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Abstract. In this work we provide a novel approach to homogeniza-
tion for a class of static Hamilton-Jacobi (HJ) equations, which we call
metric HJ equations. We relate the solutions of the HJ equations to
the distance function in a corresponding Riemannian or Finslerian met-
ric. The metric approach allows us to conclude that the homogenized
equation also induces a metric. The advantage of the method is that we
can solve just one auxiliary equation to recover the homogenized Hamil-
tonian H̄(p). This is significant improvement over existing methods
which require the solution of the cell problem (or a variational problem)
for each value of p. Computational results are presented and compared
with analytic results when available for piece-wise constant periodic and
random speed functions.
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1. Introduction
sec:intro

In this work we provide a novel approach to homogenization for a class of
convex Hamilton-Jacobi (HJ) equations, which we call metric HJ equations.
We relate the solutions of the HJ equations to the distance function in a
corresponding Riemannian or Finslerian metric. By appealing to a homog-
enization result for metrics, we conclude that the homogenized equation is
also the distance in a homogenized metric. The advantage of our method
is that we can solve just one auxiliary equation to recover the homogenized
Hamiltonian H̄(p). This is significant improvement over existing methods
which require the solution of the cell problem (or a variational problem) for
each value of p.

An application is front propagation problems in multiscale media. The
wide separation of spatial scales prohibits the direct solution of the fully
resolved problem. Instead, the medium which varies on small scales is re-
placed by a homogeneous medium, which approximates the propagation of
the fronts on the larger scale.

The main theoretical idea is to recognize that the distance function in the
homogenized metric captures the solution to a variational problem for the
geodesics corresponding to all directions. This distance function, which is
approximated by solving a single Hamilton-Jacobi equation, can be used to
recover the entire homogenized metric. To make this procedure work, we
need to be able to easily translate results for anisotropic front propagation
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between various formulations (reviewed in section §2). The first formulation
expresses the speed of propagation in the media by a local speed function.
The speed function induces a metric on the space, given by the least time
to traverse using admissible paths. The distance function in this metric
satisfies an eikonal-type Hamilton-Jacobi equation.

Remark. Our results apply to the metric Hamiltonian H(p, x) = 1, which
homogenizes to H̄(p). We mention here that the results extend to some other
cases, provided H(p, x) is a metric Hamiltonian. While it is not completely
obvious, it is true that H2(∇u, x) = 1 homogenizes to H̄2(∇u) = 1. In
the time-dependent case, ut = H(∇u, x), homogenizes to ut = H̄(∇u). In
addition, ut = H2(∇u, x) homogenizes to ut = H̄2(∇u). These results
can be obtained using the Hopf-Lax formula. For an explanation, see the
remarks at the end of section §2.9 and at the start of section §3.

Another natural definition of metric in an inhomogeneous medium is pro-
vided by the geodesic distance. In this case a cost function is minimized.
over admissible paths (which are not required to have bounded speeds). The
relationship between the cost function and the speed function which makes
the geodesic metric equal to the metric induces by the speed function is
given in §2.8.

In our approach, we compute an approximation to the homogenized La-
grangian L̄(q) for all values of q. The Legendre transform is then applied
to obtain H̄(p) for all values of p. In fact, it is often more convenient to
solve anisotropic Hamilton-Jacobi equations by semi-Lagrangian numerical
methods. In that case, all that is needed is L̄(q), and the additional step of
applying Legendre transform can be avoided.

Contents. The remainder of this section introduces anisotropic front prop-
agation, and presents a few model problems. Section §2 reviews front prop-
agation more thoroughly. The HJ equation for the arrival time is derived,
and the geodesic distance is presented. The Lagrangian and the Hopf-Lax
formula are reviewed. Section §3 contains a review of homogenization and
the proof of the main theoretical result. The algorithmic details of our nu-
merical method are provided in section §4, and the numerical results can be
found in section §5.

1.1. Particle speeds and front normal velocities. Suppose Γ is the
initial position of a front which is advancing monotonically, passing through
each point only once. In this case the position of the front at time t can
be represented by the level set of a single function T (x). If T (x) is the
time when the front passes through the point x, then the level-sets of T
give subsequent positions of the front. Assume that the normal speed of the
front, F (x, n), depends only on the position, x, and normal direction, n. If
the front remains smooth, its normal direction is n = ∇T

|∇T | and the rate of
increase of T in that direction is equal to |∇T |. On the other hand, this rate
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Figure 1: Illustration of normal front speed versus particle speed. fig:front

of increase should be the reciprocal of the normal speed, F . This yields the
following static Hamilton-Jacobi equation

F

(
x,
∇T (x)
|∇T (x)|

)
|∇T (x)| = 1

with the boundary condition T = 0 on Γ. However, this argument is formal,
since the advancing front will generally not remain smooth. (For two grow-
ing circles, the front develops a cusp when they intersect.) To deal with
singularities, the notion of viscosity solutions should be used to interpret
this Partial Differential Equation (PDE) [12].

A Lagrangian formulation of the same problem results from considering
a front as an aggregate of infinitely many particles, all of which are moving
along optimal trajectories, with the goal of advancing in the front’s normal
direction as quickly as possible. The optimal particle trajectories coincide
with the characteristics of the above PDE, and the front remains smooth as
long as these optimal trajectories do not intersect.

In order to properly link the Hamilton-Jacobi equation with the La-
grangian formulation, we need to be particularly careful when dealing with
anisotropic speeds. In the isotropic case, F (x, n) = c(x) and the opti-
mal direction for particle-travel is also orthogonal to the front, yielding the
Eikonal PDE

c(x)|∇T (x)| = 1.

