
FRAMES and DEGENERATIONS
of

MONOMIAL RESOLUTIONS

Irena Peeva Mauricio Velasco

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA.

1. Introduction

We study the structure of (minimal) free resolutions of monomial ideals over a polynomial
ring. This has been a very active area of research, and a number of new ideas and approaches
were introduced in the last 8 years. In this paper, we introduce three new notions:

1) We introduce the frame of a free resolution. The frame is a complex of vector spaces
which encodes the structure of the resolution entirely. A key idea in the paper is that
the problem of constructing a monomial free resolution is essentially the problem of
building its frame. There are three main sources of frames: homology complexes from
algebraic topology (which yield cellular resolutions), dehomogenization of resolutions
(see 2), and in some cases it is possible to construct frames directly (see Theorems 6.1
and 7.1).

2) Homogenization and dehomogenization of ideals are widely used (for example, to
relate the defining ideals of affine and projective varieties). We introduce homoge-
nization and dehomogenization of complexes.

3) We introduce degenerations of a monomial free resolution. Starting from a free
resolution of a monomial ideal, a degeneration yields (under certain conditions) a
free resolution of another monomial ideal.

Our constructions and results provide a framework which allows to treat several known
constructions and results in [BPS,BS,GHP,GPW] as particular cases. This is explained in
more detail in Remarks 3.3, 3.9, 3.11, 4.2, 4.7, 4.9.
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The results in Sections 5, 6, and 7 are applications of the techniques developed in
Sections 3 and 4. On the one hand, the applications are interesting on their own, and on the
other hand they provide an illustration of our methods.

In Section 5, we study Scarf complexes. Scarf simplicial complexes and resolutions
were introduced in [BPS]. It is natural to ask what simplicial complexes appear as Scarf
complexes of monomial ideals, and what simplicial complexes appear as Scarf complexes of
Scarf ideals. In Theorem 5.3(1), we show that every finite simplicial complex, except the
boundary of a simplex, is the Scarf complex of some monomial ideal. It was observed in
[BPS, Lemma 2.1] that if a simplicial complex ∆ is the Scarf complex of a Scarf ideal, then
∆ is acyclic; furthermore, Example 5.2 in [BPS] shows that ∆ need not be pure or shellable.
In Theorem 5.3(2), we show that every finite acyclic simplicial complex is the Scarf complex
of a Scarf ideal. As a consequence, we characterize the sequences of Betti numbers of Scarf
ideals in Corollary 5.4.

In the proof of Theorem 5.3 we introduce nearly Scarf ideals. This is a class of
monomial ideals with highly structured minimal free resolutions. The lcm-lattice of such a
monomial ideal consists of the multidegrees of the faces of its Scarf complex and a top element
(which is the lcm of all the minimal monomial generators of the ideal). In Theorem 6.1,
we construct the minimal free resolution of any monomial ideal with such lcm-lattice. In
Corollary 6.3 we list the numerical invariants of the minimal free resolution of a nearly Scarf
ideal.

In Section 7, we obtain a lower bound on the Betti numbers of a monomial ideal in
terms of its Scarf complex. The bound is sharp: it is attained by every nearly Scarf ideal.
Furthermore, in Theorem 7.1(2), we describe the structure of the minimal free resolution of
every monomial ideal with minimal Betti numbers among all monomial ideals with a fixed
Scarf complex.

There are very few classes of monomial ideals (for example, Borel ideals [EK] and
Scarf ideals [BPS]) for which the explicit minimal free resolution is known. Theorems 6.1 and
7.1 provide two new such classes: nearly Scarf ideals and ideals with minimal Betti numbers.

Resolutions supported by a simplicial complex were introduced in [BPS]. This was
generalized to cellular resolutions, introduced in [BS] and studied in [BW]; such a resolution
is supported by a regular cell complex. Furthermore, cellular resolutions were generalized
in [JW] to be resolutions supported by CW-complexes. Nearly Scarf ideals provide many
interesting examples of monomial ideals such that the minimal free resolution is supported by
a CW-complex but not by a regular cell complex; such examples are presented in [Ve]. Nearly
Scarf ideals also provide the first examples of monomial ideals whose minimal free resolutions
do not admit any cellular structure, that is, are not supported by any CW-complex [Ve].
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2. Preliminaries

We introduce notation which will be used throughout the paper. Let M stand for a monomial
ideal in the polynomial ring S = k[x1, . . . , xn] minimally generated by monomials m1, . . . , mr.

2.1. Grading.

The polynomial ring S is Nn-graded by setting deg(xi) to be the i’th standard vector in Nn.
Often we say that S is multigraded instead of Nn-graded, and we say multidegree instead
of Nn-degree. For every a = (a1, . . . , an) ∈ Nn there exists a unique monomial of degree a,
namely xa = xa1

1 · · ·xan
n . If an element g (say in a module) has Nn-degree a, then we say

that is has multidegree xa and denote deg(g) = xa. Denote by S(−xa) the free S-module
generated by one element in multidegree xa.

Every monomial ideal is multihomogeneous. Hence, there exists a minimal free res-
olution of S/M over S which is multigraded . Thus, we have multigraded Betti numbers

bi,m(S/M) = dimk TorS
i,m(S/M, k) for i ≥ 0, m a monomial.

