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ABSTRACT

First-break traveltime tomography is based on the eikonal
equation. Because the eikonal equation is solved at fixed-shot
positions and only receiver positions can move along the ray-
path, the adjoint-state tomography relies on inversion to resolve
possible contradicting information between independent shots.
The double-square-root (DSR) eikonal equation allows not only
the receivers but also the shots to change position, and thus de-
scribes the prestack survey as a whole. Consequently, its linear-
ized tomographic operator naturally handles all shots together,
in contrast with the shotwise approach in the traditional eikonal-
based framework. The DSR eikonal equation is singular for the
horizontal waves, which require special handling. Although
it is possible to recover all branches of the solution through

postprocessing, our current forward modeling and tomography
focuses on the diving wave branch only. We consider two
upwind discretizations of the DSR eikonal equation and show
that the explicit scheme is only conditionally convergent and
relies on nonphysical stability conditions. We then prove that
an implicit upwind discretization is unconditionally convergent
and monotonically causal. The latter property makes it possible
to introduce a modified fast matching method thus obtaining
first-break traveltimes efficiently and accurately. To compare
the new DSR eikonal-based tomography and traditional eiko-
nal-based tomography, we perform linearizations and apply
the same adjoint-state formulation and upwind finite-differences
implementation to both approaches. Synthetic model examples
justify that the proposed approach converges faster and is more
robust than the traditional one.

INTRODUCTION

The first-break traveltime tomography (Zhu et al., 1992; Osypov,
2000; Leung and Qian, 2006; Taillandier et al., 2009; Noble et al.,
2010) is an established tool for estimating near-surface macrofea-
ture seismic velocities. Starting from a prior model, tomographic
inversion gradually modifies the velocities such that the misfits
between predicted and observed first breaks decrease. Because the
problem is nonlinear, several linearization iterations may be re-
quired until convergence. Moreover, inversion must be carried
out with careful choice of regularization to avoid local minima (Ste-
fani, 1993; Simmons and Bernitsas, 1994; Engl et al., 1996). The
estimated model has a direct influence on subsequent applications;
for example, static corrections (Marsden, 1993; Cox, 1999; Berg-
man et al., 2004) where it provides a medium-to-long wavelength

near-surface model, and waveform tomography (Sheng et al., 2006;
Brenders and Pratt, 2007; Virieux and Operto, 2009), where it
serves as a low-frequency prior.
The traditional first-break traveltime tomography is based on the

eikonal equation that arises from high-frequency approximation of
the wave equation (Chapman, 2002). During forward modeling, the
first breaks computed through the eikonal equation are naturally
shot-indexed because only receiver coordinates move while the
source is fixed. At the tomography stage, one may formulate the
minimization of cost function as a sequence of explicitly linearized
problems or directly as a nonlinear optimization problem. The first
choice (Zelt and Barton, 1998; Zhu et al., 2000; Dessa et al., 2004;
Pei, 2009) requires computation of Fréchet derivatives, which is
usually carried out by combining an eikonal solver with posterior
ray tracing. Then, an algorithm such as LSQR (Paige and Saunders,
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1982) is applied to solve the linearized tomographic system itera-
tively. Although this approach accounts for information from source
and receiver dimensions, it faces computational limitations when
the Fréchet derivative matrix becomes difficult to handle because
of a large number of model parameters. The nonlinear optimization
approach, on the other hand, can be combined with the adjoint-
state method (Plessix, 2006) and avoids an explicit computation
of Fréchet derivatives (Taillandier et al., 2009). The cost of comput-
ing the gradient is equivalent to twice the solution of the forward
modeling problem, regardless of the size of input data. However,
one major drawback of this approach, as we will show later, is that
the resulting gradient disregards information available along the shot
dimension.
The drawback of eikonal-based adjoint-state tomographies is that

they always face conflicting information that propagates across dif-
ferent shots. Such conflicts must be resolved during inversion, or
else an erroneous model update may appear. In practice, the inver-
sion may be less robust and may take more iterations to converge,
compared to the situation where we replace the eikonal equation
with another governing equation that allows both source and receiver
positions to change along raypaths. The double-square-root (DSR)
eikonal equation is a promising candidate in this regard because it
describes the prestack data as a whole by linking the evolution of
traveltimes to subsurface source and receiver positions. In this paper,
we investigate the feasibility of using the DSR eikonal equation for
first-break traveltime tomography with the adjoint-state method.
DSR eikonal was analyzed previously by Belonosova and Alek-

seev (1974), Duchkov and de Hoop (2010), and Alkhalifah (2011).
Ray-tracing methods applied to DSR are capable of providing mul-
tiarrivals by extrapolating isochron rays (Iversen, 2004) or using
perturbation theory, but their extra costs in computing non-first-
breaks are not necessary for first-break tomography purpose. We
first prove that an implicit discretization of the DSR eikonal equa-
tion is causal and thus can be solved by a Dijkstra-like noniterative
method (Dijkstra, 1959). The DSR singularity and two DSR
branches that are noncausal need special treatment. Our current im-
plementation employs a modified fast-marching (Sethian, 1999)
DSR eikonal solver. We first test its accuracy by DSR forward mod-
eling. Next, we linearize the DSR eikonal equation and use the re-
sulting operators in adjoint-state tomography. For comparison, we
apply an analogous linearization and adjoint-state formulation to the
traditional tomography based on shot-indexed eikonal equation.
Then, we demonstrate the differences between the proposed and
traditional approaches and justify advantages of the new method

using several synthetic model examples. We conclude by discussing
possible further improvements and extensions of our method.