In the anisotropic case, the normal velocity of the front is different from the
velocity of the moving particles which make up that front.

Example. Suppose particles move horizontally with speed 1, and have no
vertical speed allowed. Then the front with normal (1, 1)/

√
2 moves with

speed 1/
√

2 in the normal direction, whereas the vertical front moves at
speed 1 and a horizontal front does not move at all. See Figure 1.
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The example above can be extended to the general case, where the al-
lowable particle speed in the direction α is given by c(x, α). All particles
try to advance the front as quickly as possible; so the optimal direction for
particle-motion will depend on the local orientation of the front. In that
case, the normal speed of the front is

F (x, n) = max
|α|=1
{(n · α)c(x, α)},

and the maximizing α corresponds to the direction of particle motion. This
connection is discussed in detail in section §2.4. Here we simply note that the
front-crossing-time function T (x) is the viscosity solution of the Hamilton-
Jacobi equation H(∇T (x), x) = 1, where the Hamiltonian is given by

HfromSpeedHfromSpeed (1) H(p, x) := max
|α|=1
{(p · α)c(x, α)} = |p|F

(
x,

p

|p|

)
.

Before going into the details of our approach, we present several model
problems.

1.2. The periodic checkerboard. Consider a periodic checkerboard, where
the speed of motion is either 1 or 2. Suppose further that the scale of the
periodicity, ε, is too small to resolve computationally. Clearly, simply solv-
ing on a coarse grid could produce incorrect results, because the coarse grid
could fail to resolve one of the two parts of the medium. This is where
homogenization comes in: we need to replace the medium which varies on
small scales with an approximation which captures the large scale behavior.

The homogenized medium can be found by finding the explicit optimal
paths (which are not unique). In this case, if the ratio of speeds is large
enough, there is no point spending any time in the slower material. (For hor-
izontal, vertical and diagonal directions, the paths stay in the fast squares,
and move directly, up to small oscillations on the scale of ε. But other direc-
tions, for example the direction (2, 1), there is no straight line path, so the
optimal path is longer than in the Euclidean case. As a result, the homog-
enized speed is slower for these directions. See Figure 2. These heuristic
arguments can be made rigorous [1]. The checkerboard medium homoge-
nizes to a medium whose vectogram is octagonal. We represent the speed
of propagation by a vectogram which illustrates the speed in each possible
direction permitted by the material. See Figure 3.) This example illustrates
a general principle,

Anisotropy can develop as a result of homogenization.

1.3. The random checkerboard. The random case, where each square is
fast or slow with probability one half, is shown in Figure 4. In this case,
numerical results suggest that homogenized material is isotropic with speed
faster than the harmonic mean, see section §5.5.
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Figure 2: An optimal path in the (2, 1) direction for the checkerboard ma-
terial.

fig:path

Figure 3: Homogenization of the checkerboard material, illustrated with
vectograms.

fig:checkerboard

toy3scale
1.4. The toy three scale problem. Consider a two dimensional material
made up of fifty by fifty unit blocks. Each block is allowed to have a different
periodic small scale structure. See Figure 5.

To solve the full three scale problem, we apply a two step procedure.
First in each block, homogenize to get a homogenous material with a new
(anisotropic) speed profile. Next, on the large scale, solve the front propaga-
tion problem on a grid which resolves each block, using the speed profile for
the homogenized blocks. See Figure 5 and Figure 11. Accurate results can
be obtained with a modest number of grid points on each block, see §5.2.
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Figure 4: Optimal paths in a random media. The particle speed is c0 > 1
in the dark and 1 in the light region. Left: c0 = 2. Right: c0 = 10.

fig:randomPath

Figure 5: The three scale problem (left), result of homogenization in each
medium scale cell (right)

fig:3scaleSol

2. Paths and fronts in an inhomogeneous medium
sec:fronts

In this section we review front propagation in an inhomogeneous and
anisotropic medium from the perspective of the optimal control theory. We
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discuss the least time perspective, and the related Eikonal equation for the
distance.

We recall the derivation of the Hamilton-Jacobi equation for the distance
function. The distance function is interpreted as the first arrival time for
a front given as the envelope of particles moving along the optimal paths
at speed given by c. The normal speed of a front is not the same as the
particle speed. However, we make the observation in 2.9 that the particle
speed function defines a norm, and that the HJ equation for the distance is
a generalized eikonal equation in the dual norm.

These different interpretations of HJ equations are later used in section §3
to derive an efficient method for homogenization.

sec:summary
2.1. Summary of notation and relationship between the variables.
• x is a generic point in Rn representing position.
• p, q are generic vectors in Rn representing velocity.
• β is a generic vector in Rn satisfying |β| ≤ 1.
• α is a generic unit vector in Rn representing direction.
• c(x, α) is the particle speed in the direction α.
• f(x, α) gives the particle velocity in the direction α, f(x, α) = αc(x, α)
• F (x, n) gives the speed for a front with normal n.
• b(x, q) is the cost at x to move with velocity q.
• The vectogram, Vc(x) = {f(x, β) | |β| ≤ 1} is a set of all permissible

velocities at the point x.
• The Hamiltonian, H(p, x) = |p|F (x, p/|p|).
• The Lagrangian L(q, x) = 0 if q ∈ Vc(x), ∞ otherwise.

The normal speed F and particle speed c are related by the homogeneous
Legendre Transform [28]. The Hamiltonian, H, and the Lagrangian L are
related by the Legendre Transform, see section §2.5. The particle speed c and
the metric cost function b are one sided inverse functions, see section §2.8.
For each fixed x, the metric cost function b and the Hamiltonian H are
norms on Rn. These are dual norm, see section §2.9.

