

The point of this type of selection was to

provide more opportunities to redistribute

the cities in larger routes, and it was

effective.

2.1.4 City Redistribution

Diversity maintenance was a more difficult

topic to address. It is difficult to determine

the similarity of two routes that share no

common cities. We could look at the

variance of the number of cities between

routes, but since we want that to be low it is

not something to fix. It is better to consider

what I eventually did not as diversity

maintenance but as wealth redistribution,

except in the sense that several routes

consisting of one or two nodes each are not

particularly diverse. Whenever a route

obtained more cities than a certain threshold,

determined by both the number of cities and

the total number of routes, all cities were

removed from it. The cities were then

redistributed uniformly at random into all

routes, including the now empty one. Before

this happened the old plan was preserved,

but it did happened regardless of how much

more expensive the new plan was. This

operator is an improvement, but the

threshold needs to be adjusted.

2.1.5 Heuristic Drafting

I experimented with one other operator, a

heuristic draft. Here, routes are selected

uniformly at random. If they are empty then

they are given an unvisited city uniformly at

random. If they are not empty, then they are

given the unvisited city the shortest distance

from the city they most recently acquired.

This continues until all cities are drafted.

The point of this draft was to give the plan

enough substructure that the formation of a

giant route would be likely to be more

expensive and thus would be less likely to

occur quickly, but not enough for the plan to

be stuck optimizing that substructure if

something more beneficial was nearby. The

results were mixed: As expected,

performance was extremely good in short

term, but the algorithms that implemented

drafting had very highly varying

performance over time.

2.2 Related Work

This project is very closely related to work

being done on the VRP. Genetic algorithms

are a common technique for solving, though

they are not the optimal. On average,

depending on how large the problem is,

solutions from genetic algorithms range

from 4.16 to 11.79% higher than best known

solutions depending on the problem
1
. I do

not remember in which article I first read

about internal crossover, the technique is

fairly common in solving both the MTSP

and VRP, but a detailed explanation can be

found in the paper Solve the Vehicle Routing

Problem with Time Windows via a Genetic

Algorithm
2
 which I found helpful when I

was formulating my initial algorithm.

However, in addition to work done on the

VRP, in recent years there has been a surge

of interest in using genetic algorithms on the

MTSP. One must be careful though in how

it is defined. Several papers define it as a

relaxation of the VRP where the salesmen

have a common depot but no fuel, load, or

time restrictions
3
, and the goal is just to

minimize cost. This is very different from

the problem that I addressed, where there is

no common depot and the time it takes for

each route, while not restricted, is one of the

factors we would like to optimize.

Additionally, while there are papers that

address the same problem that I do
4
, they all

seem to be addressing it as a single objective

problem, minimize the total cost, rather than

also working to create a balanced plan.

My overarching goal in this project was to

develop an algorithm that encourages the

routes to co-evolve into a balanced plan. I

believe that my algorithm which uses a soft-

model plan and all three of the balancing

methods above can reasonably be said to do

that. It did better on all medium and small

city sets in creating a balanced plan than any

other algorithm except a hill climber which

is willing to take massive penalties for

skipping cities in order to lower the cost of

the highest route. This was especially

notable on the small sets: it was the only

algorithm to never once create a plan that

had one route visit all but two cities, which

were continuously occupied by other routes,

and still maintain a very low total cost. On

the large data set, two algorithms managed

to create slightly balanced plans, but only

one had a lower total cost. The combination

of these mechanisms seems to strongly

encourage the co-evolution of these routes

into a balanced and cheap plan.

2.3 System Architecture and

Implementation
All coding for this project was done in an

object-oriented environment in MATLAB.

This was done to take advantage of the

remote access provided to Cornell

Mathematics computers.

2.3.1 Hard-Model Plans

I came up with the idea of hard plans before

soft plans, and as one might expect there are

significant differences in their

implementation. A hard plan is an object of

type MTSPRoutes2. The hard plan tracks its

routes as a matrix of route numbers and

positions. A route number 𝑟 and position 𝑝

in column 𝑖 means that 𝑖 is the 𝑝𝑡ℎ city in

route 𝑟. Additionally, the hard plan contains

a distance matrix between cities, a penalty

matrix representing the cost of stopping at

each city, and other expected items such as

its total cost, the costs of its routes, etc. that

it needs in order to allow functions to

operate on it. Hard plans are randomly

initiated assigning the 𝑛 cities to the 𝑟 routes

uniformly at random but in order, and

randomly swapping the contents route

numbers and positions in the route matrix

between cities 𝑛 log 𝑛 times, so that we can

expect to have involved each city in a swap

at least twice. There are two forms of

mutation operators: mutate1 swaps the

positions of two cities within a route.

