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Abstract. In this paper we develop new methods for computing k-dimensional invariant manifolds of delayed
systems for k ≥ 2. Our current implementation is built for k = 2 only, but the numerical and
algorithmic challenges encountered in this case will be also present for any k > 1. For small delays,
we consider methods for approximating delay differential equations (DDEs) with ordinary differen-
tial equations (ODEs). Once these approximations are made, any existing method for computing
invariant manifolds of ODEs can then be used directly. We derive bounds on errors incurred by the
most natural of these approximations. For large delays, we extend to DDEs the method originally
introduced by Krauskopf and Osinga [Chaos, 9 (1999), pp. 768–774] for invariant manifolds of ODEs.
We test the convergence of the resulting algorithms numerically and further illustrate our approach
by computing two-dimensional unstable manifolds of equilibria in the context of phase-conjugate
feedback lasers.
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1. Introduction. Computation of invariant manifolds in ordinary differential equations
(ODEs) is an active research area with a variety of numerical approaches and many practical
applications. Invariant manifolds give great insight into the global dynamics of dynamical sys-
tems. Stable and unstable manifolds of invariant sets form a geometric skeleton of dynamics in
phase space; e.g., for a system with multiple attractors, a basin boundary can often be recov-
ered as a codimension-one stable manifold of a saddle point. On the other hand, nontransverse
intersections of stable and unstable manifolds give rise to homoclinic and heteroclinic bifurca-
tions. Several numerical methods for approximating higher-dimensional1 invariant manifolds
of ODEs have been developed over the years [1, 2, 3, 4, 5]; a recent overview and compari-
son of these can be found in [6]. For delay differential equations (DDEs), an algorithm for
computing one-dimensional invariant manifolds (in the Poincaré map) of periodic orbits has
been introduced by Krauskopf and Green in [7, 8]. Very little, however, has been done so
far to approximate higher-dimensional invariant manifolds of DDEs, though some relevant
theoretical convergence results can be found in [9].
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1The key challenge addressed by these methods is the “geometric stiffness” (discussed in section 2), typically

arising in all but one-dimensional invariant manifold computations. Thus, for the purposes of this paper, the
term “higher-dimensional” should always be interpreted as “higher-than-one-dimensional” manifolds.
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APPROXIMATING INVARIANT MANIFOLDS OF DDEs 1117

DDEs are used to model systems where the rate of change depends not only on the present
but also on past states of the system, e.g.,

(1) ẋ(t) = f(x(t), x(t− τ)).

Here x(t) ∈ R
n is the current system state, τ > 0 is the delay, and f : R

n × R
n �→ R

n is
a smooth function. For applications and examples of delayed systems, see [10, 11, 12, 13].
Equation (1) is a simplified case: in general there may be multiple and/or state-dependent
delays in the system, and the derivative terms themselves might also involve delays (leading
to “neutral delay equations”). For simplicity, we will restrict our exposition to the case of a
single constant delay (as in (1)), though the case of multiple delays can be treated similarly.
Even in this single-delay case, the analysis is significantly harder than for ODEs since the
phase space is now infinite-dimensional (the Banach space C of continuous functions from the
delay interval [−τ, 0] to R

n); see [14]. We provide a brief overview of DDEs in section 1.1.
In this paper we focus on methods for computing higher-dimensional invariant manifolds

of DDEs. Given an initial (k − 1)-dimensional manifold M0 ⊂ C, it is often necessary to
compute the k-dimensional manifold M by evolving M0 under the flow defined by (1). One
typical case is when the initial manifold M0 is chosen in the unstable linearized subspace of
an equilibrium. In this case the computed manifold would approximate the unstable man-
ifold of that equilibrium. In contrast, stable invariant manifolds of equilibria in DDEs are
infinite-dimensional. However, finite-dimensional submanifolds of stable manifolds can also
be approximated by similar methods.

We start by discussing a standard method for numerical integration of delayed systems.
Given a history φ ∈ C, it is easy to integrate the system forward in time [15]. Thus, it is
tempting to evolve individual points on M0 and to approximate M with a finite number of
such trajectories. However, the efficiency of such a method is low due to a nonuniform rate
of separation of trajectories inside the manifold. This phenomenon of “geometric stiffness” is
described in section 2. We note that a similar challenge already arises even for ODEs, and
a number of algorithms have been developed to get around this difficulty [1, 2, 3, 4, 5]. In
section 3 we show that a small-delay DDE can be approximated by the corresponding ODE
system, thus making these prior methods directly applicable. However, when the delay is
large, this simple ODE approximation becomes inaccurate, while its natural generalization
(section 4.1) is often prohibitively expensive. In section 4.2, we introduce a new/alternative
approach for the large-delay case: we extend to DDEs the method originally introduced by
Krauskopf and Osinga for ODEs [1]. We note that our discussion of approximation errors
and of computational cost of various algorithms is valid for any k ≥ 2, but our current
implementation of the algorithm in section 4.2 assumes k = 2.