2.2. The speed function, vectograms. Consider a medium which allows
particle motion at limited speeds. Let x denote the position, and β denote
the control value. Write ẋ(s, β(s)) := d

dsx(s, β(s)). The admissible paths
x(s, β(s)) satisfy the controlled ordinary differential equation

dynamicsdynamics (ODE) ẋ(s, β(s)) = f(x(s, β(s)), β(s)),

where β(·) ∈ B := {β(·) : [0,∞)→ Rn, |β| ≤ 1, measurable} is the control.
We restrict to the special case where the control is the choice of direction:

speedfunctionspeedfunction (2) f(x, β(s)) = c

(
x,

β(s)
|β(s)|

)
β(s).

The speed function c : Rn × Sn−1 → [0,+∞) gives the maximum speed
allowed in the direction α, where α = β(s)|β(s)|−1 is a unit vector. We
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assume that c is convex in its second argument and satisfies the small-time
controllability condition:

growthgrowth (3) 0 < c1 ≤ c(x, α) ≤ C1 < +∞ for every x ∈ Rn, |α| = 1.

The function c is homogeneous if it is independent of x, c(x, α) = c(α),
isotropic if it is independent of the direction, α, c(x, α) = c(x), and sym-
metric if

speedsymmetricspeedsymmetric (4) c(x,−α) = c(x, α).

We assume symmetry to ensure that the resulting distances on Rn, Tc(x1, x2),
are symmetric, although the assumption can be dropped at the expense of
some additional bookkeeping (we would need to distinguish between arrival
times, and times to reach a target, some of the formulas will have minus signs
in the velocities, see [28] and norms are replaced by asymmetric norms).

For fixed x ∈ Rn, the speed function c is a mapping of the unit sphere,
Sn, and also defines a vectogram Vc ⊂ Rn:

Vc =
{
c

(
x,

β(s)
|β(s)|

)
β

∣∣∣∣ |β| ≤ 1
}
.

Vectograms [20] provide a simple way to illustrate the speed profile for each
point x. See Figures 3 and 8.

sec:arrivaltime
2.3. The arrival time function. We can define a distance on Rn using
the minimum time needed to move between two points along the admissible
paths:

dsds (5) Tc(x1, x2) = inf
x(·) admissible

{t | x(0) = x1, x(t) = x2}.

It is easy to show that Tc defines a metric on Rn, where the symmetry
property results from the fact that any admissible path from x1 to x2 can be
retraced backwards taking the same amount of time (using (4)). The small-
time controllability condition (3) can be used to show that the infimum is
attained and that an optimal (not necessarily unique) control β(s) actually
exists. Moreover, since the goal is to minimize the time, it is clear that
along any optimal path the particle should be moving with the maximum
allowable speed for the current direction; i.e., |β(s)| = 1 and f(x(s), β(s)) is
on the boundary of the vectogram Vc a.e. in [0, t]. Thus, the same distance
function can be defined by using the class of admissible controls A := {α(·) :
[0,∞)→ Rn, |α| = 1, measurable}.

sec:dist
2.4. The Hamilton-Jacobi equation. In this section we show directly
that the first arrival time function satisfies the Hamilton-Jacobi equation,
using the Dynamic Programming Principle [4]. Here we give a formal proof
(assuming the solution remains smooth), for the reader’s convenience, and to
establish consistent notation. A rigorous treatment (using visosity solutions
to handle the non-smoothness) as well as the proof of uniqueness for similar
equations can be found in [15] and [4].
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The Hamiltonian H(p, x) was defined in equation (1),

lem:1 Lemma 1. The arrival time to the origin, T (x) = Tc(x, 0), is the viscosity
solution to the Hamilton-Jacobi equation

hjbhjb (HJ) H(∇T, x) = 1, T (0) = 0.

The Hamiltonian H(p, x) was defined in equation (1).

Proof. Assume that T (x) is smooth and consider all paths, which start from
x and move in the constant direction α for a small time h. Define yα =
x+ hc(x, α)α. Then

T (x) = min
α
{T (yα) + h+ o(h2)}

= min
α
{T (x) + c(x, α) (α · ∇T (x)) + h+ o(h2)}.

Subtracting T (x), dividing by h, and taking the limit h→ 0 gives

−1 = min
α
{c(x, α) (α · ∇T (x))},

or max|α|=1{c(x,−α) (α · ∇T (x)) s} = 1 as in (1), where we have used the
symmetry of the speed (4). �

sec:Lagrangian
2.5. The Lagrangian. An equivalent way to define the distance, (5), is
using the Lagrangian,

LagDefLagDef (6) L(q, x) =

{
0 q ∈ Vc,
∞ otherwise.

Then the definition of distance (5) can be rewritten as the Hopf-Lax for-
mula [15] for the arrival time function

HopfLaxHopfLax (7) T (x) = inf
{
t+
∫ t

0
L(ẋ(s), x(s)) ds

∣∣∣∣ x(0) = 0, x(t) = x

}
,

where the infimum is over W 1,1 ((0, t); Rn). For consistency, we verify that
the Hamiltonian H(p, x) is obtained from the Lagrangian via the Legendre
transformation [15]

H(p, x) = L∗(p, x) = max
q
{p · q − L(q, x)}

= max
q∈Vc

{p · q}

= max
|α|=1
{(p · α) c(x, α)}.