Therefore, the resolution can be written as

0 −→ . . . −→ ⊕m Sb3,m(−m) −→ ⊕m Sb2,m(−m) −→ ⊕m Sb1,m(−m) −→ S ,

where the sum runs over all monomials m.
We denote by LM the lattice with elements labeled by the least common multiples

of m1, . . . , mr ordered by divisibility. The atoms in LM are m1, . . . , mr; the top element
is lcm(m1, . . . , mr). The bottom element is 1 regarded as the lcm of the empty set. The
least common multiple of elements in LM is their join. Following [GPW] we call LM the
lcm-lattice of M . For m ∈ LM we denote by (1, m) the open lower interval in LM below m;
it consists of all non-unit monomials in LM that strictly divide m. The following result is
proved in [GPW]:

2.2. Theorem.

For i ≥ 1 we have

bi,m(S/M) =
{

dim H̃i−2

(
(1, m); k

)
if m ∈ LM

0 if m /∈ LM .
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3. Homogenization and dehomogenization of complexes

3.1. Construction.

Let U be a complex of finite k-vector spaces with differential ∂ and a fixed basis, such that
◦ Ui = 0 for i < 0 and i >> 0,
◦ U0 = k,
◦ U1 = kr,
◦ ∂(wj) = 1 for each basis vector wj in U1 = kr.

We call such a complex a frame (or an r-frame ).
Let G be a multigraded complex of finitely generated free multigraded modules with

differential d and a fixed multihomogeneous basis with multidegrees in LM , such that
◦ Gi = 0 for i < 0 and i >> 0,
◦ G0 = S,
◦ G1 = S(−m1) ⊕ . . . ⊕ S(−mr),
◦ d(wj) = mj for each basis element wj of G1.

We call such a complex an M -complex .

3.2. Construction.

Let U be an r-frame. We will construct by induction on the homological degree an M -
complex G of free S-modules with differential d and call it the M -homogenization of U.

Set G0 = S and G1 = S(−m1) ⊕ . . . ⊕ S(−mr). Let v̄1, . . . , v̄p and ū1, . . . , ūq be the
given bases of Ui and Ui−1 respectively. Let u1, . . . , uq be the basis of Gi−1 = Sq chosen on
the previous step of the induction. Introduce v1, . . . , vp that will be a basis of Gi = Sp. If
∂(v̄j) =

∑
1≤s≤q αsj ūs with αsj ∈ k, then set

deg(vj) = lcm
(

deg(us) |αsj �= 0
)

, note that lcm(∅) = 1

Gi = ⊕1≤j≤p S(−deg(vj))

d(vj) =
∑

1≤s≤q

αsj
deg(vj)
deg(us)

us .

We have that Coker(d1) = S/M . The differential d is multihomogeneous by construction.
Straightforward verification shows that G is a complex. We say that the complex G is
obtained from U by M -homogenization .
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3.3. Remark.

Simplicial resolutions, introduced in [BPS], are obtained by M -homogenizing the augmented
oriented chain complex of a simplicial complex. Cellular resolutions, introduced in [BS],
are obtained by M -homogenizing the augmented oriented chain complex of a regular cell
complex. CW-cellular resolutions, introduced in [JW], are obtained by M -homogenizing the
complex computing the homology of a CW-complex.

3.4. Example.

Consider the monomial ideal L = (x5, xy, y5) and the 3-frame

0 −→ k


1

1
1




−−−−−→ k2


−1 0 1

1 −1 0
0 1 −1




−−−−−−−−−−−−−−−−−−−−→ k3 ( 1 1 1 )−−−−−−−−−−−→ k .

The L-homogenization of this frame is

0 → A(−x5y5)


 y4

x4

1




−−−−−→A(−x5y) ⊕ A(−xy5) ⊕ A(−x5y5)


−y 0 y5

x4 −y4 0
0 x −x5




−−−−−−−−−−−−−−−−−−−−→

A(−x5) ⊕ A(−xy) ⊕ A(−y5)
(x5 xy y5 )−−−−−−−−−−−−−−−−−→A .

3.5. Construction.

Let G be an M -complex. We call

U = G ⊗ S/(x1 − 1, . . . , xn − 1)

the frame of G (or the dehomogenization of G). Thus, U is a finite complex of finite
k-vector spaces with fixed basis and its differential matrices are obtained by setting x1 =
1, . . . , xn = 1 in the differential matrices of G. We say that the complex U is obtained from
G by dehomogenization . Observe that:

3.6. Proposition.

If G is the M -homogenization of a frame U, then U is the frame of G.

3.7. Construction.

Let G be an M -complex, and let m ∈ M be a monomial. Denote by G(≤ m) the subcomplex
of G that is generated by the multihomogeneous basis elements of multidegrees dividing m.
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Set v = lcm(mi|mi divides m). Then G(≤ m) = G(≤ v) because all the basis elements of
G have multidegrees in LM by Construction 3.2.

The following criterion for exactness is very useful:

3.8. Theorem.

Let G be an M -complex.
(1) For each monomial m ∈ M , the component of G of multidegree m is isomorphic to

the frame of the complex G(≤ m).
(2) The complex G is a free multigraded resolution of S/M if and only if for all multi-

degrees m ∈ LM the frame of the complex G(≤ m) is exact.

Proof: Let P be a free multigraded module generated by t and suppose that P appears in
homological degree i in G. Then P contributes to the component of G of multidegree m if
and only if the multidegree deg(t) divides m; in this case P contributes the one-dimensional

vector space
m

deg(t)
k. Therefore the component of G of multidegree m is isomorphic to the

frame of the complex G(≤ m). We proved (1).
We will prove (2). The complex G is multigraded, so it suffices to check exactness

in each multidegree. Note that G0/d(G1) = S/M . Therefore, it suffices to check exactness
in each multidegree m ∈ M . By (1), it follows that the complex G is exact if and only if for
all multidegrees m ∈ M the frame of the complex G(≤ m) is exact.

Now, let m ∈ M be a multidegree. Set v = lcm(mi|mi divides m). Then G(≤ m) =
G(≤ v) because all the basis elements of G have multidegrees in LM by Construction 3.2.
Therefore, it suffices to consider only the multidegrees in LM .

3.9. Remark.

Theorem 3.8 was proved in the following special cases:
◦ when the frame of G is the augmented oriented chain complex of a simplicial complex

[BPS, Lemma 2.2].
◦ when the frame of G is the augmented oriented chain complex of a regular cell

complex [BS, Proposition 1.2].