THEORY

DSR eikonal equation

The DSR eikonal equation can be derived by considering a ray-
path and its segments between two depth levels. Figure 1 illustrates
a diving ray (Zhu et al., 1992) in 2D with velocity v ¼ vðz; xÞ. We
denote Tðz; r; sÞ as the total traveltime of the raypath beneath depth
z, where r and s are subsurface receiver and source lateral positions,
respectively.
At source and receiver sides the traveltime satisfies the eikonal

equation, therefore

∂T
∂z

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2ðz; sÞ −
�
∂T
∂s

�
2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2ðz; rÞ −
�
∂T
∂r

�
2

s
: (1)

The negative signs before the two square-roots in equation 1 cor-
respond to a decrease of traveltime with increasing depth, or geo-
metrically a downward pointing of slowness vectors on s and r
sides. Because the slowness vectors could also be pointing upward
and the directions may be different at r and s, the DSR eikonal
equation (Belonosova and Alekseev, 1974) should account for
all the possibilities (Figure 2)

∂T
∂z

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

v2ðz; sÞ −
�
∂T
∂s

�
2

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2ðz; rÞ −
�
∂T
∂r

�
2

s
: (2)

The boundary condition for DSR eikonal equation is that travel-
times at the subsurface zero-offset plane, i.e., r ¼ s, are zero:
Tðz; r ¼ sÞ ¼ 0.
Equation 2 has a singularity when ∂T∕∂z ¼ 0, in which case

the slowness vectors at s and r sides are horizontal and equation 2
reduces to�

∂T
∂s

�
2

¼ 1

v2ðz; sÞ ;
�
∂T
∂r

�
2

¼ 1

v2ðz; rÞ : (3)

The two independent equations in 3 are not in conflict according to
the source-receiver reciprocity because they are the same with an
exchange of s and r.
Note that equations 2 and 3 describe T in full prestack domain

ðz; r; sÞ by allowing not only receivers but also sources to change
positions. In contrast, the eikonal equation

Figure 1. A diving ray and zoom-in of the ray segments between
two depth levels.

Figure 2. All four branches of DSR eikonal equation from different
combination of upward or downward pointing of slowness vectors.
Whether the slowness vector is pointing leftward or rightward does not
matter, because the partial derivatives with respect to s and r in equa-
tion 2 are squared. Figure 1 and equation 1 belong to the last situation.

U90 Li et al.

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



�
∂T
∂z

�
2

þ
�
∂T
∂x

�
2

¼ 1

v2ðz; xÞ (4)

with boundary condition Tðz ¼ 0; x ¼ sÞ ¼ 0 can be used only for
one fixed source position at a time and thus traveltimes of different
shots are independent of each other. In equation 4, s is surface
source lateral position. In the 3D case, the scalars s, r, and x in
equations 2, 3, and 4 become 2D vectors s, r, and x that contain
inline and crossline positions. The prestack traveltime is then in
a 5D space. Our current work is restricted to 2D and we consider
the 3D extension in the “Discussion” section.
Similarly to the eikonal equation, the DSR eikonal equation is a

nonlinear first-order partial differential equation. Its solutions in-
clude, in general, not only first breaks but all arrivals, and can
be computed by solving separate eikonal equations for each subsur-
face source-receiver pair followed by extracting the traveltime and
putting the value into prestack volume. However, such an imple-
mentation is impractical due to the large amount of computations.
Meanwhile, for first-break tomography purposes, we are only inter-
ested in the first-arrival solutions but require an efficient and accu-
rate algorithm. In this regard, a finite-difference DSR eikonal solver
analogous to the fast-marching (Sethian, 1999) or fast-sweeping
(Zhao, 2005) eikonal solvers is preferable.
In upwind discretizations of the DSR eikonal equation on the grid

in ðz; r; sÞ domain, one has to make a decision about the z-slice, in
which the finite differences are taken to approximate ∂T∕∂s and
∂T∕∂r. In Figure 1, it appears natural to approximate these partial
derivatives in the z-slice below Tðz; r; sÞ. We refer to the corre-
sponding scheme as explicit, because it allows to directly compute
the grid value Tðz; r; sÞ based on the already known T values from
the next-lower z. An alternative implicit scheme is obtained by
approximating ∂T∕∂s and ∂T∕∂r in the same z-slice as Tðz; r; sÞ,
which results in a coupled system of nonlinear discretized equa-
tions. In Appendix A, we prove the following:

• The explicit scheme is very efficient to use on a fixed grid,
but only conditionally convergent. This property is also con-
firmed numerically in “Synthetic model examples” section.

• The implicit scheme is monotone causal, meaning Tðz; r; sÞ
depends on the smaller neighboring grid values only. This
enables us to apply a Dijkstra-like method (Dijkstra,
1959) to solve the discretized system efficiently. Importantly,
the DSR singularity requires a special ordering in the selec-
tion of upwind neighbors, which switches between equa-
tions 1 and 3 when necessary. We provide a modified
fast-marching (Sethian, 1999) DSR eikonal solver along
with such an ordering strategy in the “Numerical implemen-
tation” section.

• The causality analysis in Appendix A applies only to the first
and last causal branches out of all four shown in Figure 2.
Additional postprocessings, albeit expensive, can be used to
recover the rest two noncausal branches as they may be de-
composed into summations of the causal ones.

In practice, we find that, for moderate velocity variations, the first
breaks correspond only to causal branches. An example in the “Syn-
thetic model examples” section serves to illustrate this observation.
Therefore, for efficiency, we turn off the noncausal branch postpro-
cessings in forward modeling and base the tomography solely on
equations 1 and 3.