Mutate2 takes a city from 𝑟1 and inserts it in

𝑟2. Technically this is a crossover, but if it

was not included the hill-climbing

algorithms would be incapable of altering

the amount or number of cities in the routes.

The crossover operator is given two routes.

It randomly chooses break points on each

and performs two point crossover. The

operation is simplified by the fact the two

routes share no common elements, so the

cities later in the route just need to have

their positions in the route raised or lowered

by the appropriate amount.

2.3.2 Soft-Model Plans

A soft plan is an object of type Plan. The

soft plan tracks its routes as an array of

Salesman objects. Salesman objects contain

a matrix of the distances between cities and

a penalty matrix of the cost of stopping at

each city. They also contain the expected

fields such as their route, a matrix where the

city at position 𝑖 is the 𝑖𝑡ℎ stop in the route,

the number of cities they visit, the total

number of cities, how many unique cities

they visit (no other salesmen) and the ratio

of the cost of their route to the number of

cities they visit. In addition to the array of

Salesman, soft plans also carry the distance

and penalty matrix as well as the number of

times each city is visited, the penalty for

missing a city, the variance in the number of

cities and route cost of each salesman, a

matrix of the cities per route, and a pareto

score and rank. The latter two are from

before the external crossover attempts

proved unsuccessful. Plans can be initialized

in two ways. The first is randomly, each

Salesman includes each city with probability

𝑝, and they are then swapped until the order

is sufficiently random. The second is semi-

randomly, if an algorithm is using Heuristic

drafting. Routes are selected uniformly at

random. If they are empty then they are

given an unvisited city uniformly at random.

If they are not empty, then they are given the

unvisited city the shortest distance from the

city they most recently acquired. This

continues until all cities are drafted.

Soft plans also have static functions that

inflict mutation, handle the redistribution

operator, and evaluate their costs after a

change. There are four kinds of mutation, all

of which are handled by calling a Salesman

static function. The first randomly swaps

two cities within a Salesman’s route. The

second adds a city at random into the

Salesman’s route. The third inverts two

cities in a route, and the fourth removes a

city from a route, provided the route is not

empty.

2.3.3 Algorithms

All algorithms are combinations of the

factors plan model, redistribution, crossover,

selection, and heuristic drafting. The plan

models have static functions to handle these,

although the MTSPRoutes2 object does not

have functions implemented for

redistribution or heuristic drafting.

3. EXPERIMENTATION

3.1 Methodology

Results (plans) are evaluated by their total

cost and by the cost of the most expensive

route within the plan. We seek to minimize

both. The strategy for most of my algorithms

is to evaluate based on total cost but to

implement breeding selection based on

maximum route cost. This resulted in some

algorithms on average created slightly more

expensive plans than a hill-climber that

seeks only minimize total cost, but

considerably more balanced ones. . I did

experiment with a linear combination of the

total and maximum route costs, but it

appears to be too dependent on the geometry

of the cities.

Independent variables are the routes within

the plans. They are manipulated by the

algorithms in order to measure the

maximum and total cost, the dependent

variables. While work on the MTSP is not

uncommon, all examples I have been able to

find focus on the single-variable

optimization of the total cost. Since most

treat it as a relaxation of the route cost

restraint in the VRP, this is not unexpected,

but my project is the only one I have found

that seeks to encourage these restraints to

grow rather than enjoy the liberation from

them. In this my goal was at least somewhat

unique.

My final algorithm, SpSzHeuGA, which

utilizes a soft-plan model, city

redistribution, size-based selection, and

heuristic drafting, was on average dominated

only twice across all the city sets I tested on.

In both cases, it dominates the other

algorithm on a different city set. It on

average dominates the effective hill-

climbing algorithm on all but on data set I

tested on.