Our next result shows that a free resolution FM of S/M contains as subcomplexes
the minimal free resolutions for certain smaller monomial ideals.

3.10. Theorem.

Let u ∈ M be a monomial. Consider the monomial ideal (M≤u) generated by the monomials
{mi |mi divides u}. Fix a multihomogeneous basis of a multigraded free resolution FM of
S/M .

(1) The subcomplex FM (≤ u) is a free multigraded resolution of S/(M≤u).
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(2) If FM is the minimal free multigraded resolution of S/M , then the subcomplex FM (≤ u)
is independent of the choice of basis.

(3) If FM is minimal, then so is FM (≤ u).

Proof: First, note that replacing u by lcm(mi|mi divides u) changes neither the ideal
(M≤u) nor the complex FM (≤ u). So, we can assume that u ∈ LM .

By Theorem 3.8, it suffices to show that for every m ∈ L(M≤u) the frame of the

complex
(
FM (≤ u)

)
(≤ m) is exact. The frame of

(
FM (≤ u)

)
(≤ m) is equal to the frame of

FM (≤ u∧m), where u∧m is the meet of u and m in the lcm-lattice LM . Since FM is exact,
by Theorem 3.8 it follows that the frame of FM (≤ u ∧ m) is exact. We proved (1).

(2) holds because the multidegrees of the basis elements in FM are the same in any
choice of basis; they are determined by the multigraded Betti numbers.

3.11. Remark.

Theorem 3.10 was proved in the following special cases:
◦ when FM is the minimal free multigraded resolution of S/M [GHP, Theorem 2.1].
◦ when FM is a cellular resolution [BPS, Lemma 2.2].

3.12. Example.

We illustrate Theorem 3.10. Let A = k[x, y, z], T = (x2, xy, xz, y2), and m = xyz. Then
(T≤xyz) = (xy, xz). The minimal free multigraded resolution of A/T is

FT : 0 → A




z
x
−y
0




−−−−−−−→ A4




y 0 z 0
−x z 0 y
0 −y −x 0
0 0 0 −x




−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A4 (x2 xy xz y2)−−−−−−−−−−−−−−−−−→ A → 0 .

The subcomplex FT (≤ xyz) is

(FT )(≤ xyz) : 0 → A

(
z
−y

)
−−−−−−−→ A2 (xy xz)−−−−−−−−→ A → 0 .

It is the minimal free multigraded resolution of A/(xy, xz).

4. Degeneration

4.1. Definition.

Let M ′ be a monomial ideal in a polynomial ring S′ over the same ground field k. We say
that M is a reduction of M ′ if there exists a map f : LM ′ → LM which is a bijection
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on the atoms and preserves lcm’s. In what follows, we will use f to order the minimal
monomial generators m′

1, . . . , m
′
r of M ′ so that f(m′

i) = mi for each i. We call the map f a
degeneration . We say that M and M ′ are lcm-equivalent if f is an isomorphism.

4.2. Remark.

The following are special cases of degeneration:
◦ The ideal M is a reduction of its generic deformations, constructed in [BPS, Sec-

tion 4].
◦ The radical rad(M) is a reduction of M . The degeneration map f maps each mono-

mial to its radical.
◦ The ideal M and its polarization Mpol are lcm-equivalent.

4.3. Construction.

Let F′ be a free multigraded resolution of S′/M ′ with a fixed multihomogeneous basis
u′

1, . . . , u
′
p. Let f(F′) be the free S-module with basis denoted f(u′

1), . . . , f(u′
p), so that

for each i the element f(u′
i) has the same homological degree as u′

i, and the multidegree of
f(u′

i) is f(deg(u′
i)). We define differential ∂ on f(F′) as follows: for a basis element u′ if

∂′(u′) =
∑

1≤s≤q

αsj
deg(u′)
deg(u′

s)
u′

s

with u′
s elements in the fixed basis, and αsj ∈ k, then we set

∂
(
f(u′)

)
=

∑
1≤s≤q

αsj
f(deg(u′))
f(deg(u′

s))
f(u′

s) .

We say that f(F′) is an f-degeneration of F′. Thus, f(F′) is multigraded. Straightforward
verification shows that f(F′) is a complex. Note that F′ and f(F′) have the same frame.

The following important property holds by construction:

4.4. Lemma.

If w is an element in the fixed basis of F′, then the corresponding basis element f(w) in the
complex f(F′) has multidegree f(deg(w)).

4.5. Example.

Let A′ = k[x, y], N ′ = (x5, x2y2, y5) and A = k[a, b, c], N = (ab, bc, ac). Define f : LN ′ →
LN by f(x5) = ab, f(x2y2) = bc, f(y5) = ac, f(x5y2) = abc, f(x2y5) = abc, f(x5y5) = abc.
Then f is a bijection on the atoms and preserves lcm’s; however f is not an isomorphism.
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The minimal free multigraded resolution FN ′ of A′/N ′ is:

FN ′ : 0 → A′2


 y2 0

−x3 y2

0 −x3




−−−−−−−−−−−−−→ A′3 (x5 x2y2 y5)−−−−−−−−−−−−−−→ A′ → 0 .

The f -degeneration f(FN ′ ) is:

f(FN ′ ) : 0 → A2


 c 0

−a a
0 −b




−−−−−−−−−−−−−→ A3 (ab bc ac)−−−−−−−−−−−−−−→ A → 0 .

4.6. Theorem.

Let M be a reduction of M ′. Let F′ be a free multigraded resolution of S′/M ′ with a fixed
multihomogeneous basis with degrees in LM ′ . The f-degeneration f(F′) is a free multigraded
resolution of S/M .

Proof: We apply Theorem 3.8. Clearly, f(F′) is an M -complex.
For every monomial m ∈ LM , consider the set of monomials f−1(m) and set

m′ = lcm{ v′ | v′ ∈ f−1(m) } .