We illustrate and compare the above approaches by computing several two-dimensional
unstable manifolds of equilibria. Numerical experiments are used to test the convergence of
our methods in section 5.1 for an explicitly known invariant manifold. In section 5.2 we use
the Arneodo system [16] with an artificial delay to show that our methods can also be used
to compute manifolds accumulating on limit cycles. Our last example (in section 5.3) shows
the usefulness of these new methods for analyzing the dynamics of phase-conjugate feedback
(PCF) laser systems previously studied by Green, Krauskopf, and collaborators [17, 8, 7, 18].
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Figure 1. The flow of a DDE (denoted by ψτ ) maps functions from one τ interval to another.

We conclude by discussing the limitations of our approach and listing several topics for future
research in section 6.

1.1. Delay differential equations: An overview. Equation (1) is posed on an n-dimen-
sional physical space, but its phase space C is infinite-dimensional; to initialize the system,
x(t) has to be specified on the interval [−τ, 0] since x(0) alone is insufficient to define the
evolution. For any given history φ ∈ C, we can numerically integrate the system given by (1)
to obtain its future state x(t, φ) [15]. Let ψt : C �→ C be the flow for (1) (see Figure 1). Our
general goal is to start with a (k − 1)-dimensional manifold M0 of points along with their
histories and generate a k-dimensional manifold M = ψt(M0).

A point x0 ∈ Rn is an equilibrium of (1) if

(2) f(x0, x0) = 0.

The above equation guarantees that, if the system spends τ seconds at state x0, it will remain
there indefinitely. The stable and unstable invariant manifolds of equilibria are defined as
usual [14]:

W s(x0) = {φ ∈ C : x(t, φ) → x0 as t→ ∞} ,(3)
W u(x0) = {φ ∈ C : x(t, φ) → x0 as t→ −∞} .(4)

We note that in general backward time integration is not always possible for DDEs. However,
if φ ∈W s(x0) or W u(x0), the conditions for backward continuation are satisfied [14].

Equation (1) can be linearized about the equilibrium x0 to obtain

(5) ẋ(t) = Ax(t) +Bx(t− τ),
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where A and B are the Jacobian matrices with respect to x(t) and x(t− τ), respectively; i.e.,

A(i, j) =
[
∂fi

∂xj(t)

]
x=x0

, B(i, j) =
[

∂fi

∂xj(t− τ)

]
x=x0

.

We can obtain the characteristic equation for (5) by looking for solutions of the form x(t) = eλt

(see [14, 19]):

(6) Δ(λ) ≡ det
(
λI −A−Be−λτ

)
= 0.

The roots (eigenvalues) λ of the characteristic equation (6) determine the local stability of
the equilibrium. The corresponding eigenvectors v ∈ R

n satisfy

(7) (λI −A−Be−λτ )v = 0.

If Re(λ) > 0 for any of the eigenvalues (where Re means the real part), the equilibrium
is unstable. Since the characteristic equation (6) is transcendental, it has infinitely many
eigenvalues, but the number of eigenvalues in (6) with Re(λ) > 0 is finite [14]. If Re(λ) 	= 0
for all eigenvalues, then the space C can be decomposed into Eu ⊕Es, where Eu is the set of
initial histories of solutions of (5) that approach the equilibrium as t → −∞. Similarly, Es

is the set of initial histories of solutions of (5) that approach the equilibrium as t → ∞ [14].
Moreover, W s(x0) and W u(x0) are tangential to Es and Eu, respectively (at the equilibrium
point x0) [14].

2. Computation of unstable manifolds via numerical integration of individual tra-
jectories. A variety of methods exist for numerical integration of individual trajectories of
DDEs [15]. For example, MATLAB now has a standard implementation of a DDE solver
called dde23 [20]. The extension of standard Runge–Kutta methods to DDEs is quite natural.
All numerical integration used in this work is done by using a constant stepsize fourth order
Runge–Kutta scheme. We start with x(t) known on the interval [−τ, 0]. This initial history
is discretized at intervals of h

2 , where h is the stepsize of the scheme. We then compute x(h)
using the constant stepsize Runge–Kutta scheme [15]. The fourth order Runge–Kutta (RK4)
requires that we evaluate the function f(x(t), x(t− τ)) at the midpoints of the h-sized inter-
vals. So, while computing x(τ + h

2 ), we will need the value of x(h
2 ). For this reason, after

computing x(h), we use a cubic polynomial interpolation (suitable for preserving the uniform
fourth order accuracy of RK4) to compute and store the value of x(h

2 ). This procedure of
advancing the solution by h and interpolating to get the value at h

2 is then repeated for the
entire length of the computed trajectory.

For systems with a one-dimensional unstable manifold (i.e., only one unstable root for (7)),
that unstable manifold can be computed quite easily. We can choose the initial history in the
unstable linearized subspace (Eu) and then simply integrate it forward in time to obtain an
approximation for the unstable manifold (W u). This idea is illustrated in Figure 2.