3.2 Results

Due to size constraints, all tables are placed

on the two pages following the interpretation

subsection. Table 1 explains how to interpret

the names of the algorithms in Table 2.

Using this table, we see that HpRrGA is a

genetic algorithm that runs on hard plans

and utilizes Ratio Roulette selection. I tested

the six genetic and two hill-climbing

algorithms on the following data sets

Self-Travel cost in Table 2 is the cost

incurred if a route travels from the city to

itself. It is an experiment meant to

discourage small isolated routes. The results

are summarized in the following table:

Table 3 contains the experimental results of

running the algorithms on the data sets. A

dash in a cell means that this information is

not available. For Average Total Costs this

is because, due to the long computation time

of some of the algorithms and sets, trials for

one algorithm and set were run across

multiple computers, and the results

sometimes were not rejoined properly. If

only an Average Max Cost cell is

unavailable, this may be caused by the same

problem, but is more likely caused by the

fact that I initially did not foresee that

unbalanced plans would be a common

occurrence, and had not started tracking

them yet.

3.3 Interpretation

3.3.1 Interpretation across City Sets

Looking at the data, it seems that the

algorithms with the best combination of

balance and total cost are SpRrHeuGA,

SpSzHeuGA, and possibly HpSzGA, though

it is difficult to tell with the lack of data.

One trend that is clear however is that the

smaller the set of cities, the more likely one

large route will visit almost all of them.

SpRrHeuGA produced a Total to Max cost

ratio of 1 on average on the set M2, meaning

that on average it had one route visit all but

two of the cities, and stationed the other two

permanently at cities. It nearly did the same

thing every time on XY3. In contrast, on

large city sets the routes are more likely to

distribute the work evenly. Every algorithm

produces a reasonably well balanced plan

for this city set, but the most notable is

MC1: MC1 only tries to optimize the total

cost through hill-climbing and has no

mechanisms to direct the production of well-

balanced plans. This is the same MC1 which

began producing unbalanced plans before

any other algorithm I tried. It has 7 routes,

and the total cost to maximum cost ratio is

6.66, meaning that the cost is almost

perfectly distributed between the routes, and

suggesting that the key to creating balanced

plans may not be in correction mechanisms,

but in picking the right number of routes for

a given set, as the ratio of routes to cities is

significantly lower than in other tests.. This

does however require knowledge of the set,

which can be a problem of its own.

Ultimately, the choice of which algorithm is

ideal lies in the hands of the user, who will

have his or her own toleration of how

unbalanced a plan can be.

Table 1: Algorithm Name Prefixes

Sp/Hp Soft plan/Hard plan

Rr/Sz Ratio Roulette selection/Size-

based selection

Heu Utilized Heuristic drafting

GA Genetic Algorithm

MC Mountain/Hill-Climbing

Algorithm

Table 2: Algorithms

Sets

Dimension

of cost

Self-

Travel

Cost

Number of

Clusters Cities Comments

1 XY1 ℝ2 0 6 100

A set of 6

approximately equal

clusters with

normally distributed

points around them.

salesmen

3 XY2 ℝ2 0.1 1 400

Large number of

points generated

uniformly at random

on [0,2],[0,2]

4 M1

Money/

Time 0 N/A 100

Distances between

points generated on

[.05,.25]. d(a,b) is not

d(b,a).