2.6. Isotropic speeds. The optimal particle trajectories are given by the
characteristics of the Hamilton-Jacobi equation. In the anisotropic case, the
normal speed F (x, n) is given by (1),

F (x, n) = max
|α|=1
{(n · α) c(x,−α)}.
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When c(x, α) = c(x) is isotropic, then F (x, n) = c(x). and H(p, x) =
|p|c(x) = 1, which is an Eikonal equation. In this case, the characteristic
curves coincide with the gradient lines of the viscosity solution, yielding

n =
∇T (x)
|∇T (x)|

.

In the special case where the speed function is homogeneous, c(x, α) = c(α),
the optimal paths are straight lines, and the arrival time to a point is simply
given by the ratio of the distance to the speed.

TimeHomogTimeHomog (8) T (x) =
|x|

c(x/|x|)
, when T (0) = 0 and c(x, α) = c(α)

For the more general boundary condition T (x) = g(x) on Γ, we obtain

homogenized_from_Gammahomogenized_from_Gamma (9) T (x) = min
y∈Γ

 |x− y|

c
(
x−y
|x−y|

) + g(y)

 .

sec:geodesic
2.7. The geodesic distance. We review the notion of geodesic distance
in this context, and below we will relate it to Hamilton-Jacobi equations.
The link between Hamilton-Jacobi equations and metrics has been observed
before. We refer to [29] and the references therein.

We are given a metric cost function, b(x, q) which is positively 1-homogeneous
in the second variable,

1homogfc1homogfc (10) b(x, tq) = tb(x, q), for every (x, q) ∈ Rn × Rn and t > 0.

This will ensure that the distance defined below is invariant under change
of parameterizations of the path. In addition, we assume that b is convex in
the second variable and satisfies the growth condition:

growthfcgrowthfc (11) c2|q| ≤ b(x, q) ≤ C2|q|, for every (x, q) ∈ Rn × Rn,

with 0 < c2 ≤ C2 < +∞. Under the assumptions (10) and (11), the cost
function defines a norm on Rn, for each x,

FcnormFcnorm (12) ‖q‖b = b(x, q).

We also assume that b(x, q) = b(x,−q), which ensures the distance is sym-
metric, db(x1, x2) = db(x2, x1).

Given a path x(·) ∈W 1,1 ((0, t); Rn), the total cost of the path is

JdefnJdefn (13) J [x(·)] =
∫ t

0
b (x(s), ẋ(s)) ds.

The geodesic distance between two points is the minimal cost

geodesicgeodesic (14) db(x1, x2) = inf {J [x(·)] | x(0) = x1, x(t) = x2}

where the infimum is over x(·) ∈W 1,1 ((0, t); Rn).
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Remark (Riemannian and Finslerian metrics). If the cost function is given
by the square root of a convex quadratic function, i.e.

b(x, α) =
√
gij(x)αiαj ,

for g(x) a symmetric positive definite matrix, the resulting metric, db, is
Riemannian. (In that case the vectograms Vc are ellipses.) Otherwise, db is
a Finslerian metric [29].

Remark (Non-differentiable geodesics). In a Finslerian metric, geodesics
need not be differentiable, as is the case for the octagon norm. See [9][3] for
more information on Finslerian metrics. The distance function may also be
non-differentiable.

sec:relating

2.8. Relating the geodesic metric and the arrival time. So far we
have defined two distances. The arrival time, Tc(x1, x2), (5), is the arrival
time using paths which move at speed admissible by the speed function
c(x, α). The geodesic distance, db(x1, x2), (14) is the minimal cost of paths,
where the cost is measured using the metric cost function b(x, p). The two
distances are equal if the metric cost function and the particle speed function
are (one-sided) inverses.

lem:2 Lemma 2. The distances defined by (5) and (14), respectively, are equal,

distequaldistequal (15) Tc(x1, x2) = db(x1, x2),

provided that the speed function, c, and the cost function, b, are related by

fcdefnfcdefn (16) b(x, c(x, α)α) = 1, for all |α| = 1, x ∈ Rn,

with the remaining values of b determined by homogeneity (10).

Proof. We argue formally, assuming the infimum in the definitions is achieved
by differentiable paths. The proof can be made rigorous by approximation.
Given x1, x2 ∈ Rn, suppose Tc(x1, x2) = t and db(x1, x2) = s.

First let
x(·) : [0, t]→ Rn, x(0) = x0, x(t) = x1.

be an admissible curve for the speed function c. Then x(·) satisfies (ODE),
and Tc(x0, x1) = t. Compute the integral in the definition (14) using the
path x(·). Then by (ODE), ẋ(s) ∈ Vc. Furthermore, we can assume that
ẋ(s) ∈ ∂Vc, since otherwise the curve could be made faster. Thus by (16),
b(x, ẋ) = 1, so s ≤ t.

Next let x(·) be a curve from x1 to x2 for which the cost J [x(·)] = s. We
can find a parameterization of the path by arclength, i.e. a path y(·), for
which b(y(s), ẏ(s)) = 1. Then by (16), ẏ(s) ∈ Vc, the vectogram at y(s), so
y(·) is an admissible path for the distance function Tc. Thus t ≤ s. �

A similar proof of this property can be also found in [30].
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sec:dualnorm
2.9. Dual Norms, The Eikonal equation. We show that (HJ) can be
rewritten as an Eikonal equation in a suitable norm. This relates the speed
or cost functions to the normal velocity.

We refer to [6][ Appendix 1.1.6] for material on norms and dual norms. A
closed, bounded set with non-empty interior, e.g. Vc, can be used to define
a norm (by using the set as the norm ball and extending by homogeneity)
provided the set is symmetric about the origin, and convex. Convexity of
the set ensures the triangle inequality for the norm.