Since f preserves lcm’s, it follows that f(m′) = m. Thus, m′ is the top (greatest) element
in f−1(m). By Lemma 4.4, it follows that f(F′)(≤ m) and F′(≤ m′) have the same frame.
Since F′ is exact, by Theorem 3.8 it follows that the frame of f(F′)(≤ m) is exact.

4.7. Remark.

Theorem 4.6 was proved in the following special cases:
◦ when F′ is the minimal free multigraded resolution of S′/M ′ [GPW, Theorem 3.3].
◦ when M ′ is a generic deformation of M [BPS, Theorem 4.3].

The following result is useful in obtaining bounds for the Betti numbers:

4.8. Theorem.

Let M be a reduction of M ′. The total Betti numbers of S/M are smaller or equal to those
of S′/M ′.

Proof: This follows from Theorem 4.6 applied to the minimal free multigraded resolution
of S′/M ′.

4.9. Remark.

Theorem 4.8 was proved in the special case when M ′ is a generic deformation of M in [BPS,
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Corollary 4.4]. We apply Theorem 4.8 in the next section, in order to obtain a lower bound
on the Betti numbers in Corollary 7.1.

4.10. Construction.

Let M be a reduction of M ′. Let F′ be a multigraded free resolution of S′/M ′ with a
fixed multihomogeneous basis. We say that the M -homogenization of the frame of F′ is
an f-homogenization of F′, and denote it by f̃(F′). The role of f in this construction is
only to provide an ordering of the minimal monomial generators m′

1, . . . , m
′
r of M ′ so that

f(m′
i) = mi for each i.

4.11. Example.

This example illustrates that the f -degeneration and the f -homogenization could differ.
Consider the monomial ideal N ′ = (x2, y2, z2) which lcm-equivalent to N = (x3, y3, z3) in
the ring A = k[x, y, z]. Let F′ be the non-minimal free resolution

F′ : 0 → A2




z2 −z2

x2 0
−y2 0
0 1




−−−−−−−→ A4


 y2 0 z2 y2z2

−x2 z2 0 −x2z2

0 −y2 −x2 0




−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A3 (x2 y2 z2)−−−−−−−−−−−→ A → 0 .

Its frame is

0 → k2




1 −1
1 0
−1 0
0 1




−−−−−−−→ k4


 1 0 1 1

−1 1 0 −1
0 −1 −1 0




−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ k3 (1 1 1)−−−−−−−−−−−→ k → 0 .

Therefore, the f -homogenization is

f̃(F′) : 0 → A2




z3 −1
x3 0
−y3 0
0 1




−−−−−−−→ A4


 y3 0 z3 y3

−x3 z3 0 −x3

0 −y3 −x3 0




−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A3 (x3 y3 z3)−−−−−−−−−−−→ A → 0 .

On the other hand, the f -degeneration is

f(F′) : 0 → A2




z3 −z3

x3 0
−y3 0
0 1




−−−−−−−→ A4


 y3 0 z3 y3z3

−x3 z3 0 −x3z3

0 −y3 −x3 0




−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A3 (x3 y3 z3)−−−−−−−−−−−→ A → 0 .
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From Constructions 4.3 and 4.10, we see that:

4.12. Lemma.

Let M be a reduction of M ′. Let F′ be a multigraded free resolution of S′/M ′ with a fixed
multihomogeneous basis with degrees in LM ′ . The f-homogenization and the f-degeneration
of F′ coincide if and only if the following property (*) is satisfied: for every w in the fixed

basis we have that deg(w) = lcm
(

deg(us) |αsj �= 0
)

, where ∂(w) =
∑

1≤s≤q msjus with us

elements in the fixed basis (note that each msj is a monomial multiplied by a scalar).

4.13. Theorem.

Let M be a reduction of M ′. Let F′ be a minimal free multigraded resolution of S′/M ′ with
a fixed multihomogeneous basis.

(1) The f-homogenization f̃(F′) and the f-degeneration f(F′) coincide and are the same
free resolution of S/M .

(2) The free resolution f(F′) = f̃(F′) does not depend on the choice of basis.
(3) If S/M and S′/M ′ have the same total Betti numbers, then the free resolution f(F′) =

f̃(F′) is minimal.
(4) If f is an isomorphism, then the free resolution f(F′) = f̃(F′) is minimal.

Proof: First, we will prove (1). We will show that Lemma 4.12 can be applied. Let w be
a multihomogeneous element in some multihomogeneous basis of F′ and

∂′(w) =
∑

1≤s≤q

ajsus ,

where us are multihomogeneous basis elements; and note that each asj is a monomial mul-
tiplied by a scalar. Since F′ is minimal, at least one of the coefficients ajs does not vanish.
We will prove that deg(w) = lcm(deg(us) | ajs �= 0 ). Assume the opposite. Therefore, there
exists a monomial b �= 1 such that

∂′(w) = b
∑

1≤s≤q

ãjsus ,

where b ãjs = ajs. Since ∂′2(w) = 0, it follows that ∂′2(
∑

1≤s≤q ãjsus) = 0. Therefore,
∂′(w) ∈ b Ker(∂′). By Nakayama’s Lemma, it follows that ∂′(w) is not an element in any
multihomogeneous minimal system of generators of the kernel. On the other hand, ∂′(w) is
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an element in a multihomogeneous minimal system of generators of the kernel because F′ is
minimal. This is a contradiction.

Thus, deg(w) = lcm(deg(us) | ajs �= 0 ).

By Lemma 4.12, it follows that the f -homogenization f̃(F′) and the f -degeneration
f(F′) coincide. By Theorem 4.6, f(F′) is a free multigraded resolution of S/M .

(2) holds since the multidegrees of the basis elements in F′ are the same in any choice
of basis; they are determined by the multigraded Betti numbers. (3) is clear. Furthermore,
(4) follows from (3) and Theorem 2.2.