7 M2

Money/

Time 0 N/A 30 Smaller data set

8 XY3 ℝ2 0 1 30 Smaller data set

10 TSP1 ℝ2 0 1 50

The first set of points

from PS1

Table 3: Experimental Results

Algorithm

TSP1

5 routes

XY1

6 routes

XY2

7 routes

M1

6 routes

M2

3 routes

XY3

3 routes

SpSzGA

Average Total

Cost 6.40388 10.16345 12.90057 6.400703 0.990499 4.60914

Average Max

Cost 3.329641 4.512979 3.217837 3.157434 0.892947 2.922013

Total/Max 1.923295 2.252049 4.009081 2.027185 1.109248 1.577385

SpRrHeuGA

Average Total

Cost 6.258195 8.997842 10.6932 5.768342 0.953001 4.200755

Average Max

Cost 3.644405 4.682768 2.8128 - 0.953001 4.172339

Total/Max 1.717206 1.921479 3.801623 - 1 1.006811

SpSzHeuGA

Average Total

Cost 6.32155 9.53567 10.77815 5.754412 0.986291 4.531848

Average Max

Cost 2.528371 2.675127 3.008697 - 0.626666 2.73549

Total/Max 2.500246 3.564567 3.582332 - 1.573871 1.656686

SpRrGA

Average Total

Cost 6.41733 9.708967 13.26037 6.084225 - 4.470141

Average Max

Cost 4.435756 4.939646 - 3.948465 - 3.382964

Total/Max 1.446727 1.965519 - 1.540909 - 1.321368

MC1

Average Total

Cost 6.5049 9.378834 12.9316 6.256445 1.027664 4.66619

Average Max

Cost 3.810352 3.853928 1.942982 2.460268 0.62628 2.928141

Total/Max 1.707165 2.433578 6.655545 2.542993 1.640902 1.593567

MC2

Average Total

Cost 26.46663 52.52583 12.99778 15.3793 2.532472 14.93759

Average Max

Cost 4.572403 - - 3.335593 0.582543 3.745948

Total/Max 5.788342 - - 4.610664 4.347269 3.987667

HpRrGA

Average Total

Cost 5.829443 8.942541 12.30794 5.907503 - 4.139495

Average Max

Cost 4.577871 - 4.144159 - - -

Total/Max 1.273396 - 2.96995 - - -

HpSzGA

Average Total

Cost 6.071382 9.015548 12.28372 6.140266 0.9338 4.348048

Average Max

Cost 3.471329 - - - 0.851812 -

Total/Max 1.749008 - - - 1.096251 -

3.3.2 TSP1-Specific Interpretation

We would like to consider the following

graphs pertaining to the running of all

algorithms on TSP1:

Figure 2 tracks the average total cost of the

routes produced by each of the eight

algorithms. MC2 is not pictured because its

average cost was approximately 26 on this

city set. If we were concerned only with

minimizing the total cost, this would be the

only graph necessary.

Figure 3 is a graph of the most expensive

route over time produced by each algorithm:

This graph is more useful in the context of

the previous graph. For instance, we can see

that HpRrGA has maybe the single most

expensive route at slightly over 4.5. Looking

at the previous graph, we can also see that

its total cost is approximately 5.8 on average

for the set TSP1, which tells us that while it

is cheap, it is also highly unbalanced.

Neither graph could indicate this alone.

Consequently, we can also guess that while

SpRrHeuGA may be slightly cheaper on

average than SpSzHeuGA, it is likely less

well balanced.

Figure 4 is a graph which is a measure of

how well balanced the plans produced be

each algorithm are on average: Ideally, our

algorithm would produce a graph that is

slightly less than 5 over time, since there are

5 routes which the costs are distributed

between. This graph also gives us a hint as

to why MC2 performs so badly: the only

way that the total cost over the maximum

cost can be greater than the total number of

routes is if the plan is incurring penalties for

skipping cities. This is part of why most of

my algorithms evaluate on the total cost, but

focus on reducing the maximum cost.

3.4 Discussion of Results
One of the biggest problems I faced was in

attempting to keep algorithms from evolving

plans that had one huge routes and several

small routes consisting of two or three or

even one city. Having run my tests and

Figure 2: Total Cost over time

Figure 3: Average Maximum Route Cost over Time

Figure 4: TotalCost/Max Cost over Time

looked at the balance discrepancy between

plans on M2 and SY2, I believe I may have

an answer from Graph Theory.

Consider an optimal sales route 𝑆1,1 on a

small set of cities 𝐶 which does not exhibit

clustering, and suppose that for all pairs of

cities 𝑐𝑖, 𝑐𝑗 we have that the distance from 𝑖

to 𝑗 is the same as 𝑗 to 𝑖. Now suppose we

select one city 𝑐𝑖 and remove it from 𝑆1,1,

making it the sole city in a new route 𝑆2,2

and setting 𝑆1,2 to be 𝑆1,1 without 𝑐1. We

will assume that the distance from a city to

itself is zero and that this is an improvement

to the total cost of all routes, i.e. that

𝑑(𝑐𝑖−1, 𝑐𝑖) + 𝑑(𝑐𝑖, 𝑐𝑖+1) ≥ 𝑑(𝑐𝑖−1, 𝑐𝑖+1)
(this is guaranteed if the cities are in a space

with the triangle inequality). We now want

to consider crossover between 𝑆1,2 and 𝑆2,2.