DSR tomography

The first-break traveltime tomography with DSR eikonal equa-
tion (DSR tomography) can be established by following a procedure
analogous to the traditional one with the shot-indexed eikonal equa-
tion (standard tomography). To further reveal their differences, in
this section we will derive both approaches.
For convenience, we use slowness-squared w ≡ 1∕v2 instead of

velocity v in equations 1, 3, and 4. Based on analysis in Appendix A,
the velocity model wðz; xÞ and prestack cube Tðz; r; sÞ are Eulerian
discretized and arranged as column vectors w of size nz × nx and t
of size nz × nx × nx. We denote the observed first breaks by tobs,
and use tstd and tdsr whenever necessary to discriminate between t
computed from shot-indexed eikonal equation and DSR eikonal
equation.
The tomographic inversion seeks to minimize the l2 (least-

squares) norm of the data residuals. We define an objective function
as follows

EðwÞ ¼ 1

2
ðt − tobsÞTðt − tobsÞ; (5)

where the superscript T represents transpose. A Newton method of
inversion can be established by considering an expansion of the
misfit function 5 in a Taylor series and retaining terms up to the
quadratic order (Bertsekas, 1982)

Eðwþ δwÞ ¼ EðwÞ þ δwT∇wEðwÞ

þ 1

2
δwTHðwÞδwþOðjδwj3Þ: (6)

Here, ∇wE and H are gradient vector and Hessian matrix, respec-
tively. We may evaluate the gradient by taking partial derivatives of
equation 5 with respect to w, yielding

∇wE ≡
∂E
∂w

¼ JTðt − tobsÞ; (7)

where J is the Frechét derivative matrix and can be found by further
differentiating t with respect to w.
We start by deriving the Frechét derivative matrix of standard

tomography. Denoting

Dm ≡
∂
∂m

; m ¼ z; x; r; s (8)

as the partial derivative operator in the m direction, equation 4 can
be rewritten as

Dztstdk · Dztstdk þDxtstdk · Dxtstdk ¼ w; k ¼ 1; 2; 3; : : : ; nx:

(9)

Here, we assume that there are, in total, nx shots and use tstdk for first
breaks of the kth shot. Applying ∂∕∂w to both sides of equation 9,
we find

Jstdk ≡
∂tstdk
∂w

¼ 1

2
ðDztstdk · Dz þDxtstdk · DxÞ−1. (10)
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Kinematically, each Jstdk contains characteristics of the kth shot. Be-
cause shots are independent of each other, the full Frechét derivative
is a concatenation of individual Jstdk , as follows

Jstd ¼ ½Jstd1 Jstd2 · · · Jstdnx �T: (11)

Inserting equation 11 into equation 7, we obtain

∇wE ¼
Xnx
k¼1

ðJstdk ÞTðtstdk − tobsk Þ; (12)

where, similar to tstdk , tobsk stands for the observed first breaks of the
kth shot.
Figure 3 illustrates equation 12 schematically, i.e., the gradient

produced by standard tomography. The first step on the left depicts
the transpose of the kth Frechét derivative acting on the correspond-
ing kth data residual. It implies a back-projection that takes place in
the z − r plane of a fixed s position. The second step on the right is
the summation operation in equation 12.
To derive the Frechét derivative matrix associated with DSR

tomography, we first rewrite equation 1 with definition 8

Dztdsr ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ws −Dstdsr · Dstdsr

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr −Drtdsr · Drtdsr

q
;

(13)

where ws and wr are w at subsurface source and receiver locations,
respectively. Note that, in equation 13, w appears twice. Thus, a
differentiation of tdsr with respect to w must be carried out through
the chain-rule

Jdsr ≡
∂tdsr

∂w
¼ ∂tdsr

∂ws

����
wr

∂ws

∂w
þ ∂tdsr

∂wr

����
ws

∂wr

∂w
: (14)

We recall that w and tdsr are of different lengths. Meanwhile, in
equation 13, ws and wr have the size of tdsr. Clearly, in equation 14,
∂ws∕∂w and ∂wr∕∂w must achieve dimensionality enlargement. In
fact, according to Figure 1, ws and wr can be obtained by spraying w
such that wsðz; r; sÞ ¼ wðz; sÞ and wrðz; r; sÞ ¼ wðz; rÞ. Therefore,
∂ws∕∂w and ∂wr∕∂w are essentially spraying operators and their
adjoints perform stackings along s and r dimensions, respectively.
In Appendix B, we prove that Jdsr has the following form:

Jdsr ¼ B−1ðCs þ CrÞ: (15)

Combining equations 7 and 15 results in

∇wE ¼ ðCT
s þ CT

r ÞB−Tðtdsr − tobsÞ: (16)

Note that, unlike equation 12, equation 16 cannot be expressed as an
explicit summation over shots.
Figure 4 shows the gradient of DSR tomography. Similar to the

standard tomography, the gradient produced by equation 16 is a re-
sult of two steps. The first step on the left is a back-projection of
prestack data residuals according to the adjoint of operator B−1. Be-
cause B contains DSR characteristics that travel in prestack domain,
this back-projection takes place in ðz; r; sÞ and is different from that
in standard tomography, although the data residuals are the same for
both cases. The second step on the right follows the adjoint of op-
erators Cs and Cr and reduces the dimensionality from ðz; r; sÞ to
ðz; xÞ. However, compared to standard tomography this step in-
volves summations in not only s but also r.

NUMERICAL IMPLEMENTATION

Following the analysis in Appendix A, we consider an implicit
Eulerian discretization. For forward modeling, we solve the DSR
eikonal equation by a version of the fast-marching method
(FMM) (Sethian, 1999). First, a plane wave with T ¼ 0 at subsur-
face zero-offset r ¼ s is initialized. Next, in the update stage, the
traveltime at a grid point is computed from its upwind neighbors. A
priority queue keeps track of the first-break wavefront, and the com-
putation is nonrecursive.
To properly handle the DSR singularity, we design an ordering of

the combination of upwind neighbors during the update stage. As-
suming that Ti is the upwind neighbor of T in the i’s direction for
i ¼ z; r; s, we summarize the ordering as follows:

1) First, try a three-sided update:
Solve equation A-9, return T if T ≥ maxðTz; Tr; TsÞ;

2) Next, try a two-sided update: solve equations A-10, A-12, and
A-13 and keep the results as Trs, Tzr, and Tzs, respectively.
If Tzr ≥ maxðTz; TrÞ and Tzs ≥ maxðTz; TsÞ,
return minðTzr; Tzs; TrsÞ;
If Tzr < maxðTz; TrÞ and Tzs ≥ maxðTz; TsÞ,
return minðTzs; TrsÞ;
If Tzr ≥ maxðTz; TrÞ and Tzs < maxðTz; TsÞ,
return minðTzr; TrsÞ;

3) Finally, try a one-sided update:
Solve equation A-14, return minðT; TrsÞ.