4.14. Corollary.

The M -homogenization of any frame of the minimal multigraded free resolution F of S/M

is F.

4.15. Corollary.

Let M be a reduction of M ′. Suppose that S/M and S′/M ′ have the same total Betti numbers.
There exists a multihomogeneous basis of the minimal free multigraded resolution F of S/M ,
such that the M ′-homogenization of the frame of F is a minimal free multigraded resolution
of S′/M ′.

Proof: Let F′ be a minimal free multigraded resolution of S′/M ′ with a fixed multiho-
mogeneous basis F ′. By Theorem 4.13, the M -homogenization of the frame of F′ is F with
a fixed multihomogeneous basis, which we denote by F . Thus, in the bases F ′ and F , the
frames of F′ and F coincide. Since the resolution F′ is minimal, by Corollary 4.14 we have
that the M ′-homogenization of the frame of F′ is F′. Therefore, the M ′-homogenization of
the frame of F is F′.

One may ask if Corollary 4.15 does not depend on the choice of basis, that is, if the
M ′-homogenization of any frame of F is a minimal multigraded free resolution of S′/M ′.
The answer is negative by Example 7.3.

4.16. Theorem.

Let M be a reduction of M ′.
(1) If F′ is a cellular free resolution of S′/M ′, then the f-homogenization and the f-

degeneration of F′ coincide.
(2) Let T′ be Taylor’s resolution of S′/M ′ (with the basis used in the construction of

Taylor’s resolution). The f-degeneration and the f-homogenization of T′ coincide,
and are the Taylor’s resolution of S/M .

(3) Suppose that M and M ′ are generated by regular monomial sequences. Let K′ be
the Koszul resolution of S′/M ′ (with the basis used in the construction of the Koszul
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complex). The f-degeneration and the f-homogenization of K′ coincide, and are the
Koszul resolution of S/M .

Proof: (1) holds by Lemma 4.12.
(3) is a particular case of (2).
(2) holds because f preserves lcm’s, and therefore we have that

f(lcm(m′
i | i ∈ σ)) = lcm

(
f(m′

i) | i ∈ σ
)

for any subset σ of {1, . . . , r}.

5. Scarf complexes

5.1. Construction.

For each subset τ of {1, . . . , r} we set mτ = lcm(mi | i ∈ τ); by convention, lcm(∅) = 1. The
Scarf complex of M is the simplicial complex

ΩM =
{

τ ⊆ {1, . . . , r} | mτ �= mσ for all σ ⊆ {1, . . . , r} other than τ
}

.

In [BPS] it is shown that ΩM coincides with a simplicial complex introduced by Scarf in
the context of mathematical economics. Denote by FΩM

the M -homogenization of the aug-
mented oriented simplicial chain complex of ΩM . Following [BPS], we call M a Scarf ideal
if FΩM

is the minimal free resolution of S/M , and we say that the complex FΩM
is its Scarf

resolution . In this case we say that ΩM supports a Scarf resolution.
The multidegree of a vertex vi in ΩM is mi. The multidegree of a face τ ∈ ΩM is

deg(τ) = lcm
(
deg(v) | v is a vertex of τ

)
; this is the multidegree of the basis element τ in

FΩM
. The multidegrees of the faces of ΩM are called the Scarf multidegrees .

5.2. Example..

The Scarf complex of L = (x3, xy, y5) has three vertices x3, xy, y5 and the two edges {x3, xy},
{xy, y5}.

5.3. Theorem.

(1) A finite simplicial complex with r vertices is the Scarf complex of a monomial ideal
if and only if it is not the boundary of the simplex with r vertices.

(2) A finite simplicial complex Ω supports a Scarf resolution if and only if Ω is acyclic.

Proof: Let Ω be a finite simplicial complex. If Ω is a point or ∅, then (1) and (2) hold.
Assume that Ω has at least two vertices.
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(1) For each face τ of Ω introduce a variable xτ . Consider the polynomial ring B =
k[xτ | τ ∈ Ω, τ �= ∅ ]. Set the multidegree of each vertex v of Ω to be deg(v) =

∏
v/∈τ∈Ω xτ .

It follows that a face σ has multidegree

deg(σ) = lcm(deg(v) | v ∈ σ) =
∏

σ �⊆τ∈Ω

xτ .

Therefore, every two faces have distinct multidegrees. Let Θ be the simplex on the vertices
of Ω. If µ is a face of Θ and µ /∈ Ω, then µ has multidegree z, where z is the product of
all the variables. Let JΩ be the ideal generated by the multidegrees of the vertices. The
complex Ω has at least two nonfaces if and only if it is not the boundary of Θ. Therefore, Ω
is the Scarf complex of the ideal JΩ if and only if Ω is not the boundary of Θ.

(2) If Ω supports a Scarf resolution, then it is acyclic by Theorem 3.8 applied to the
multidegree m that is the lcm of all the minimal monomial generators of the ideal. Now,
suppose that Ω is acyclic. We will show that the ideal JΩ constructed in (1) is a Scarf
ideal. The lcm of its minimal monomial generators is z. The lcm-lattice consists of Scarf
multidegrees (including the bottom element 1) and the top element z. The interval [1, z) is
the face poset of Ω. Therefore, the order complex of the open interval (1, z) is the barycentric
subdivision of Ω (which is homotopic to Ω), so it is acyclic. By Theorem 2.2 it follows that
all nonzero Betti numbers of S/JΩ are concentrated in the multidegrees of the faces of Ω.
By Lemma 3.1 in [BPS], we conclude that Ω supports the Scarf resolution of JΩ.