We now assume that Re(λi) > 0 only for i = 1, . . . , k; this corresponds to a k-dimensional
manifold W u(x0). For k ≥ 2, a naive method for computing W u(x0) consists of choosing a
large number of histories in Eu and computing the corresponding DDE trajectories. Such
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Figure 2. Algorithm for computing one-dimensional manifolds in delayed systems.

initial histories have the form c1e
λ1tv1 + c2e

λ2tv2 + · · · + cke
λktvk, where ci’s are arbitrary

(sufficiently small) constants, λi’s are the unstable eigenvalues, and vi’s are the correspond-
ing eigenvectors. After these initial histories are chosen, one can integrate all trajectories
numerically up to a specified time T . It has been shown that the discretized version of each
such trajectory is close to the actual unstable manifold of delayed systems, provided that
the discretization step h is sufficiently small [9]. Unfortunately the phenomenon of geometric
stiffness usually makes the above approach inefficient: the rate of separation of trajectories
within the manifold is quite often highly nonuniform, resulting in an oversampling of some
parts of the manifold and a severe undersampling elsewhere. To illustrate this point, consider
a simple system of DDEs with an equilibrium at the origin:

ẋ1(t) = x1(t) + eλ1τx1(t− τ)(λ1 − 1),

ẋ2(t) = x2(t) + eλ2τx2(t− τ)(λ2 − 1),

ẋ3(t) = x3(t) + eλ3τx3(t− τ)(λ3 − 1).(8)

It is easy to see that x1(t) = C1e
λ1t, x2(t) = C2e

λ2t, and x3(t) = C3e
λ3t are solutions for this

system of equations. If we pick λ1 = 2, λ2 = 1, and λ3 = −1, the (x1, x2) plane becomes an
unstable manifold (for all τ > 0). For illustrative purposes, we set τ = 1 and choose a small
circle centered at the origin in the (x1, x2) plane to generate a finite number of equidistant
initial conditions (along with their histories). We integrate each of them forward until a
prescribed time to produce Figure 3(a). We note that on a typical trajectory x1 grows much
faster than x2; the resulting finite collection of trajectories provides a very poor approximation
of the manifold.

An improvement on the above time integration method would be to do arclength integra-
tion (similarly to what was done in [3] for the ODEs). The trajectory arclength s(t) satisfies
ds
dt = ‖dx

dt ‖. For DDEs this yields the following transformation of (1):

dx

ds
= f (x (t(s)) , x (t(s) − τ))

dt

ds
,

dt

ds
= ‖f (x (t(s)) , x (t(s) − τ))‖−1 .(9)
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Figure 3. Fourth order Runge–Kutta integration in (a) time and (b) arclength on (8) with λ1 = 2, λ2 = 1,
λ3 = −1, and τ = 1.

By stepping in arclength instead of time, it becomes easier to generate all trajectories with-
out integrating to large values of time (see Figure 3(b)). When implementing the arclength
integration for DDEs, it is important to store the value of time along the trajectories. This is
needed to evaluate x(t− τ) while computing f(x(t), x(t− τ)). Cubic polynomial interpolation
is again used to evaluate the value of x(t − τ) if t − τ falls in between two stored points
along the arclength. However, the geometric stiffness is still evident in Figure 3(b) (after all,
the trajectories are simply reparameterized, and their rate of separation is the same as be-
fore). For ODEs, Johnson, Jolly, and Kevrekidis [3] get around this problem, by redistributing
points along the geodesic distance level sets that represent the manifold. This, however, can
be computationally expensive and leads to additional interpolation errors.

We now look at methods for computing unstable manifolds of DDEs more closely.

3. Small τ approximation. Given the volume of prior work on computation of invariant
manifolds of ODEs [6], the idea of approximating DDEs with ODEs is very attractive. For
small delays (i.e., when τ ≈ h), a natural approximation is attained as a result of a single
backward Euler step:

(10) x(t− τ) ≈ x(t) − τf(x(t), x(t− τ)).

If this equation can be uniquely solved for x(t − τ), i.e., if for every x ∈ R
n there exists a

unique x̃(x) such that x̃ = x − τf(x, x̃), then a reasonable approximation of the DDE (1) is
provided by

(11) ż(t) = f̃(z(t)) = f(z(t), x̃(z(t))).

For integrating individual trajectories, this approach is generally well known (e.g., see [21,
Chapter 5] or [22]), but we propose using it to approximate higher-dimensional manifolds
of DDEs. In section 5 we combine this approach with the original method of Krauskopf and
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Osinga [1] to approximate invariant manifolds of (1) by computing invariant manifolds of (11).
Here we derive an upper bound for the distance between trajectories of a DDE and of the
approximating ODE. For the sake of notational simplicity we restrict our analysis to linear
DDEs, though a similar upper bound can be derived for a more general case.

For a linear DDE in (5), the approximation in (10) results in

(12) x̃(x) = (I + τB)−1(I − τA)x.

Denoting C = (I + τB)−1(I − τA), we obtain the corresponding ODE

(13) ż(t) = (A+BC)z(t).