Figure 3. The gradient produced by standard tomography. The
solid curve indicates a shot-indexed characteristic.

Figure 4. The gradient produced by DSR tomography. The solid
curve indicates a DSR characteristic, which has one end in plane
z ¼ 0 and the other in plane s ¼ r. Compare with Figure 3.
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An optional search routine A-17 may be added after the update to
recover all branches of the DSR eikonal equation. The overall cost
can be reduced roughly by half by acknowledging the source-
receiver reciprocity and thus computing only the positive (or neg-
ative) subsurface offset region.
For an implementation of linearized tomographic operators 12

and 16, we choose upwind approximations (Franklin and Harris,
2001; Li et al., 2011; Lelièvre et al., 2011) for the difference
operators in equation 8. In Appendix C, we show that the upwind
finite-differences result in triangulation of matrices 11 and 15.
Therefore, the costs of applying Jstd and Jdsr and their transposes
are inexpensive. Moreover, although our implementation belongs to
the family of adjoint-state tomographies, we do not need to compute
the adjoint-state variable as an intermediate product for the gradient.
Additionally, the Gauss-Newton approach approximates the

Hessian in equation 6 by H ≈ JTJ. An update δw at current w is
found by taking derivative of equation 6 with respect to δw, which
results in the following normal equation:

δw ¼ ½JTJ�−1JTðtobs − tÞ: (17)

To add model constraints, we combine equation 17 with Tikhonov
regularization (Tikhonov, 1963) with the gradient operator and use
the method of conjugate gradients (Hestenes and Stiefel, 1952) to
solve for the model update δw.

SYNTHETIC MODEL EXAMPLES

The numerical examples in this section serve several different
purposes. The first example will test the accuracy of the modified
FMM DSR eikonal equation solver (DSR FMM) and shows the
drawbacks of the alternative explicit discretization. The second
example will demonstrate the effect of considering noncausal
branches of the DSR eikonal equation in forward modeling. The
third example will compare the sensitivity kernels of DSR tomog-
raphy and standard tomography in a simple model. The last
example will present a tomographic inversion and demonstrate ad-
vantages of the DSR method over the traditional method.
Figure 5 shows a 2D velocity model with a constant-velocity-

gradient background plus a Gaussian anomaly in the middle. We
use Δ to denote the grid spacing in z and δ in x. The traveltimes
on the surface z ¼ 0 km of a shot at ð0; 0Þ km are computed by
DSR FMM at a gradually refined Δ or δ while fixing the other
one. For reference, we also calculate first breaks by a second-order
FMM (Rickett and Fomel, 1999; Popovici and Sethian, 2002) for
the same shot at a very fine grid spacing of Δ ¼ δ ¼ 1 m. In
Figure 6, a grid refinement in Δ and δ helps reducing errors of
the implicit discretization, although improvements in the Δ refine-
ment case are less significant because most of the raypaths are
nonhorizontal. The results are consistent with the analysis in Ap-
pendix A, which shows that the implicit discretization is uncondi-
tionally convergent. On the other hand, as shown in Figure 7, the
explicit discretization is only conditionally convergent when
Δ∕δ → 0 under grid refinement, in order to resolve the flatter parts
of the raypaths. This explains why its accuracy deteriorates when
refining δ and fixingΔ. A more detailed error analysis remains open
for future research.
Next, we use a smoothed Marmousi model (Figure 8) and run

two DSR FMMs, one with the search process for noncausal
DSR branches turned on and the other turned off. In Figure 9, again

we compute reference values by a second-order FMM. The three
groups of curves are traveltimes of shots at (0,0) km, (0.75,0) km,
and (1.5,0) km, respectively. The maximum absolute differences
between the two DSR FMMs, for all three shots, are approximately
5 ms at the largest offset. This shows that, if the near-surface model
is moderately complex, then the first breaks are of causal types
described by equations 1 and 3, and we therefore can use their lin-
earizations (equation 15) for tomography.
According to equations 11 and 15, the sensitivity kernels (a row

of Frechét derivative matrix) of standard tomography and DSR
tomography are different. Figure 10 compares sensitivity kernels
for the same source-receiver pair in a constant-velocity-gradient
model. We use a fine model sampling of Δ ¼ δ ¼ 2.5 m. The stan-
dard tomography kernel appears to be asymmetric. Its amplitude

Figure 5. The synthetic model used for DSR FMM accuracy test.
The overlaid curves are rays traced from a shot at (0,0) km.

Figure 6. Grid refinement experiment (implicit discretization). In
both figures, the solid blue curve is the reference values and
the dashed curves are computed by DSR FMM. Top: fixed
δ ¼ 10 m and Δ ¼ 50 m (cyan), 10 m (magenta), 5 m (black). Bot-
tom: fixed Δ ¼ 10 m and δ ¼ 50 m (cyan), 10 m (magenta), 5 m
(black).