As a corollary, we characterize the possible sequences of Betti numbers of Scarf ideals:

5.4. Corollary.

Let b0 = 1, b1, b2, . . . be a finite sequence of natural numbers. For each i ≥ 0, set αi =∑
j≥0(−1)jbi+j. The sequence b1, b2, . . . is the sequence of total Betti numbers of a Scarf ideal

if and only the sequence α0, α1, . . . is the Hilbert function of the quotient k[x1, . . . , xα1 ]/
(
T +

(x2
1, . . . , x

2
α1

)
)

for some squarefree monomial ideal T .

Proof: By Theorem 5.3, it follows that b1, b2, . . . is the sequence of Betti numbers of a
Scarf ideal if and only if b0 = 1, b1, b2, . . . is the f -vector of an acyclic complex Ω, that is, bi

is the number of i-dimensional faces of Ω. The f -vectors of acyclic simplicial complexes are
characterized in [Ka].

6. Nearly Scarf ideals

Throughout this section (except in 6.5), Ω is a a finite simplicial complex with at least
2 vertices. We say that the ideal JΩ, constructed in the proof of Theorem 5.3(1), is the
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nearly-Scarf ideal of Ω. It is a squarefree ideal in the polynomial ring B = k[xτ | τ ∈
Ω , τ �= ∅]. If Ω is acyclic, then JΩ is a Scarf ideal. We use the notation introduced in the
previous section.

6.1. Theorem.

Let J be a monomial ideal in S whose lcm-lattice consists of the Scarf multidegrees (including
the bottom element 1) and a top element y. Let Ω be the Scarf complex of J , and

C : 0 → Cdim(Ω)(Ω, k) → . . . → C0(Ω, k) → C−1(Ω, k) → 0

be the oriented augmented homology chain complex of Ω with differential ∂. For each i,
choose a set {q1, . . . , qp} of cycles whose classes in Ker(∂i)/Im(∂i+1) form a basis and set

φi : kdim(H̃i(Ω,k)) → Ker(∂i)

ej �→ qj ,

where e1, . . . are the standard basis elements. Let U be the complex

U : 0 → kdimH̃dim(Ω)(Ω,k) → . . . → Ci(Ω, k) ⊕ kdimH̃i−1(Ω,k) → . . . → C−1(Ω, k) → 0

with differential ∂ ⊕ φ. The J-homogenization of the complex U is the multigraded minimal
free resolution of S/J .

Proof: Let σ1 + . . . + σp, where σj ∈ Ω, be a cycle that is non-trivial in the homology

H̃i(Ω, k)). We will prove that lcm(deg(σj) | 1 ≤ j ≤ p) = y. Assume the opposite. It
follows that lcm(deg(σj) | 1 ≤ j ≤ p) = deg(τ) for some τ ∈ Ω. By the definition of the
Scarf complex, it follows that all the faces σ1, . . . , σp are subfaces of τ . But τ is a simplex,
contradicting the fact that σ1 + . . . + σp is non-trivial in homology. Thus, lcm(deg(σj) | 1 ≤
j ≤ p) = y.

Denote by G the J-homogenization of the complex U. We will apply Theorem 3.8
in order to show that G is exact. Let m ∈ LJ . First, suppose that m = y. Then the frame
of G(≤ m) is the complex U, which is exact. Now, suppose that m = deg(τ) for some
τ ∈ Ω. Then the frame of G(≤ m) is the oriented augmented homology chain complex of
the simplex τ , so it is exact.

6.2. Corollary.

The ideals J and JΩ have isomorphic lcm-lattices. The JΩ-homogenization of the complex U
(in Theorem 6.1) is the multigraded minimal free resolution of B/JΩ.

Proof: Set z to be the product of all the variables in the ring B = k[xτ | τ ∈ Ω, τ �= ∅ ].
Recall that the lcm-lattice of JΩ consists of the Scarf multidegrees (including the bottom
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element 1) and the top element z.

We denote by |Ω| the number of nonempty faces of the complex Ω; it is equal to
the degree of the monomial z. For a face σ ∈ Ω, the degree of the monomial deg(σ) =∏

{τ∈Ω|σ �⊆τ} xτ is equal to the number |{τ ∈ Ω|σ �⊆ τ}| . Furthermore, let

χ̃(Ω, k) =
dim(Ω)∑
i=−1

(−1)idimH̃i(Ω, k)

be the reduced Euler characteristic of Ω.

6.3. Corollary.

The Hilbert series of B/JΩ is

χ̃(Ω, k) t|Ω| − ∑
σ∈Ω (−1)dim(σ) t|{τ∈Ω|σ �⊆τ}|

(1 − t)|Ω|

Furthermore,

pd(B/JΩ) =
{

dim(Ω) + 1 if H̃dim(Ω)(Ω, k) = 0
dim(Ω) + 2 otherwise,

codim(JΩ) = 2

reg(JΩ) = max
{

|Ω| − min{i | H̃i−2(Ω, k) �= 0} ,

max{|{τ ∈ Ω|σ �⊆ τ}| − dim(σ) − 1 |σ ∈ Ω }
}

.

Proof: The formulas for the Hilbert series and the projective dimension follow from Corol-
lary 6.2. The formula for the regularity holds because

reg(JΩ) = max
{

max{ |Ω| − p
∣∣∣ bp,z(S/JΩ) �= 0} ,

max{ (the degree of deg(σ) ) − p
∣∣∣ bp,deg(σ)(S/JΩ) �= 0, σ ∈ Ω }

}

= max
{

max{ |Ω| − i
∣∣∣ H̃i−2(Ω, k) �= 0 } ,

max{|{τ ∈ Ω|σ �⊆ τ}| − dim(σ) − 1
∣∣∣ σ ∈ Ω }

}
.
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It remains to compute the codimension. The ideal JΩ is squarefree, so it is the
Stanley-Reisner ideal of a simplicial complex ∆ on vertex set {∅ �= τ ∈ Ω}. We have that
dim(B/JΩ) = dim(∆) + 1. The ring B has |Ω| variables, so codim(JΩ) = |Ω| − dim(∆) − 1.