Given a norm ‖ · ‖ on Rn, the dual norm ‖ · ‖∗ is defined as

dualnormdualnorm (17) ‖x‖∗ = max{x · y | ‖y‖ = 1}.
Then ‖x‖∗∗ = ‖x‖.

Example. The p-norms ‖x‖p = (
∑n

i=1 |x|p)1/p are dual to the q norms, with
1/p + 1/q = 1 for 1 ≤ p ≤ ∞. This follows from Hölder’s inequality on
Rn, x · y ≤ ‖x‖p‖y‖q. In particular this is true for p = 1 and p = ∞,
where the norm balls are diamonds and squares. Generalizing this case, dual
polygonal norms can be obtained as well. For example, the dual of the norm
‖x‖ = max(|x1|, |x2|, |x1 + x2|), is the norm ‖x‖∗ = max(|x1|, |x2|, |x1 − x2|)

Write, for fixed x, the dual norm

‖p‖b∗ := max{p · q | ‖q‖b = 1}
= max
|q|=1
{p · q c(x, p)}.

by (16). Thus equation (HJ) is equivalent to

anieikanieik (Eikonal) H(∇T (x), x) = ‖∇T (x)‖b∗.
If we are given the Hamilton-Jacobi equation H(p, x) which is positive

1-homogeneous in p for each x, we can recover the cost function by taking
the dual

fcfromHfcfromH (18) ‖q‖b = max
p
{q · p | H(p, x) = 1}.

The Legendre transform of the norm ‖·‖b∗ is the dual norm unit ball [6][pg 93],
which gives the vectogram.

Remark. In general it is not true that homogenizing and squaring commute.
The reason that the results of [10] (for eikonal squared) and [11] (for eikonal)
give equivalent homogenized values, is that the Legendre transform of a norm
is the indicator set of the dual norm, while the Legendre transform of a norm
squared is the dual norm squared (see [6] example 3.26 and 3.27).

3. Homogenization
sec:homog

3.1. Homogenization background. Theoretical works on homogeniza-
tion provide existence results and convergence rates for the solution of the
homogenization problem. We mention the early unpublished work [22] for
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Hamilton-Jacobi equations, and refer to the textbooks, [23] for linear equa-
tions, and [7], for homogenization of HJ equations and Riemannian metrics
[pp142–145]. A list of more detailed references can be found in the review [14]

Explicit analytic solutions for several examples can be found in [10]. A se-
ries of examples in the time dependent front propagation case, can be found
in [11]. Both works find explicit solutions by homogenizing the Lagrangian,
refer to sections §3.4 and §2.5. The first work used Hamiltonians which are
homogeneous order two in p, (H(p, x)2 in our notation), and so the resulting
Lagrangian was also homogeneous order two in p. The second work used a
time-dependent equation, with a similar Hamiltonian to the one herein. In
both cases, the Lagrangian is related to the Hamiltonian by the Legendre
transform.

The cell problem (section §3.3) can be solved numerically to compute
H̄(p). This was done for front propagation in [21], and for more general
Hamiltonians in [24] and [25]. There are other methods for computing H̄(P ),
see [16].

3.2. Homogenization in one dimension.

Example. For the case of front propagation in a one-dimensional periodic
medium, it is not difficult to show that the homogenized speed function is
the harmonic mean of the speed function over a periodic cell. Suppose our
one dimensional domain consists of ε-intervals with the speed alternating
between 1 and 5. Then the travel times in these materials are 1 and 1/5,
so the total time for the front to traverse the entire domain is 3/5, and the
average speed is 5/3, the harmonic mean of 1 and 5.

To obtain this result formally for the Hamilton-Jacobi equation, we go
through the following procedure. (i) rewrite c(x)|Tx| = 1, as |Tx| = c(x)−1,
(ii) average the reciprocal of the speed function (iii) divide by the averaged
coefficient, to obtain

1
average of c(x)−1

|Tx| = 1.

Remark. This heuristic is quite similar to the one used when homogenizing
linear equations, but it is not directly applicable to HJ equations in higher
dimensions. To obtain the total cost to travel from x0 to x1 the cost is
integrated along the optimal trajectory, (which need not be a straight line).
The homogenized cost for that direction is then obtained by dividing the
total cost by |x0− x1|. The cost has units of inverse speed, the average cost
is the time divided by the distance.

sec:cell
3.3. The cell problem for Hamilton-Jacobi equations. In this section
we outline the cell problem. A precise statement of a typical theorem can
be found, for example, in [8], or in the review [14]. The cell problem is
derived using a formal asymptotic expansion, typical examples of which can
be found in Chapter 5 of [18].
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Let H (p, x) be a Hamiltonian with is periodic on the cube [−1, 1)n. Let
T ε(x) be the solution of

H
(
∇T ε(x),

x

ε

)
= 1

with T ε(0) = 0. We are interested in the limit ε → 0. Formally expand
the solution, T ε, in ε, T (x) = T 0(x, x/ε) + εT 1(x, x/ε) + o(ε2). Additional
arguments which we skip show that we can assume

T ε(x) = T 0(x) + εT 1(x/ε) + o(ε2).

Inserting the expansion into the equation, and collecting terms of O(1) gives

H
(
∇xT 0 +∇yT 1, y

)
= 1,

where y = x/ε. The variable in this last equation is y, so ∇xT 0 = p, an
unknown constant. The left hand side of the previous equation is a function
of y, while the right hand side is constant. Thus we have a solvability
condition: we need to find a periodic function v(y), and a vector p which
solve the cell problem

H(p+∇v, x) = 1.