DSR tomography U93

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



has a bias toward the source side, while the width is broader on the
receiver side. These phenomena are related to our implementation,
as described in Appendix C. Note in the top plot of Figure 10, the
curvature of first-break wavefront changes during propagation. Up-
wind finite-differences take the curvature variation into considera-
tion and, as a result, backproject data misfit with different weights
along the raypath. Meanwhile, the DSR tomography kernel is sym-
metric in amplitude and width, even though it uses the same
discretization and upwind approximation as in standard tomog-
raphy. The source-receiver reciprocity may suggest averaging
the standard tomography kernel with its own mirroring around
x ¼ 1 km; however, the result will still be different from the
DSR tomography kernel as the latter takes into consideration all
sources at the same time.
Finally, Figure 11 illustrates a prestack first-break traveltime mod-

eling of the Marmousi model by DSR FMM. We use a constant-
velocity-gradient model as the prior for inversion. There are 287 shots
evenly distributed on the surface; each shot has a maximum abso-
lute receiver offset of 6 km. Figure 12 shows a zoom-in of the exact

Figure 7. Grid refinement experiment (explicit discretization). The
experiment setups are the same as in Figure 6.

Figure 8. A smoothed Marmousi model overlaid with rays traced
from a shot at (0,0) km. Because of velocity variations, multipathing
is common in this model, especially at large offsets.

Figure 9. DSR FMM with noncausal branches. The solid black
lines are reference values. There are two groups of dashed lines,
from DSR FMM but one with the optional search process
turned-on and the other without. The differences between them
are negligible and hardly visible.

Figure 10. (Top) model overlaid with traveltime contours of a
source at (0,0) km and sensitivity kernels of (middle) the standard
tomography and (bottom) the DSR tomography.
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model that is within the tomographic aperture. The DSR tomogra-
phy and standard tomography are performed with the same param-
eters: Ten conjugate gradient iterations per linearization update and
four linearization updates in total. Figure 13 shows the convergence
histories. While both inversions converge, the relative l2 data misfit
of DSR tomography decreases faster than that of standard tomog-
raphy. Figure 14 compares the recovered models. Although both
results resemble the exact model in Figure 12 at the large scale,
the standard tomography model exhibits several undesired struc-
tures. For example, a near-horizontal structure with a velocity of
around 2.75 km∕s at location (0.85,4.8) km is false. It indicates
the presence of a local minimum that has trapped the standard
tomography. In practice, it is helpful to tune the inversion param-

eters so that the standard tomography takes more iterations with a
gradually reducing regularization. The inversion parameters are
usually empirical and hard to control. Our analysis in preceding sec-
tions suggests that part of the role of regularization is to deal with
conflicting information between shots. In contrast, we find DSR
tomography less dependent on regularization and hence more
robust.
The advantage of DSR tomography becomes more significant in

the presence of noise in the input data. We first generate random
noise with normal distribution and zero mean that ranges between
�600 ms, then threshold the result with a minimum absolute value
of 250 ms. This is to mimic the spiky errors in first breaks estimated
from an automatic picker. After adding noise to the data, we run

Figure 11. DSR first-break traveltimes in the Marmousi model. The
original model is divided by two in vertical and lateral directions,
such that nz ¼ 376, nx ¼ 1151 and Δ ¼ δ ¼ 8 m.

Figure 12. (Top) a zoom-in of Marmousi model and (bottom) the
initial model for tomography.

Figure 13. Convergency history of DSR tomography (solid) and
standard tomography (dashed). There is no noticeable improvement
on misfit after the fourth update.

Figure 14. Inverted model of (top) standard tomography and (bot-
tom) DSR tomography. Compare with Figure 12.
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inversions with the same parameters as in Figures 13 and 14.
Figures 15 and 16 show the convergence history and inverted mod-
els. Again, the standard tomography seems to provide a model with
higher resolution, but a close examination reveals that many small
scale details are in fact nonphysical. On the other hand, DSR
tomography suffers much less from the added noise. Adopting a
l1 norm in objective function 5 can improve the inversion, espe-
cially for standard tomography. However, it also raises the difficulty
in selecting appropriate inversion parameters.

DISCUSSION

There are three main issues in the DSR tomography. The first
issue comes from a large dimensionality of the prestack space,
which results in a considerable computational domain size after dis-
cretization. The memory consumption becomes an immediate prob-

lem for 3D models, where the prestack traveltime belongs to a 5D
space and may require distributed storage.
The second issue is related to the computational cost. The FMM

DSR we have introduced in this paper has a computational com-
plexity of OðN log NÞ, where N is the total number of grid points
after discretization, N ¼ nz × nx2. The log N factor arises in
the priority queue used in FMM for keeping track of expanding
wavefronts. Some existing works could accelerate FMM to an
OðNÞ complexity and may be applicable to the DSR eikonal equa-
tion (Kim, 2001; Yatziv et al., 2006). Other fast methods developed
for the eikonal equation might be similarly applicable to the DSR
eikonal equation. These include fast-sweeping (Zhao, 2005), hybrid
two-scale marching-sweeping methods and various label-correcting
algorithms (see Chacon and Vladimirsky [2012] and references
therein).
The last issue is possible parallelization of the proposed method.

Our current implementation of the FMM DSR tomography algo-
rithm is sequential, whereas the traditional tomography could be
parallelized among different shots. However, we notice that the
DSR eikonal equation has a plane wave source; therefore, a distrib-
uted wavefront propagating at the beginning followed by a subdo-
main merging is possible. A number of parallelizable algorithms for
the eikonal equation have been developed (Zhao, 2007; Jeong and
Whitaker, 2008; Weber et al., 2008; Detrixhe et al., 2013; A. Cha-
con, personal communication, 2012). Extending these methods to
the DSR eikonal equation would be the first step in parallelizing
DSR tomography.