By the definition of JΩ it follows that {τ1, . . . , τi} ∈ ∆ if and only if for each ∅ �=
τ ∈ Ω there exists a σ ∈ Ω such that σ �⊇ τ and σ /∈ {τ1, . . . , τi}. Therefore, ∆ has no
faces of dimension |Ω| − 2. Also, for every two disjoint nonempty τ1, τ2 ∈ Ω, we have that
{∅ �= τ ∈ Ω} \ {τ1, τ2} is a face in ∆. Hence, dim(∆) = |Ω| − 3.

6.4. Corollary.

The ring S/JΩ is Cohen-Macaulay if and only if Ω is a forest.

Proof: By the Auslander-Buchsbaum formula, S/JΩ is Cohen-Macaulay if and only if
pd(S/JΩ) = codim(JΩ) = 2. This happens if and only if either dim(Ω) = 0 and H̃0(Ω, k) �= 0,
or dim(Ω) = 1 and H̃1(Ω, k) = 0. In the former case Ω is a set of points, in the latter Ω is a
collection of trees.

6.5. Remark.

As a consequence, we obtain a new proof of the following well-known fact in algebraic topol-
ogy: for a finite simplicial complex Ω, one has

dim(Ω)∑
i=−1

(−1)idimH̃i(Ω, k) =
∑
σ∈Ω

(−1)dim(σ) .

Proof: Suppose that Ω has r vertices. If Ω is the boundary of the simplex with r vertices,
or a point, or ∅, then the formula holds. Otherwise, consider the nearly Scarf ideal JΩ. Let

h(t) = χ̃(Ω, k) t|Ω| −
∑
σ∈Ω

(−1)dim(σ) t|{τ∈Ω|σ �⊆τ}|

be the numerator of the Hilbert series from Corollary 6.3. Since codim(JΩ) �= 0, it follows
that h(1) = 0. Hence

0 = χ̃(Ω, k) −
∑
σ∈Ω

(−1)dim(σ) .

7. Monomial ideals with smallest Betti numbers

Using nearly-Scarf ideals, we obtain a lower bound for the Betti numbers of a monomial
ideal. Furthermore, we describe the structure of the minimal free resolution for a monomial
ideal with minimal Betti numbers among all monomial ideals with a fixed Scarf complex.
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Let Ω be the Scarf complex of a monomial ideal M . For a chain q in Ω, we define
deg(q) to be the lcm of the degrees of the faces in its support. For a monomial m ∈ LM , we
define the subcomplex Ω�m = {τ ∈ Ω |deg(τ) divides m} of Ω.

7.1. Theorem.

Let Ω be the Scarf complex of a monomial ideal M . Denote by fi(Ω) the number of i-
dimensional faces of Ω.

(1) We have that

bi(S/M) ≥ fi−1(Ω) + dim H̃i−2

(
Ω; k

)
.

(2) Suppose that for each i,

bi(S/M) = fi−1(Ω) + dim H̃i−2

(
Ω; k

)
.

Then there exists a basis of H̃∗
(
Ω; k

)
, which satisfies the following property:

(7.2)
for every multidegree m ∈ LM ,

the elements whose degrees divide m form a basis of H̃∗
(
Ω�m; k

)
.

Moreover, using any basis that satisfies (7.2) as the choice of cycles in Theorem 6.1,
the M -homogenization of the frame U is the minimal free resolution of S/M .

Proof: First, we will prove (1). We use the notation and the construction in the proof
of Theorem 5.3(1). Let z be the product of all the variables in the polynomial ring B =
k[xτ | τ ∈ Ω, τ �= ∅ ]. Consider the map f : LM → LJΩ that preserves each monomial that is
the multidegree of a face in Ω, and maps all other monomials to z. This map is a bijection
on the atoms, and preserves lcm’s. Hence, the nearly-Scarf ideal JΩ is a reduction of the
ideal M . By Theorem 4.8

bi(S/M) ≥ bi(B/JΩ)

for all i.
We will compute the Betti number bi(B/JΩ). By Theorem 2.2 we get

bi,z(B/JΩ) = dim H̃i−2

(
(1, z) ; k

)
= dim H̃i−2

(
Ω; k

)
,

since the order complex of the open interval (1, z) (in LJΩ) and Ω are homotopic. By
Theorem 2.2 we also get ∑

u∈LJΩ , u �=z

bi,u(B/JΩ) = fi−1(Ω) .
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Therefore,

bi(B/JΩ) = bi,z(B/JΩ) +
∑

u∈LJΩ , u �=z

bi,u(B/JΩ)

= fi−1(Ω) + dim H̃i−2

(
Ω; k

)
.

Thus, (1) is proved.
We will prove (2). We use the notation introduced in Theorem 6.1. Denote by FM

the minimal free resolution of S/M over S.
First, we will show that there exists a basis with the desired properties. The M -

homogenization CM of the frame C is the algebraic Scarf complex of M . Fix a basis F of
FM that contains the basis C of CM . We can write F = C∪V as a disjoint union. The number
of elements in the set Fi is bi(S/M) = fi−1(Ω) + dim H̃i−2

(
Ω; k

)
. The number of elements

in the set Ci is fi−1(Ω). Therefore, the number of elements in the set Vi is dim H̃i−2

(
Ω; k

)
.

Consider the frame U of FM ; denote it’s differential by d and it’s restriction to the
subcomplex C by ∂. Since FM is a free resolution, by Theorem 3.8(2) it follows that U is
exact.

We will show by induction on i ≥ 1 that di(Vi) ⊆ span(Ci−1) is a set of cycles

whose images in H̃i−2

(
Ω; k

)
form a basis. For i = 1 the statement is obvious since d1 = ∂0.