We now derive an upper bound on |e(t)| = |x(t)− z(t)| assuming that e(0) = 0 and both x(t)
and z(t) are twice continuously differentiable. (This assumption is reasonable for x(t) since
we are approximating a trajectory on an unstable invariant manifold, and the smoothness of
a DDE trajectory increases with every τ -shift forward in time [14].) Using Taylor’s theorem
for 0 ≤ l ≤ 1,

x(t+ lτ) = x(t) + lτ ẋ(t) +
l2τ2

2
ẍ(ξ1), where ξ1 ∈ [t, t+ lτ ] ,

z(t+ lτ) = z(t) + lτ ż(t) +
l2τ2

2
z̈(ξ2), where ξ2 ∈ [t, t+ lτ ] .(14)

Denoting M = ẍ(ξ1) − z̈(ξ2), we obtain

e(t+ lτ) = e(t) + lτ(ẋ(t) − ż(t)) +
l2τ2

2
M,(15)

ė(t) = ẋ(t) − ż(t) = Ax(t) +Bx(t− τ) −Az(t) −BCz(t) = Ae(t) +B (x(t− τ) − Cz(t)) .
(16)

Using Taylor’s theorem again, we can write x(t − τ) = x(t) − τ(Ax(t) + Bx(t− τ)) + τ2

2 M2

(where the norm of the vector M2 is bounded). Solving this equation for x(t− τ), we obtain

(17) x(t− τ) = (I + τB)−1(I − τA)x(t) + (I + τB)−1 τ
2

2
M2.

This, in turn, yields

(18) x(t− τ) − Cz(t) = (I + τB)−1(I − τA)e(t) + (I + τB)−1 τ
2

2
M2,

so (16) now becomes

(19) ė(t) = ẋ(t) − ż(t) = Ae(t) +B(I + τB)−1(I − τA)e(t) +B(I + τB)−1 τ
2

2
M2.

Substituting (19) into (15),

(20) e(t+ lτ) = e(t) + lτ

[
Ae(t) +B(I + τB)−1(I − τA)e(t) +B(I + τB)−1 τ

2

2
M2

]
+
l2τ2

2
M.
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Denoting σ1 = ||A||2 and σ2 = ||B||2 and assuming that σ2τ < 1, the triangle inequality yields

||I − τA|| ≤ 1 + σ1τ,(21)
1 − σ2τ ≤ ||I + τB|| ,(22) ∣∣∣∣(I + τB)−1

∣∣∣∣ ≤ 1
1 − σ2τ

= K1,(23)

∣∣∣∣(I + τB)−1(I − τA)
∣∣∣∣ ≤ 1 + σ1τ

1 − σ2τ
= K2.(24)

Using the triangle inequality on (20), we obtain

(25) |e(t+ lτ)| ≤ |e(t)| (1 + lτ(σ1 + σ2K2)) +
∣∣∣∣σ2K1l

τ3

2
M2

∣∣∣∣+
∣∣∣∣ l2τ2

2
M

∣∣∣∣ .
Using the notation β1 = σ1 + σ2K2, β2 = σ2K1

|M2|
2 , and β3 = |M |

2 , we can rewrite (25) as

(26) |e(t+ lτ)| ≤ |e(t)| (1 + lτβ1) +
∣∣lτ3β2

∣∣+ ∣∣β3l
2τ2
∣∣ .

Without loss of generality we can assume that t = mτ (i.e., we are assuming that t is a multiple
of τ , and we are bounding the error on the interval [t, t + lτ ]). Recalling that β1, β2, β3 are
nonnegative, (26) becomes

(27) |e(t+ lτ)| ≤ |e(0)| ρm(1+ lτβ1)+ lτ3β2 + l2τ2β3 +(τ3β2 + τ2β3)(ρm−1 +ρm−2 + · · ·+1),

where ρ = 1 + τβ1. Since e(0) = 0, we see that

(28) |e(t+ lτ)| ≤ lτ3β2 + l2τ2β3 + (τ3β2 + τ2β3)
(
ρm − 1
ρ− 1

)
.

We note that ρm = (1 + τβ1)m = (1 + t
mβ1)m ≤ eβ1t; thus,

(29) |e(t+ lτ)| ≤ lτ3β2 + l2τ2β3 +
τ2β2 + τβ3

β1
(eβ1t − 1).

The above equation shows that the error incurred by the approximation at t+ lτ is O(eβ1t).
Before switching to the case of large delays, we make several remarks about the approach

presented here:
• Since the above bound is an exponential function of time, the resulting approximation

is provably useful only in approximating a compact/local subset of the manifold of the
original DDE; see section 5 for numerical examples.

• Unlike the approach to be described in section 4.1, here the resulting ODE is still
posed in R

n, thus making the approximation computationally attractive.
• The small τ approximation can be similarly extended to the case of multiple constant

small delays by setting τi = miτ and x(t− τi) ≈ x(t) −miτf .
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• If a nonlinear DDE is given as a series, then f̃ can often be easily approximated. For
example, suppose that

f(x(t), x(t− τ)) = g(x(t)) +B1γ1(x(t− τ)) +B2γ2(x(t− τ)) +B3γ3(x(t− τ)) + · · · ,
where g(x(t)) is an arbitrary function, Bi’s are arbitrary constant matrices, and γi(x) =[
xi

1, . . . , x
i
n

]T . Then the small delay approximation yields

f̃(z) ≈
(
I + τ

∞∑
i=1

iBiZ
i−1(z)

)−1(
g(z) +

∞∑
i=1

Biγi(z)

)
,

where Z = diag(z1, . . . , zn). This approximation can easily be obtained by noting that

Biγi (x(t− τ)) ≈ Biγi (x(t)) − τ
d

dt
Biγi (x(t))

≈ Biγi (x(t)) − τBiiγi−1 (x(t))
d

dt
x(t)

≈ Biγi (x(t)) − τBiiγi−1 (x(t)) f̃ .