CONCLUSIONS

We propose to use the DSR eikonal equation for the first-break
traveltime tomography. The proposed method relies on an efficient
DSR solver, which is realized by a version of the fast-marching
method based on an implicitly causal discretization. Because the
DSR eikonal equation allows changing of source position along
the raypath, its linearization results in a tomographic inversion that
naturally handles possible conflicting information between different
shots. Our numerical tests show that, compared to the traditional
tomography with a shot-indexed eikonal equation, the DSR tomog-
raphy converges faster and is more robust. Its benefits may be par-
ticularly significant in the presence of noise in the data.
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APPENDIX A

CAUSAL DISCRETIZATION OF DSR EIKONAL
EQUATION

To simplify the analysis, we consider first the DSR branch as shown
in Figure 1 and described by equation 1. We assume a rectangular 2D

Figure 15. Inversion with noisy data. Convergency history of DSR
tomography (solid) and standard tomography (dashed). No signifi-
cant decrease in misfit appears after the fourth update.

Figure 16. Inversion with noisy data. Inverted model of (top) stan-
dard tomography and (bottom) DSR tomography. Compare with
Figure 14.
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velocity model vðz; xÞ and thus a cubic 3D prestack volume Tðz; r; sÞ
with r and s axes having the same dimension as x. After an Eulerian
discretization of v and T, we denote the grid spacing in z as Δ, and in
x, r, and s as δ.
In Figure A-1, we study the traveltime at grid point y ¼ ðz; r; sÞ

and its relationship with neighboring grid points yz ¼ ðzþ Δ; r; sÞ,
yr ¼ ðz; r − δ; sÞ, and ys ¼ ðz; r; sþ δÞ with a semi-Lagrangian
scheme. According to the geometry in Figure 1, in the ðz; r; sÞ
space, the DSR characteristic (Duchkov and de Hoop, 2010) is
straddled by yzyrys.
To compute T, we could continue along this characteristic up un-

til its intersection with the simplex yzyrys. Suppose the intersection
point is ~y ¼ ð~z; ~r; ~sÞ and αi are its barycentric coordinates, i.e.,

αz;αr;αs ∈ ½0;1�; αzþαrþαs ¼ 1; ~y¼ αzyzþαryrþαsys:

(A-1)

This leads to the following discretization

T≡TðyÞ

¼ min
~y∈yzyrys

(
Tð ~yÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz− ~zÞ2þðr− ~rÞ2

p
vðz;rÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz− ~zÞ2þðs− ~sÞ2

p
vðz;sÞ

)
:

(A-2)

Here, we further assume that vðz; rÞ and vðz; sÞ are locally constant
and that ray segments between z and zþ Δ are well-approximated
by straight lines. This also means that a linear interpolation in T
within the simplex yzyrys is exact, i.e., Tð ~yÞ ¼ αzTz þ αrTrþ
αsTs, where Ti ¼ TðyiÞ for i ¼ z; r; s. The minimization over all
possible intersection points in equation A-2 guarantees a first-
arrival traveltime.
Defining the ratio in grid spacing as μ ≡ Δ∕δ and denoting vr ¼

vðz; rÞ and vs ¼ vðz; sÞ, equation A-2 can be rewritten with the bar-
ycentric coordinates in A-1 as

T¼ min
ðαz;αr;αsÞ

�
ðαzTzþαrTrþαsTsÞþ δ

vr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2rþμ2α2z

q
þ δ

vs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2sþμ2α2z

q �
:

(A-3)

Figure A-1 is based on a particular direction of the diving wave:
rightward from the source and leftward from the receiver, as in
Figure 1. This yields the above positions of ys and yr, and the for-
mula A-3 becomes an update from the yzyrys quadrant. Because, in
general, the direction of a diving wave is not known a priori, we
compute one such update from each of the lower quadrants and take
the smallest amongst them as a value of T.
To explore the causal properties of equation A-3, we first assume

that the minimum is attained at some ~y� ¼ ξzyz þ ξryr þ ξsys such
that ξi > 0 for i ¼ z; r; s. From the Kuhn-Tucker optimality condi-
tions (Kuhn and Tucker, 1951), there exists a Lagrange multiplier λ
such that

λ ¼ Tz þ δ

�
μ2ξz

vr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2r þ μ2ξ2z

p þ μ2ξz

vs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2s þ μ2ξ2z

p �
; (A-4)

λ ¼ Ti þ δ

�
ξi

vi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2i þ μ2ξ2z

p �
; i ¼ r; s: (A-5)

Taking a linear combination of A-4 and A-5 to match the right side
of A-3, we find that λ ¼ T and thus

T − Tz ¼ δ

�
μ2ξz

vr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2r þ μ2ξ2z

p þ μ2ξz

vs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2s þ μ2ξ2z

p �
> 0; (A-6)

T − Ti ¼ δð ξi

vi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2i þ μ2ξ2z

p Þ > 0; i ¼ r; s: (A-7)

This means that if T defined by equation A-3 depends on Ti then
T > Ti for i ¼ z; r; s, or

T > maxðTz; Tr; TsÞ (A-8)

and a Dijkstra-like method (Dijkstra, 1959) is applicable to solve
the discretized system.
A direct substitution from equations A-6 and A-7 results in

T − Tz

Δ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2r
−
�
T − Tr

δ

�
2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2s
−
�
T − Ts

δ

�
2

s
:

(A-9)

If Tz, Tr, and Ts are known, then T can be recovered by solving the
fourth order polynomial equation A-9 and choosing the smallest
real root that satisfies condition A-8. This gives a three-sided update
at T. The discretization is implicitly causal and provides uncondi-
tional consistency and convergence.
If there is no real root or none of the real roots satisfy A-8, the

minimizer ~y cannot lie in the interior of simplex yzyrys and at least
one of the ξis must be zero. If ξz ¼ 0, it is easy to show that one of
the other barycentric coordinates is also zero and equation A-3 sim-
plifies to

Figure A-1. An implicit discretization scheme. The arrow indicates
a DSR characteristic. Its root is located in the simplex TzTrTs.
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T ¼ min

�
Tr þ δ

vr
; Ts þ δ

vs

�
; (A-10)

which is a causal discretization of the DSR singularity in equation 3.
On the other hand, if ξz ≠ 0 and ξr ≠ 0, but ξs ¼ 0, i.e., the slow-
ness vector at s is vertical, then