We assume that the cities {𝑐𝑗+1, 𝑐𝑗+2, … , 𝑐𝑘}

have been selected from 𝑆1,2 to be inserted

into 𝑆2,2. If the set of cities ∅ has been

selected to be inserted into 𝑆1,2 from 𝑆2,2,

then this crossover will only produce an

improvement if 𝑑(𝑐𝑗 , 𝑐𝑗+1) + 𝑑(𝑐𝑘, 𝑐𝑘+1) ≥

𝑑(𝑐𝑖, 𝑐𝑗+1) + 𝑑(𝑐𝑘, 𝑐𝑖) + 𝑑(𝑐𝑗−1, 𝑐𝑘+1).

Intuitively, this seems highly unlikely since

𝑆1,1 was an optimal route on 𝐶, and 𝐶 does

not exhibit clustering. Because 𝐶 is small, it

seems even more unlikely that it contains a

set of points that fulfil that inequality,

especially if 𝐶 is in a space such as ℝ𝑛

where the triangle inequality holds. If the set

of cities from 𝑆2,2 is {𝑐𝑖} then the crossover

will only produce an improvement if

𝑑(𝑐𝑗 , 𝑐𝑗+1) + 𝑑(𝑐𝑘, 𝑐𝑘+1) ≥ 𝑑(𝑐𝑗 , 𝑐𝑖) +

𝑑(𝑐𝑖, 𝑐𝑘+1) + 𝑑(𝑐𝑘, 𝑐𝑗+1), which seems

intuitively unlikely without clustering for

the same reasons as above.

It seems then that if two routes on a small

set perform crossover and one route is left

with only one city, the resulting plan will

probably improve its total cause and so the

change will be accepted. And if it is

accepted then it will very difficult to break

out of this arrangement. And since

probabilistically it is only a matter of time

until such an exchange occurs, we can

assume that multiple routes on small sets

will tend this way over time.

This is not of course a formal mathematical

proof, but it is a reasonable hypothesis for

the trouble I was having initially. Also in

support of this is the fact that my initial test

cases were all sets of 50 cities in ℝ2 that did

not exhibit clustering, and I typically tried

them with five routes. I believe the data and

my experiences support this idea, and I plan

to continue testing to determine if it is likely

true.

4. FUTURE WORK

There were two main weaknesses to my

work. The first was time: the MTSP was not

my first choice for my term project. I

originally worked on the Social Golfer

problem, which meant that when I

discovered that it does not respond well to

genetic algorithms I had lost two weeks.

Fortunately the remedy to that is easy: I’m

planning to continue working on this

project, as I believe that this would be a

good subject to expand to a senior thesis

next semester. The second weakness is more

project inherent that circumstantial: without

some working form of external crossover,

my algorithm options are severely limited. It

is difficult to rank routes of a plan by

anything other than ratio, and even then

there are limits. For instance, if a route is

bad it cannot just be dropped because since

the problem is to find a set of routes for 𝑛

salesmen, not 𝑛 − 1. That however would be

a very interesting expansion of the MTSP:

What is the optimal number and routing of

salesmen if each charges 𝑑 dollars an hour?

Getting back to the weakness though, I have

found a solution. In early-mid December I

found an article on the VRP which proposes

a method of external crossover based on

creating an offspring by choosing the routes

with the best ratios that do not share cities

with routes that have already been selected.

Unfortunately due to conflicts with school

and exams, I have been unable to implement

it yet. I also found another simpler proposed

method of crossover
5
 for the MTSP earlier

this week, so I am eager to try that out as

well. Additionally, since seeing the result of

MC1 on the set XYI want to begin

experimenting varying numbers of routes on

the same city set to see if that can resolve

the balancing issue.

5. CONCLUSION
This project was an important stab into an

aspect of the MTSP that is rarely

considered: the idea of balancing the total

cost of the plan across all the routes. This is

unsurprising, as most people who work with

the MTSP with or without genetic

algorithms have a great deal of experience

working with the VRP: if they need to

balance the costs they can transform the

project into the VRP, impose cost

restrictions, and use known techniques.