• Of course, an even simpler (but less accurate) ODE approximation in R
n results from

assuming that x(t− τ) ≈ x(t); e.g., see [22]. The error analysis of the latter has been
omitted for the sake of brevity.

4. Algorithms for large delays. We consider two different approaches for computation
of invariant manifolds of DDEs when h � τ . The first approach (section 4.1) involves ap-
proximation of the DDE by a higher-dimensional ODE system and computation of invariant
manifolds for the latter system.

The second approach (section 4.2) involves extension of an existing method for computing
invariant manifolds of ODEs. We find that two prior algorithms for computing invariant
manifolds of ODEs naturally extend to DDEs [1, 3]. Both methods involve integration of
the system along trajectories, thus giving easy access to the histories of all stored points
and enabling us to compute f(x(t), x(t − τ)) at each such point. Of these two methods, we
generalize Krauskopf and Osinga’s algorithm rather than the method proposed by Johnson,
Jolly, and Kevrekidis. (The latter method, though also applicable, requires a much more
frequent redistribution of points on geodesic curves [3], resulting in a higher computational
cost and a faster accumulation of interpolation errors.)

4.1. Approximation of DDEs with higher-dimensional ODEs. We first consider a gen-
eralization of the approach discussed in section 3. Since the delay is no longer assumed to be
small, a more detailed discretization of the history is needed. Assuming that h = τ/N , the
history can be approximated by x0, . . . , xN , where xi ≈ x(t− τ + ih). We note that ẋN (t) is
given by the original DDE, while for all i < N the derivative ẋi(t) can be approximated by
divided differences on the history points. For example, when first order forward differences
are employed, this results in a system of ODEs

(30) ẋN = f(xN , x0) and ẋi =
xi+1 − xi

h
for i < N.
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Figure 4. Algorithm for computing geodesic curves. Cr is the present curve, Pi is the point to be advanced,
Δ is the distance the geodesic curves are to be advanced, and Πi is the plane orthogonal to Cr at Pi. Dotted
lines represent the histories of the points on Cr.

Each xi (0 ≤ i ≤ N) is an n-dimensional vector (dimension of the physical space), thus giving
an n × (N + 1)-dimensional system. We note that (30) is a cyclic feedback system, whose
theoretical properties have been well studied [23, 24]. It is interesting to note that the same
system can be obtained from the method of lines discretization of a linear transport PDE
approximating (1); see [25, 26] and [27].

In principle, it is possible to employ any of the methods in [6] to compute invariant
manifolds of (30), thus approximating the invariant manifolds of the original DDE. However,
for large delays the dimensionality of the resulting system will be large, making this approach
prohibitively expensive, especially with methods such as [5], where the computational cost
depends on the manifold’s codimension. We conclude that the method of the next subsection
is preferable since it deals with the DDE directly, without increasing the dimensionality of the
physical space.

4.2. Direct approximation of invariant manifolds of DDEs. The method of Krauskopf
and Osinga [1, 28] approximates a two-dimensional invariant manifold of an ODE system
using a collection of level-curves of the geodesic distance function on that manifold. Each such
geodesic level-curve Cr is discretized by a collection of marker-particles {Pi}. If M = W u(x0)
for some saddle equilibrium x0, the “initial” curve C0 can be approximated by taking a circle
of radius r0 in the unstable eigenspace of x0. If Δr is the distance between two adjacent
represented level-curves Cr and Cr+1, then (r0 +

∑r−1
i=0 Δi) can be interpreted as the geodesic

distance from x0 to Cr.
The next level-curve (Cr+1) is generated by advancing Cr normally to itself (within the

manifold) by the distance Δr (see Figure 4). In practice this is accomplished by advancing
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each Pi ∈ Cr as follows: if Πi is the plane orthogonal to the manifold at Pi, a one-dimensional
search along Cr is employed to find pi ∈ Cr, whose trajectory intersects Πi at a point P ∗

i such
that

Δr(1 − ε) ≤ |Pi − P ∗
i | ≤ Δr(1 + ε).

Since pi is usually not a marker-particle itself, this procedure involves interpolation. The
obtained P ∗

i is used as a successor of Pi on Cr+1. The choice of Δr is made based on the
manifold curvature as measured on the last computed level-curve Cr. To maintain a reasonable
representation of the manifold, minimum and maximum distances between adjacent marker-
particles on the geodesic front Cr+1 are defined to be δmin and δmax. If the distance between
P ∗

i and P ∗
i+1 falls below δmin, one of them is deleted; if that distance increases beyond δmax,

a new marker-particle P ∗
i+ 1

2

is generated as a successor of Pi+ 1
2
, which is approximated by

interpolation on Cr. The front is repeatedly advanced until a predefined geodesic distance is
reached along the manifold, or until the manifold converges to a limit set [1]. We refer readers
to [28] for further implementation details and for the proof of convergence.