Let i > 1. The induction hypothesis guarantees that Ker(di−1) = Ker(∂i−2) since for any
v ∈ span(Vi−1) and c ∈ span(Ci−1) the equality 0 = di−1(v + c) = di−1(v) + ∂i−2(c) implies
that v = 0. Since U is exact, the vectors di(Vi) ∪ di(Ci) span Ker(di−1) = Ker(∂i−2),
so the cycles di(Vi) generate Ker(∂i−2)/Im(∂i−1). Since the number of elements in Vi is

dim H̃i−2(Ω, k), it follows that their classes form a basis.

Thus, F = C ∪ V and V is a basis of H̃∗
(
Ω; k

)
. Let m ∈ LM . By Theorem 3.8(2),

the frame of FM (≤ m) is exact. By Construction 3.7, the basis of this frame consists of the
elements in F whose degrees divide m. Since CM (≤ m) is the oriented augmented homology
chain complex of Ω�m, it follows that the elements in V whose degrees divide m form basis

of H̃∗
(
Ω�m; k

)
.

We have shown that every multihomogeneous basis of FM , which contains C, satisfies
condition (7.2).

Now, let V be a basis of H̃∗
(
Ω; k

)
that satisfies condition (7.2). We will show that

the M -homogenization G of the frame U is the minimal free resolution of S/M . For every
m ∈ LM , the frame of G(≤ m) is

0 → k
dimH̃dim(Ω�m)(Ω�m,k) → . . .

. . . → Ci(Ω�m, k) ⊕ kdimH̃i−1(Ω�m,k) → . . . → C−1(Ω�m, k) → 0 ,
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so it is exact. By Theorem 3.8(2), it follows that G is exact. Therefore, G is a multigraded
free resolution of S/M . Since the ranks of the free modules in G coincide with the Betti
numbers, we conclude that the resolution is minimal.

7.2. Remark.

The weaker lower bound bi(S/M) ≥ fi−1(Ω) is proved in [BPS, remark before Lemma 3.1].

7.3. Example.

This example shows that Corollary 4.15 and Theorem 7.1(2) depend on the choice of basis.
We construct two ideals M and M ′ such that:

◦ M is a reduction of M ′

◦ M is nearly Scarf

◦ M and M ′ have the same Scarf complex

◦ M and M ′ have the same total Betti numbers

◦ both M and M ′ satisfy equalities in Theorem 7.1(1),

but there exists a multihomogeneous basis of the minimal free resolution F of S/M so that
the M ′-homogenization of F is not exact, so is not a free resolution of S′/M ′.

Let Ω be the simplicial complex on 7 vertices that consists of two empty triangles
and an edge with a common vertex: denote by a, . . . , f the vertices and

j1 = {a, b}, j2 = {b, c}, j3 = {a, c}, j4 = {a, d},
j5 = {d, e}, j6 = {a, e}, j7 = {a, f}

the edges. Let M be the nearly Scarf ideal JΩ. Also, consider the ideal

M ′ = (deg(a), deg(b), deg(c), xdeg(d), xdeg(e), deg(f) ) .

We consider both ideals in the polynomial ring V = k[a, . . . , f, j1, . . . , j7, x]. The monomial
z = a . . . fj1 . . . j7 is the top element in LM . The lcm-lattice LM ′ consists of LM and the
monomial xz. The two ideals have the same Scarf complex and the same total Betti numbers.
However, 2 = bV

3 (V/M) = bV
3,z(V/M) is in one multidegree, whereas 2 = bV

3 (V/M ′) is in two

different multidegrees bV
3,z(V/M ′) = bV

3,xz(V/M ′) = 1.

Using the chains

q1 = j1 + j2 − j3 + j4 + j5 − j6 and q2 = j4 + j5 − j6,
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which form basis of H̃∗
(
Ω; k

)
, we obtain the following complex U as in Theorem 6.1:

U : 0 → k2




1 0
1 0
−1 0
1 1
1 1
−1 −1
0 0




−−−−−−−−−−→ k7




−1 0 −1 −1 0 −1 −1
1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1




−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ k6 (1 1 1 1 1 1)−−−−−−−−−−−−−−→ k → 0 .

By Theorem 6.1, the M -homogenization of U is the minimal free resolution F of V/M .
However, the M ′-homogenization G of U is not a minimal free resolution of V/M ′ since it
is not exact by Theorem 3.8(2): the frame of G(≤ z) is isomorphic to the reduced homology
chain complex of the subcomplex of Ω supported on the vertices a, b, c, f , which is not acyclic.

On the other hand, using the chains

p1 = j1 + j2 − j3 + j4 + j5 − j6 and p2 = j4 + j5 − j6,

which form basis of H̃∗
(
Ω; k

)
, we obtain the following complex U′ as in Theorem 6.1:

U′ : 0 → k2




1 1
1 1
−1 −1
1 0
1 0
−1 0
0 0




−−−−−−−−−−→ k7




−1 0 −1 −1 0 −1 −1
1 1 0 0 0 0 0
0 −1 1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1




−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ k6 (1 1 1 1 1 1)−−−−−−−−−−−−−−→ k → 0 .

The chains p1 and p2 satisfy condition (7.2) in Theorem 7.1(2). Hence V is a common frame
for F and F′. Thus, the M ′-homogenization of V is the minimal free resolution of V/M ′.

References

[BW] E. Batzies and V. Welker: Discrete Morse theory for cellular resolutions, J. Reine

Angew. Math. 543 (2002), 147–168.
[BPS] D. Bayer, I. Peeva, B. Sturmfels: Monomial resolutions, Math. Research Letters 5

(1998), 31–46.

21



[BS] D. Bayer and B. Sturmfels: Cellular resolutions, J. Reine Angew. Math. 502 (1998),
123–140.

[GHP] V. Gasharov, T. Hibi, I. Peeva: Resolutions of a-stable ideals, J. Algebra 254 (2002),
375–394.

[GPW] V. Gasharov, I. Peeva, and V. Welker: The lcm-lattice in monomial resolutions, Math.

Research Letters 6 (1999), 521–532.
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