T ¼ ðξzTz þ ξrTrÞ þ δ

vr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2r þ μ2ξ2z

q
þ Δ

vs
ξz: (A-11)

A similar Kuhn-Tucker-type argument shows that equation A-11 is
also causal: If ξz; ξr > 0, then T > maxðTz; TrÞ. In this case, T can
be computed by solving

T − Tz

Δ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2r
−
�
T − Tr

δ

�
2

s
þ 1

vs
: (A-12)

Equation A-12 is equivalent to setting ∂T∕∂s ¼ 0 in equation 1.
Analogously, when ξz ≠ 0 and ξs ≠ 0 but ξr ¼ 0, we have ∂T∕∂r ¼
0 and

T − Tz

Δ
¼ 1

vr
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2s
−
�
T − Ts

δ

�
2

s
; (A-13)

with the causal solution satisfying T > maxðTz; TsÞ. Equations A-12
and A-13 provide a two-sided update at T. Finally, if ξz ≠ 0 but
ξs ¼ 0 and ξr ¼ 0, i.e., ∂T∕∂s ¼ 0 and ∂T∕∂r ¼ 0, we obtain the
simplest one-sided update

T − Tz

Δ
¼ 1

vr
þ 1

vs
: (A-14)

We note that the one-sided update A-14 could be considered a
special case of two-sided updates: If T ¼ Tr (or Ts), then equation
A-14 becomes equivalent to A-12 (or, respectively, A-13). Simi-
larly, the two-sided updates can be viewed as special versions of
the three-sided one: e.g., if T ¼ Tr ¼ maxðTz; Tr; TsÞ, then equa-
tion A-9 becomes equivalent to A-13. This means that the causal
criteria for formulas A-9, A-12, and A-13 can be relaxed (the in-
equalities do not have to be strict). This relaxation is used to stream-
line the update strategy in the “Numerical implementation” section.
In Figure A-1 and the corresponding semi-Lagrangian discretiza-

tion A-2, the raypath is linearly approximated up to its intersection
with the simplex yzyrys at a priori unknown depth zþ ξzΔ. An al-
ternative explicit semi-Lagrangian discretization can be obtained in
the spirit of Figure 1 by tracing the ray up to the prespecified depth
zþ Δ. In Figure A-2, we consider the DSR characteristic being
straddled by yz�yr�ys�, where yz� ¼ðzþΔ;r;sÞ, yr� ¼ðzþΔ;r−δ;sÞ,
and ys� ¼ ðzþ Δ; r; sþ δÞ. Denoting ~y� ¼ ðzþ Δ; ~r�; ~s�Þ for the in-
tersection point between DSR characteristic and simplex yz�yr�ys�, we
obtain the following discretization

T¼ min
~y�∈yz�yr�ys�

�
Tð ~y�Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2þðr− ~r�Þ2

p
vðz;rÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2þðs− ~s�Þ2

p
vðz;sÞ

�
:

(A-15)

One could perform the same analysis of equations A-3–A-9 to equa-
tion A-15. For the sake of brevity, we omit the derivation and show
the resulting explicit discretization scheme

T − Tz�
Δ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2r
−
�
Tz� − Tr�

δ

�
2

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

v2s
−
�
Tz� − Ts�

δ

�
2

s
;

(A-16)

where Ti�¼Tðyi�Þ for i ¼ z; r; s. More generally, to account for vari-
ous possible directions of the diving wave, we can set Tr� ¼minðTðzþ
Δ;r−δ;sÞ;TðzþΔ;rþδ;sÞÞ and Ts� ¼ min ðTðzþ Δ; r; s − δÞ;
Tðzþ Δ; r; sþ δÞÞ.
Compared with equation A-9, A-16 does not require solving a

polynomial equation. Moreover, T depends only on values in lower
z-slices, which means that the system of equations can be solved in
a single sweep in the −z-direction. Unfortunately, despite this effi-
ciency on a fixed grid, the explicit discretization has a major dis-
advantage stemming from the requirement that the characteristic
should be straddled by yz�yr�ys�. This imposes an upper bound on
μ based on the slope of the diving wave. Moreover, because every
diving ray is horizontal at its lowest point, the convergence is pos-
sible only if μ → 0 under mesh refinement. In practice, this means
that the results are meaningful only if Δ is significantly smaller than
δ. We note that restrictive stability conditions also arise for time-
dependent Hamilton-Jacobi equations of optimal control, where
sufficiently strong inhomogenieties can make nonlinear/implicit
schemes preferable to the usual linear/explicit approach (A. Vladi-
mirsky, personal communication, 2013).
The above analysis also applies to the first branch of the DSR

eikonal equation in Figure 2. However, in the discretized ðz; r; sÞ
domain, the slowness vectors at s and r are always aligned in
the z-direction, either upward or downward. For this reason, there
is no DSR characteristic that accounts for the second and third sce-
narios. We will refer to the first and last branches in Figure 2 as
causal branches of DSR eikonal equation, and the leftover two
as noncausal branches.
Note that when the slowness vectors at s and r are pointing in

opposite directions, there must be at least one intersection of the ray-
path with the z depth level in-between. As shown in Figure A-3, ray
segments between these intersections fall into the category of causal
branches. Thus, a search process for the intersections is sufficient in
recovering the noncausal branches during forward modeling. More-
over, because we are interested in first breaks only, the minimum
traveltime requirement allows us to search for only one intersection,
such as q denoted in Figure A-3

Tðz; r; sÞ ¼ min
q∈ðs;rÞ

fTðz; q; sÞ þ Tðz; r; qÞg: (A-17)

Other possible intersections in intervals ðs; qÞ and ðq; rÞ have already
been recovered when computing Tðz; q; sÞ and Tðz; r; qÞ, as long as
we enable the intersection searching from the beginning of forward
modeling. The traveltime of noncausal branches from equation A-17
is then compared with that from causal branches, and the smaller one
should be kept.
Unfortunately, this search routine induces considerable computa-

tional cost. Moreover, we note that, under a dominant diving waves
assumption, the first DSR branch, despite being causal, becomes
useless if the search routine is turned off.