We have extended the above algorithm to DDEs by storing each marker-particle Pi along
with its history (see Figure 4). As before, the history is discretized using N equidistant
points, and the fourth order Runge–Kutta scheme is used to advance an individual point
forward in time. The resulting memory requirements of the algorithm are not particularly
restrictive since only a few recently computed level-curves are kept in RAM. The initial set
of markers and their histories are approximated using the linearization of the DDE near x0,
as explained in section 2. Correspondingly, to approximate a new point on Cr, interpolation
is now used both on the marker-particles and their histories. Our current implementation
allows approximation of two-dimensional invariant manifolds of DDEs only. In that case,
finding pi still involves a one-dimensional search along Cr only (which we implemented using
a simple bisection algorithm). The extension of this method to higher-dimensional manifolds
is conceptually straightforward [28], but finding pi will then have to be accomplished by
continuation or by solving the corresponding boundary value problem. Our implementation
uses ε = 0.01, δmin = Δ/2, and δmax = 2Δ. We note that the above algorithm exploits a
combination of ideas in [1, 28] with those in the work of Krauskopf and Green on approximating
one-dimensional unstable manifolds of periodic orbits of DDEs [7].

5. Numerical examples.

5.1. Convergence of numerical methods. To test the convergence of our algorithms
numerically, we use an example where the manifold is a priori known. Consider a system of
the form

ẋ(t) = η1x(t− τ),
ẏ(t) = η2y(t− τ),
ż(t) = −μz(t− τ) + μg(x(t − τ), y(t− τ)) + η1x(t− τ)gx(x(t), y(t))

+ η2y(t− τ)gy(x(t), y(t)),(31)

where g(x, y) is a smooth function. If gx(0, 0) = 0 and gy(0, 0) = 0, the equilibrium O =
(0, 0, g(0, 0)) is a saddle for η1 > 0, η2 > 0, and μ > 0. This is easily checked by linearizing
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Table 1
Convergence for μ = 1.0.

Rinit μ = 1
L2 error L∞ error

r0 = 0.2 4.3675 × 10−6 8.00856 × 10−5

r0 × 2−1 2.3681 × 10−6 4.16508 × 10−5

r0 × 2−2 1.0563 × 10−6 2.57103 × 10−5

r0 × 2−3 5.021 × 10−7 1.3591 × 10−5

Table 2
Convergence for μ = 0.25.

Rinit μ = 0.25
L2 error L∞ error

r0 = 0.2 5.1430 × 10−5 6.71421 × 10−4

r0 × 2−1 2.9173 × 10−5 3.83010 × 10−4

r0 × 2−2 1.4132 × 10−5 1.93001 × 10−4

r0 × 2−3 7.822 × 10−6 9.2381 × 10−5
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1
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1
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z

Figure 5. Invariant manifold for the case g(x, y) = x2 + y2 in (31) with τ = 1.0.

the equation about O, yielding
v̇(t) = Bv(t− τ),

where v(t) = [x(t), y(t), z(t)]T and B = diag(η1, η2,−μ). The characteristic equation thus
becomes

(32) Δ(λ) ≡ det
(
λI −Be−λτ

)
= 0.

We note that O is a saddle equilibrium with a two-dimensional unstable manifold W u(O)
coinciding with the graph of g(x, y) in the physical space.

We now use the method of section 4 to approximate W u(O) for g(x, y) = x2 + y2 and
for particular choices of the parameter values. The choice of η1 = η2 = μ = τ = 1 yields
a repeated unstable eigenvalue of (32) at λ ≈ 0.567142. The corresponding eigenvectors are
v1 = [1, 0, 0]T and v2 = [0, 1, 0]T . We approximate the manifold up to the geodesic distance 1
from the origin, and then calculate the difference between the computed z and g(x, y) on the
last geodesic circle. In this experiment we test the convergence by decreasing the radius of
the initial circle r0, while all other accuracy parameters are fixed as described in section 4.
Table 1 shows that both the L2 and L∞ errors decrease as O(r0). The errors (though not the
rates of convergence) are also clearly influenced by the value of μ, as illustrated by Table 2.
The computed manifold is shown in Figure 5.
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Figure 6. L2 and L∞ errors for the small τ approximation with varying delay.

We can also use this opportunity to compute the error incurred by the small delay ap-
proximation of the system described by (31). A small τ approximation yields

ẋ =
η1x

1 + η1τ
,

ẏ =
η2y

1 + η2τ
,

ż =
1

1 − μτ

[
−μz + μ

((
x

1 + η1τ

)2

+
(

y

1 + η2τ

)2
)

+ 2η1
x2

1 + η1τ
+ 2η2

y2

1 + η2τ

]
.(33)

Using our implementation of Krauskopf and Osinga’s original method [28] with the same
accuracy parameters, we compute the manifold for (33) and measure the errors due to this
approximation for different values of τ . The manifold is approximated up to the geodesic
distance of 1.5, and the L2 / L∞ errors are measured for the last geodesic level curve. As
expected, increasing τ increases the errors induced by the ODE approximation; see Figure 6.

For the large-delay method of section 4, τ does not influence the accuracy directly, provided
the history is well resolved. The latter requirement could be strenuous for large delays.
Therefore, it is of interest to explore the dependence of errors on τ if we are restricted to a
fixed number of points in the history (i.e., holding τ/h = 1500 and varying h). The results
of this experiment for system (31) are shown in Figure 7. We note that in all the other
experiments of this section, the Runge–Kutta stepsize is held constant at h = 10−3 by varying
the total number of points in the history.