Then we can define

H̄(p) = 1,

for that p, and extend H̄ to other values along the line q = tp by homogene-
ity. According to the theorem, T ε converges (uniformly on compact subsets,
possibly with a rate) to the solution of

H̄(∇T ) = 1.

sec:var_fronts
3.4. Variational formulation for fronts. For time-dependent fronts, a
variational formulation of the homogenization problem was used in [11]. This
is based on the Lagrangian formulation of the problem, and the convergence
is in the sense of Γ-convergence [7]. The variational problem takes the form

L̄(q) = lim inf
T→∞

1
T

inf
φ∈H1

0 (0,T )

∫ T

0
L(qt+ φ(t), q + φ̇(t)) dt.

In this case, the minimization is performed for each value of q, and the
Hamiltonian H̄(p) is recovered via the Legendre transform. The result-
ing Hamiltonian is homogeneous of order one in the gradient, and the La-
grangian is a characteristic function, as in (6). We note that the discon-
tinuous nature of the Lagrangian limits the usefulness of this approach for
numerical approximation.
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sec:homogmetric
3.5. Homogenization of metrics. In this section, we review a homoge-
nization result for the geodesic distance functional.

We use the result from [2]. Consider the metric cost functional (13).
In addition to (10) and (11), in this section we also assume that b(·, q) is
[−1, 1)n periodic for every q ∈ Rn. Then for every ε > 0, set

J ε[x(·)] =
∫ t

0
b

(
x(s)
ε
, ẋ(s)

)
ds,

According to the theorem from [2], Jε Γ-converges on W 1,1 ((0, t); Rn) (in
the L1-topology) to the function defined by

J [x(·)] =
∫ t

0
b̄(ẋ(s)) ds.

Here b̄ : Rn → [0,+∞) is 1-homogeneous convex function which also satis-
fies (11) and is given by

barfbarf (19) b̄(q) = lim
ε→0+

inf
x(·)

{∫ t

0
b

(
x(s)
ε
, ẋ(s)

)
ds | x(0) = 0, x(t) = q

}
,

where again the infimum is over x(·) ∈W 1,1 ((0, t); Rn).

3.6. Main Homogenization Result. It is too costly to use the formula (19)
which requires the solution of a path minimization problem for each direc-
tion q. However, if we knew the homogenized Hamiltonian, we could read
it off from the solution of the equation for the first arrival time to the ori-
gin (HJ). But we can approximate this solution by the solution of the
inhomogeneous small ε equation (HJ ε). This results in an efficient method
for H̄(p) We record this result in Theorem 1. See Figure 6 for an illustration
of the result, taken from a computation.

Definition 1. The Hamiltonian H(p, x) : Rn×Rn → R is a metric or gener-
alized eikonal Hamiltonian if for each fixed x, H(·, x) : Rn → R satisfies the
following

H(·, x) is convex

H(tp, x) = tH(p, x) for all t ≥ 0

c|p| ≤ H(p, x) ≤ C|p|
with 0 < c2 ≤ C2 < +∞.

We write the equation for the small scale Hamiltonian as

HJeHJe (HJ ε)

{
H
(
∇T ε(x), xε

)
= 1,

T ε(0) = 0,

and record the homogenized Hamiltonian as

HJbHJb (HJ)

{
H̄(∇T (x)) = 1,
T (0) = 0.
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Figure 6: The arrival time T ε(x) using the periodic cost function b(x/ε, p)
converges to the arrival time T (x) with the homogenized cost b̄(p).

fig:cones

Definition 2. The Hamiltonian H(p, x), which is periodic on the hyper-
cube [−1, 1)n homogenizes to H̄(p) if the viscosity solution T ε(x) of the
Hamilton-Jacobi equation (HJ ε) converges uniformly on compact subsets
to the viscosity solution T (x) of (HJ).

thm:HJ Theorem 1. Let H(p, x) be a metric Hamiltonian which is periodic on the
unit hypercube. The function H(p, x) defines a distance on Rn. We can
write

H(p, x) = max
|α|=1
{(p · α)c(x, α)} = ‖p‖b∗

where c(x, α) is the particle speed, b(x, p) is the metric cost function, and
the subscript ∗ indicates the dual norm. Then H(p, x) homogenizes to H̄(p)
which is a homogeneous metric Hamiltonian, given by

HJbarHJbar (20) H̄(p) = max
‖α‖=1

{(p · α)c̄(α)} = ‖p‖b̄∗

where c̄(α), b̄ are the homogenized speed and cost functions, respectively.
These functions can be obtained from the arrival time function in the ho-
mogenized metric

fcbarfcbar (21) b̄(q) =
1
c̄(q)

=
T (q)
|q|

,

and are approximated by

raterate (22) b̄(q) =
1
c̄(q)

=
T ε(q)
|q|

+O(ε),

where T ε is the solution of (HJ ε).
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Remark (Convergence rate). The convergence rate (22) is useful computa-
tionally, because we can use Richardson extrapolation in ε to better approx-
imate T (x).

This result is obtained from translating freely between the various for-
mulations of the front propagation problems, as summarized in §2.1 and as
explained in the earlier sections.

Proof. We begin with the definition of H in terms of the particle speed (1)

H(p, x) := max
‖α‖=1

{(p · α)c(x, α)}.

Since H(p, x) is a metric Hamiltonian, we can recover the cost function
b(x, p) from the Hamiltonian using the dual norm formula (18)

b(x, q) = ‖q‖b = max
p
{q · p | H(p, x) = 1}.

By Lemma 1, the solution T ε(x) of the Hamilton-Jacobi equation (HJ ε) is
the arrival time from the origin using admissible speeds cε, given by (5)

T ε(x) = inf
x(·)
{t | x(0) = 0, x(t) = x, x(·) admissible for cε(x, α) }.