However, this project focused on enticing

the routes to co-evolve co-operatively, rather

than antagonistically and impose these

restrictions without actually imposing them.

This dual objective of evolving a cheap plan

and a balanced one without actually

imposing restrictions is uncommon in the

VRP, where a frequent technique is to

creatively impose restrictions that force your

algorithm more quickly in the direction you

want. From a practical standpoint, it is

probably less efficient at creating a good

solution for the MTSP than adapting some

of the more advanced VRP algorithms,

especially since MTSP is very close to the

VRP and genetic algorithms have been

shown to implement less efficiently on the

VRP than more specialized algorithms
1
, but

the idea of imposing restrictions without

actually imposing them is very interesting,

and I would like to see if I can come up with

another place to apply it.

6. REFERENCES
[1]Bjarnadottir, Aslaug. "Solving the

Vehicle Routing Problem with

Genetic Algorithms." Solving the

Vehicle Routeing Problem with

Genetic Algorithms. Informatic and

Mathematical Modelling, IMM,

Technical University of Denmark, 15

Apr. 2004. Web. 28 Oct. 2014.

<http://etd.dtu.dk/thesis/154736/imm

3183.pdf>.

[2] Chang, Yaw, and Lin Chen. "Solve the

Vehicle Routing Problem with Time

Windows via Genetic

Algorithm." Www.AIMSciences.org.

Discret and Continuous Dynamical

Systems Supplemental, 15 June

2007. Web. 28 Oct. 2014.

<https://aimsciences.org/journals/pdf

s.jsp?paperID=2806&mode=full>.

[3] Kiraly, Andras, and Janos Abonyi. "A

Novel Approach to Solve Multiple

Traveling Salesmen Problem by

Genetic Algorithm." Computational

Intelligence in Engineering. IX ed.

Vol. 313. Springer, 2010. 141-151.

Print.

[4 Carter, Arthur. "Design and Application

of Genetic Algorithms for the

Multiple Traveling Salesperson

Assignment Problem." Design and

Application of Genetic Algorithms

for the Multiple Traveling

Salesperson Assignment Problem.

Virginia Polytechnic Institute and

State University, 21 Apr. 2003. Web.

2 Dec. 2014.

<http://scholar.lib.vt.edu/theses/avail

able/etd-04252003-

123556/unrestricted/Dissertation.pdf

>.

[5] Sedighpour, Mohammad, Majid

Yousefikhoshbakht, and Narjes

Mahmoodi Darani. "An Effective

Genetic Algorithm for Solving the

Multiple Traveling Salesman

Problem." An Effective Genetic

Algorithm for Solving the Multiple

Traveling Salesman Problem.

Journal of Optimization in Industrial

Engineering, 15 Aug. 2011. Web. 17

Dec. 2014.

<http://www.academia.edu/1308442/

An_Effective_Genetic_Algorithm_fo

r_Solving_the_Multiple_Traveling_

Salesman_Problem>.

Acknowledgements

Thank you to my dad, who taught me to love this kind of problem.

And to my mom, who puts up with me talking about them.

Appendix

File Description

InsertionSort.m Implements insertion sort on the current generation of plans. Used only

for external crossover, so no longer utilized often.

MasterControl.m Runs all algorithms under user specifications on a specified city set

HpExGA.m Runs a genetic algorithm using external crossover in the hard plan

model

HpGA.m Runs a genetic algorithm using user specified selection and the hard

plan model.

MountClimb.m Hill-climbing algorithm for total cost optimization

MountClimbBalance.m Hill-climbing algorithm for max cost optimization

MTSPRoutes2.m The hard plan model object class.

NextGeneration.m Creates the next generation using external crossover and the hard plan

model

NextGeneration5.m Crates the next generation using external crossover and the soft plan

model.

Plan.m The soft plan object class

Salesman.m The soft plan route class

SalseSizeCrossover2.m Implements crossover using size based selection. On soft plans

SpExGA.m Runs the soft plan external crossover genetic algorithm

SpHeuGA.m Runs the soft plan internal crossover algorithms with heuristic drafting

SpGA.m Runs the soft plan internal crossover algorithms

StochPointers.m Generates pointer for stochastic universal sampling