5.2. Arneodo system with delay. When the geodesic distance on the invariant manifold is
bounded from above (e.g., due to the manifold’s accumulation on a limit cycle), the algorithm
of section 4.2 has to be adjusted, since that limit cycle itself is usually not a geodesic level
curve. For ODEs this situation is exemplified by the Arneodo system [16], and we introduce
an artificial delay to obtain

(34) x′′′ + x′′ + 2x′(t− τ) − αx+ x2 = 0.
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Figure 7. L2 and L∞ errors for the large-delay method of section 4 computed for various τ using a fixed
number of points in the history.

(a) (b)

Figure 8. Unstable manifold of P = (2.5, 0, 0) for the τ = 0 case. The unstable manifold is bounded by the
limit cycle (curve in black). Colors depict the z coordinate of the manifold.

The above equation can be recast into

ẋ = y,

ẏ = z,

ż = −z − 2y(t− τ) + αx− x2.(35)

For τ = 0 the system has been studied extensively (e.g., [1, 3]). For the undelayed case, the
equilibrium points are O = (0, 0, 0) and A = (α, 0, 0). The second equilibrium is attracting
for α < 2. At α = 2 the equilibrium A loses stability to become a saddle, and the system
undergoes a Hopf bifurcation. The two-dimensional unstable manifold of A converges to the
limit cycle born at α = 2 [1, 3] (see Figure 8). We are interested in how the unstable manifold
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(a) Limit cycle amplitude versus τ at α = 2.5.
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(b) Period-doubled limit cycle at τ = 0.13.

Figure 9. Limit cycle’s dependency on the delay.

of point A changes as τ is varied.
Using DDE-BIFTOOL [29], we find that on increasing the delay τ from 0 in (35), the Hopf

bifurcation occurs at lower and lower values of α. Fixing α = 2.5, we see that the increase in
τ results in an increase in the limit cycle amplitude (Figure 9(a)), and at τ ≈ 0.11 the cycle
loses stability at a period-doubling bifurcation. The period-doubled orbit can be clearly seen
by numerically integrating system (35) for τ > 0.11 (Figure 9(b)).

We now use the algorithm described in the previous section to compute W u(A) at different
values of τ . Since the manifold is bounded by a limit cycle, a convergence process has to take
place when the geodesic distance level-curves approach the limit cycle [1]. To ensure this
we modify the above algorithm to search for the maximum distance Δ(Pi) ≤ Δ by which
the point Pi can be advanced. If the manifold cannot be advanced by a certain predefined
distance, the point is accepted as the boundary of the manifold. The stepsize used in the
fourth order Runge–Kutta scheme that forms the core of the algorithm is h = τ

N , where N
is the number of points stored in the history for each point on the geodesic curve. For the
purpose of these simulations h = 10−4 and N is changed based on the delay τ . The distance
by which the geodesic front is advanced is initially set to Δ = 0.02, which is then adapted
based on the curvature of the manifold. In these experiments we set the accuracy parameters
to ε = 0.01, δmax = 0.1, and δmin = 0.01.

For τ = 0 we find that the manifold converges to the limit cycle as expected [3, 1], as
seen in Figure 8. For τ = 0.01 we find that the manifold again converges to the periodic
orbit (see Figure 10), and the size of the orbit (and hence the manifold) is slightly larger than
the case for τ = 0, which is consistent with Figure 9(a). As we increase τ , we find that the
curvature of the manifold increases steadily (e.g., see Figure 11). On increasing the delay past
the period-doubling bifurcation, we find that the manifold has such high curvature that the
adjusted Δ falls below the tolerance values, and we are unable to compute the manifold.

We can also compare this result with the small τ approximation (particularly suitable
since the manifold is compact). As in section 3, the delayed Arneodo system (35) can be
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(a) (b)

Figure 10. Unstable manifold of P = (2.5, 0, 0) for the τ = 0.01 case. The unstable manifold is bounded
by the limit cycle (curve in black). Colors depict the z coordinate of the manifold.

(a) (b)

Figure 11. Unstable manifold of P = (2.5, 0, 0) for the τ = 0.08 case. The unstable manifold is bounded by
the limit cycle (curve in black). Colors depict the z coordinate of the manifold. The curvature of the manifold
is greater than in the τ = 0 and τ = 0.01 cases.

approximated by

ẋ = y,

ẏ = z,

ż = −(1 − 2τ)z − 2y + αx− x2.(36)

Here, y(t − τ) ≈ y(t) − τ ẏ(t) or y(t − τ) ≈ y(t) − τz(t). We now compute the invariant
manifolds for the system of equations given by (36). Since the latter is a system of ODEs,
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Figure 12. Schematic of the phase conjugating laser feedback.

the original method of Krauskopf and Osinga [1] is applicable. We find that for τ = 0.01
this results in a manifold very close to what was already obtained by the general method in
Figure 10.