Using Lemma 2 in Section §2.8, this is equal to the distance in the bε metric,

T ε(x) = inf
x(·)

{∫ t

0
bε (x(s), ẋ(s)) ds

∣∣∣∣ x(0) = 0, x(t) = x

}
,

for x(·) ∈W 1,1 ((0, t); Rn).
At this stage, we appeal to the convergence result for metrics, [2], which

is summarized in Section §3.5. The functionals, J ε, Γ-converge to the ho-
mogenized cost functional, J . The cost function, bε(x, q), converges to a
cost function, b̄(q), which is also homogeneous of order one. The mini-
mizing paths xε(·) are minimizers of the functionals, and converge in the
L1-topology to the minimizer of the homogenized functional. The distances
in the metric T ε(x) are the minimum values of the functional for paths from
the origin to the point x. The values T ε(x) converge (in R) to T (x) over the
minimizing sequences xε as ε→ 0.

Again using Lemma 2, we can write the distance, T (x), in the homog-
enized metric b̄ as the solution of the Hamilton-Jacobi equation for the
homogenized cost (20), which gives the last equality in (20),

H̄(p) = ‖p‖b̄∗.

If we know H̄(p), we can recover the speed function from the cost function
using (18) (actually the formula for the inverse), giving the second equality
in (20),

H̄(p) = max
‖α‖=1

{(p · α)c̄(α)}.
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Since these functions are convex, the optimal path is a straight line, in
the directions α = x/|x|. Then the travel time for a particle is simply the
distance over the particle speed (8)

cbareqcbareq (23) T (x) =
|x|

c̄(x/|x|)

which gives the second equality in (21).
The convergence of metrics result is useful because it ensures that the H̄

is also a metric Hamiltonian. However, to obtain the convergence rate (22),
we appeal to results which apply in the more general context of homog-
enization of period Hamilton-Jacobi equations. We can apply the result
of [8], if we transform our equation using the Kruzkov transformation:
T ε(x) = − log(1− vε(x)). The result is the convergence rate (22),

T (x) = T ε(x) +O(ε). �

4. The Numerical Method
sec:numerical_method

In this section we present our numerical method for homogenization. For
the sake of notational simplicity, the method is described in two dimensions,
but the generalization to higher dimensional problems is straightforward.

The first step of our algorithm solves (HJ ε) to obtain an approxima-
tion to the homogenized speed and cost functions, c̄(α), b̄(q), using (22)
in Theorem 1, see sections 4.1 and 4.3. If we are only interested in solv-
ing (HJ), then the solution is provided by (23). If instead, we want to solve
H̄(∇T ) = 1 with general boundary conditions, then the solution can be
recovered from (9), or it can be obtained numerically. While the analytical
formula is useful for evaluating the solution at one point, it is more efficient
to solve the equation numerically on a coarse grid, see section 4.4, if the
values of the solution on a domain are required.

By combining multiscale problems with different homogenized Hamilto-
nians in different regions, we solve a toy three scale problem in §5.2, with
minor modifications of the method outlined in section §4.4.

To summarize, the complete algorithm consists of two steps: the first is
to compute the homogenized speed function c̄(α) for all unit vectors α on
the small scale, and the second is to use the homogenized speed function to
solve numerically for T (x) on the large scale.

sec:homog_speed_numerics
4.1. Computing the homogenized speed function. Our plan for com-
puting c̄(α) is based on the formula (21) in §3.

• INPUT: speed function cε(x, α).
• OUTPUT: c̄(α), the approximation to the homogenized speed in the

direction α.

(A1) Choose 0 < h � ε � 1. Numerically solve (HJ ε) on a uniform
cartesian grid on Q = [−1, 1]2 with spatial resolution h.
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(A2) Choose k vectors {qi}ki=1, which lie on the grid and are of length
close to unity, and whose directions αi = qi

|qi| are nearly equally
distributed on the circle. Approximate c̄ on the grid directions,
using (21)

c̄ (αi) :=
|qi|

T ε(qi)
, i = 1, ..., k.

(A3) Interpolate the values {c̄(αi)}ki=1 to approximate c̄(α) for all direc-
tions α.

4.2. Numerical Solution of the HJ equation. Equation (HJ ε) can be
solved by standard methods. In the isotropic case, cε(x, α) = cε(x), the PDE
is Eikonal, which makes both Fast Marching [27] and Fast Sweeping [31]
methods directly applicable. A computational comparison of fast marching
and fast sweeping approaches to Eikonal PDEs can be found in [19, 17].

Since the discretization of (HJ ε) uses a relatively fine grid, the com-
putational efficiency of the method used to obtain the discretized solution
is important. The Fast Marching Method computes the numerical solu-
tion in O(M logM) operations, where the total number of gridpoints is
M = O(h−n), in Rn, regardless of how oscillatory cε(x) is. On the other
hand, the number of sweeps needed in the fast sweeping method is propor-
tional to the number of times the characteristics switch their direction from
quadrant to quadrant. As a result, the highly oscillatory nature of cε(x)
mean that the Fast Sweeping Method will require many more sweeps that
in the constant cε case.