U98 Li et al.

D
ow

nl
oa

de
d 

11
/2

3/
14

 to
 1

32
.2

36
.2

7.
11

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



APPENDIX B

FRECHÉT DERIVATIVE OF DSR TOMOGRAPHY

To derive the Frechét derivative, we start from equations 13 and
14. Applying ∂∕∂ws to both sides of equation 13 results in

Dz
∂tdsr

∂ws
¼ −

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ws −Dstdsr · Dstdsr

p
þ
�

Dstdsr · Dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ws −Dstdsr · Dstdsr

p þ Drtdsr · Drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr −Drtdsr · Drtdsr

p �
∂tdsr

∂ws
:

(B-1)

Analogously,

Dz
∂tdsr

∂wr
¼ −

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr −Drtdsr · Drtdsr

p
þ
�

Dstdsr · Dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ws −Dstdsr · Dstdsr

p þ Drtdsr · Drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr −Drtdsr · Drtdsr

p �
∂tdsr

∂wr
:

(B-2)

Inserting equations B-1 and B-2 into 14 and regrouping the terms,
we prove equation 15

Jdsr ¼ B−1ðCs þ CrÞ; (B-3)

where

B ¼ Dz −
�

Dstdsr · Dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ws −Dstdsr · Dstdsr

p �

−
�

Drtdsr · Drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr −Drtdsr · Drtdsr

p �
; (B-4)

and

Cs ¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ws −Dstdsr · Dstdsr

p ∂ws

∂w
; (B-5)

Cr ¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wr −Drtdsr · Drtdsr

p ∂wr

∂w
: (B-6)

At the singularity of DSR eikonal equation, the operators B, Cs,
and Cr take simpler forms and can be derived directly from
equation 3.

APPENDIX C

ADJOINT-STATE TOMOGRAPHY WITH
UPWIND FINITE-DIFFERENCES

Following Appendix A, we let Tj;k
i in the DSR case be the trav-

eltime at vertex ðzi; rj; skÞ and approximate Dz in equation 8 by a
one-sided finite-difference

D�
z T

j;k
i ¼ � Tj;k

i�1 − Tj;k
i

Δ
; (C-1)

where the � sign corresponds to the two neighbors of Tj;k
i in z-

direction. An upwind scheme (Franklin and Harris, 2001) picks
the sign by

DzT
j;k
i ¼ max ðD−

z T
j;k
i ;−Dþ

z T
j;k
i ; 0Þ: (C-2)

The above strategy can be applied to Dr and Ds straightforwardly.
For the shot-indexed eikonal equation 9, we approximate Dx with
the same upwind method while T in this case is indexed for z and x.
For a Cartesian ordering of the discretized T, i.e., vector t, the

discretized operators DmT · Dm with m ¼ z; x; r; s are matrices.
Thanks to upwind finite-differences, these matrices are sparse
and contain only two nonzero entries per row. For instance, suppose
Tj;k
i has its upwind neighbor in z at Tj;k

i−1, then

DzT · Dz ¼

2
66666664

. .
.

. .
.

. .
.

−κz κz
. .
.

3
77777775
; (C-3)

where

Figure A-3. When slowness vectors at s and r are pointing in the
opposite directions, the raypath must intersect with line s − r at
certain point q.

Figure A-2. An explicit discretization scheme. Compare with
Figure A-1. The arrow again depicts a DSR characteristic with
its root confined in the simplex Tz�Tr�Ts�.
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κz ≡
DzT

j;k
i

Δ
¼ Tj;k

i − Tj;k
i−1

Δ2
: (C-4)

Definitions of κr, κs, and κx follow their upwind approximations,
respectively. In matrix C-3, �κz are located in the same row as that
of Tj;k

i in t. While κz sits on the diagonal, −κz has a column index
equals to the row of Tj;k

i−1 in t. At T ¼ 0, there is no upwind neighbor
and the corresponding row contains all zeros.
We can sort entries of t by their values in an increasing order,

which equivalently performs columnwise permutations to
DmT · Dm. The results are lower triangular matrices. In fact, during
FMM forward modeling, such an upwind ordering is maintained
and updated by the priority queue and thus can be conveniently im-
ported for usage here.
Note that the summation and subtraction of two (or more) DmT ·

Dm matrices are still lower triangular. These matrices are also
invertible, except for a singularity at T ¼ 0 where we may set
the entries to be zero. Naturally, the inverted matrices are also lower
triangular. One example is the linearized eikonal equation that gives
rise to equation 10. Following notation C-4 and assuming the up-
wind neighbors of Tj

i are Tj
i−1 and Tj−1

i , the linearized equation 9
reads

2κzðδTj
i − δTj

i−1Þ þ 2κxðδTj
i − δTj−1

i Þ ¼ δwj
i : (C-5)

After regrouping the terms, we get

δTj
i ¼

2κzδT
j
i−1 þ 2κxδT

j−1
i þ δwj

i

2ðκz þ κxÞ
: (C-6)

Equation C-6 means the inverse of the operator DzT · Dz þDxT ·
Dx does not need to be computed by an explicit matrix inversion.
Instead, we can perform its application to a vector by a single sweep
based on causal upwind ordering. The same conclusion can be
drawn for operator B-4.
Lastly, the adjoint-state calculations implied by equations 12 and

16 multiply the transpose of these inverse matrices with the data
residual. The matrix transposition leads to upper triangular matri-
ces. Accordingly, we solve the linear system with anticausal down-
wind ordering that follows a decrease in values of t.
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