5.3. Laser with phase-conjugate feedback (PCF). In this section we study the manifolds
that arise in systems modeling semiconductor lasers with PCF [17]. In PCF lasers, a current
I raises the atoms to an excited state (population denoted by N in the equations below). A
part of the subsequently produced laser light (fraction determined by κ) is fed back into the
system (so as to excite the atoms) using a phase-conjugating mirror (PCM). The time taken
by the laser to loop from the system to the mirror and back causes a delay τ (see Figure 12).
The resulting model equations are [17]

dE

dt
=

1
2

[
−iαGN (N(t) −Nsol) +

(
G(t) − 1

τp

)]
E(t) + κE∗(t− τ) exp

[
2iδ
(
t− τ

2

)
+ iφPCM

]
,

(37)

dN

dt
=
I

q
− N(t)

τe
−G(t) |E(t)|2 ,

where E = Ex + iEy is the slowly varying electric field of the laser and E∗ is its complex
conjugate. The nonlinear gain is modeled as

G(t) = GN (N(t) −N0)
(
1 − ε |E(t)|2

)
,

with the nonlinear gain coefficient ε = 3.57 × 10−8. We use the same parameter values as
in [18], corresponding to a Ga-Al-As semiconductor laser: the line-width enhancement factor
α = 3, the optical gain GN = 1190 s−1, the photon lifetime τp = 1.4ps, the magnitude of the
electron charge q = 1.6×10−19C, the electron lifetime τe = 2ns, and the transparency electron
number N0 = 1.64 × 108. The steady-state electron population in the absence of feedback is
Nsol = N0+1/ (GN τp). Following [18], we also assume that both the laser frequency mismatch
δ and the constant phase shift φPCM are equal to zero.
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This system exhibits “stable periodic operation interspersed with ‘bubbles’ of chaotic dy-
namics”; it has been previously studied numerically by Krauskopf, Green, and coauthors in
[17, 8, 7, 18]. The system is posed in (Ex, Ey, N) and possesses Z2 symmetry corresponding to
rotation by π in the complex E plane. As a result, every invariant set either is symmetric or has
a symmetric counterpart. A symmetric (trivial) equilibrium x0 is always present at (0, 0, Iτe/q)
but becomes unstable at the lasing threshold. Additional nonsymmetric saddle equilibria x1

and x2 are born as a result of a saddle-node bifurcation. In [18], a two-parameter study of this
system using parameters (κτ, I) shows the evolution of the heteroclinic connection from x1

to x2, which gets closer and closer to x0 and is eventually destroyed at a T-point bifurcation,
yielding a codimension-two connection from x1 to x0 and a codimension-zero connection from
x0 to x2. In Figure 13 we show our approximation of W u(x0) computed for several points on
the branch Het1 (see [18, Figure 6.1]). In each case we also reproduce the approximation of
the heteroclinic connection from x1 to x2 computed in [18, section 7] using the continuation
method introduced in [30] and incorporated into the software package DDE-BIFTOOL.2 We
note that in this example the delay is “large”—the accuracy needed to resolve a single tra-
jectory leads to using N = 2500 points in the history discretizations. Thus, the techniques
described in section 3 are inapplicable, and we have relied on the method of section 4.2.

6. Conclusions. In comparison to the volume of work that exists for computation of
invariant manifolds of ODEs, very little has been done so far to develop efficient methods for
approximating higher-dimensional invariant manifolds of delay-differential systems. In this
paper we develop a methodology for computing invariant surfaces of DDEs. We start with a
small delay approximation that approximates the delayed systems with standard ODEs, thus
making prior methods for ODEs applicable. We then compute bounds on the global error
incurred due to this approximation for an individual trajectory. For the large-delay case,
we propose a different method, which extends the previous techniques for invariant manifold
approximation [28] and does not rely on any direct approximation of the DDE with a system
of ODEs. The proposed methods are illustrated using three different numerical examples,
including a model for semiconductor lasers with PCF.

Our current implementation is suitable for two-dimensional manifolds only. In addition,
the method is applicable only as long as the geodesic distance function on the manifolds
remains smooth. The latter limitation is typical for all methods based on the geodesic distance
formulation even in the case of ODEs [28].

In the future we hope to apply our methods to study DDEs arising in control, population
biology, and feedback in lasers.

Acknowledgments. The authors would like to thank Koen Engelborghs and Kirk Green
for helping with DDE-BIFTOOL. The authors are also indebted to Kirk Green and Bernd
Krauskopf for motivating discussions of PCF-laser models and for providing the raw data for
the heteroclinic connections shown in Figure 13.

2Since for DDEs the phase space is infinite-dimensional, a special integral condition is employed to force the
final function segment of the approximate connecting orbit to lie in the complement of the unstable eigenspace
of x2. As noted in [18], “while this integral condition works well in practice, one slight drawback is that it does
not control the distance of the end function segment to the steady state.” This explains the gap between “the
end” of the connecting orbit and x2, visible in panels of Figure 13.
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Figure 13. PCF-laser example. The unstable manifold of the trivial equilibrium x0 is shown in blue. Two
nonsymmetric saddle equilibria x1 and x2 are marked as “*”, and their heteroclinic connections are shown
in red. In the last panel, the heteroclinic connection passes very close to x0, and the second half of it nearly
lies on the two-dimensional unstable manifold. This is due to the approaching T-point bifurcation, where the
connection will split into a codimension-two connection from x1 to x0 and codimension-zero connection from x0

to x2; see [18] for further details. From (a) to (d), parameters (κτ, I) take values (2.1767065, 0.0703938595),
(2.1766904, 0.070393885), (2.1767001, 0.070393874), and (2.1766959, 0.070393889), respectively.
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