In the more general case where cε is anisotropic, the step (A1) can be
carried out using Ordered Upwind Methods [28].

sec:ENO
4.3. ENO interpolation of vectograms. We use a second-order essen-
tially non-oscillatory (ENO) method for interpolation. The ENO method
can exactly interpolate piecewise quadratic functions. This class matches the
shape of the vectograms corresponding to the homogenized speed functions.
See Figure 7. In particular, since it can capture vectograms with corners,
the ENO method is suitable for approximating not only Riemannian, but
also general (Finslerian) metrics.
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Figure 7: Interpolation using ENO. Interpolated circle, using 8, 16, and 24
points. Interpolated octagon using 16 points.

fig:ENOcircle
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The second order ENO method works as follows. Order the unit vectors
{αi} in the counter-clockwise direction. Interpolate {c̄(αi)αi} between i = j
and j + 1 as follows. Write

c̄(αi)αi = (xi, yi)

We describe the case where xi is the independent variable, which should
be applied where |xj − xj+1| is not too small. The case where yi is the
independent variable follows similarly, where |yj − yj+1| is not too small.

Step 1 Find the interpolating quadratics

h1(x) = a1x
2 + a2x+ a3, h1(xi) = yi, i = j − 1, j, j + 1,

h2(x) = b1x
2 + b2x+ b3, h2(xi) = yi, i = j, j + 1, j + 2.

Step 2 If |a1| < |b1|, choose h1(α) as the interpolating function between
c̄(αj)αj and c̄(αj+1)αj+1. Otherwise, choose h2(α) as the interpo-
lating function.

Remark. We interpolate in Cartesian coordinates, not polar coordinates,
even though the latter appears simpler. This method has the special advan-
tage that it captures piecewise linear vectograms exactly, which the polar
coordinate version does not.

sec:coarse_grid_numerics

4.4. Solving the homogenized equation on a coarse grid. The ho-
mogenized PDE can be written as

H̄(∇T ) = max
|α|=1
{(α · ∇T )c̄(α)} = 1.

Given c̄, formula (8) provides the solution of this PDE on Ω with the bound-
ary condition T (0) = 0. As was stated earlier, the solution of H̄(∇T ) = 1
with general boundary conditions can be recovered from (9). However, a
good approximation to T (x) can be obtained more efficiently by solving this
PDE numerically on a coarse grid in Ω.

Remark. The availability of c̄(α) makes semi-Lagrangian discretizations of
the homogenized Hamilton-Jacobi PDE particularly attractive. (Any Euler-
ian discretization would require an extra step of approximating the dual
norm to b̄.) Fast non-iterative methods are available for many semi-Lagran-
gian discretizations. If a finite list of directions of motion is well-represented
on a large-scale grid, this results in an auxiliary grid-based graph with pos-
itive edge-weights. As a result, the shortest path problem can be solved on
that graph using a non-iterative Dijkstra’s methods, section §4.5. A more
accurate semi-Lagrangian discretization, spanning all possible directions of
large-scale motion, was also shown to posses similar causal properties, re-
sulting in related non-iterative Ordered Upwind Methods described in [28].

sec:Dijkstra
4.5. A graph-based discretization of Ω. We implement a discrete ana-
logue of the dynamic programming principle, where the optimal path is
approximated by piecewise linear paths on a finite set of nodes in Ω. We
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embed a network X in Ω consisting of a finite node set V ⊂ Ω and weighted
directed edges E ⊂ V × V . For each x ∈ V , the neighbors of x form the set

N (x) = {y ∈ V : (x, y) ∈ E}.

We call the set
C(x) = {y − x : y ∈ N (x)},

the local connectivity of X at x ∈ V . Construct X so that for all x, y ∈ V

y ∈ N (x)⇔ x ∈ N (y),

and generally,
|v| is small for all v ∈ C(x), x ∈ V .

The latter condition allows for more accurate approximation of the optimal
trajectories (and consequently of the value function) by piecewise linear
paths. Naturally, the metric between two adjacent nodes are assigned as
the (directed) edge weights. The shortest path problem on a network can
then be efficiently solved using Dijkstra’s method [13] or by a variant of a
Fast Sweeping Method.
• INPUT: c̄(α) from phase one of the algorithm.
• OUTPUT: T̃ , the discrete approximation to the T (x) defined on V .

(B1) For each ei = (x, y) ∈ E assign a positive edge weight

wi = w(x, y) = |y − x|/c̄
(
y − x
|y − x|

)
.

(B2) Initialize:

T̃ 0(x) =

{
g(x) if x ∈ V ∩ Γ,
∞ if x ∈ V \Γ.

(B3) Use either Dijkstra’s algorithm or the Fast Sweeping Method to
compute the value function T̃ (x) (i.e., the least cost to travel from
V ∩ Γ to a node x using the edges in E) for all x ∈ V \Γ.

The value function satisfies the following system of discretized equations

value_funcvalue_func (24) T̃ (x) = max
y∈N (x)

{
w(x, y) + T̃ (y)

}
, ∀x ∈ V \Γ.

If M = |V \Γ| and k = max |N (x)|, Dijkstra’s method solves this system in
O(kM logM) operations.

Choice of grid directions qi and network X. Using Dijkstra’s algorithm
(B1) - (B3) to approximate the value function, step (A3) may be omitted
by carefully choosing the grid directions qi (in (A2)) and network X.

For example, consider the network where the vertices V are given by
uniform cartesian discretization of Ω with refinement h, and for each interior
node, the neighbors are the eight closest nodes,

C = C(x) = {(±h, 0), (±h,±h), (0,±h)}.
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Then by choosing the grid directions

qi = vi/h where vi ∈ C, i = 1, . . . , 8,

in the step (A2), we can avoid the interpolation step (A3), since the values
at the grid directions are the only values needed to compute the weights in
(B1).

However, this introduces an additional error, because the paths used for
computing the metric in (19) are being restricted to those which are piece-
wise linear with slopes corresponding to the grid directions. This error can
be reduced by using more grid directions.

Alternatively, the use of a more accurate semi-Lagrangian discretization
described in [28] will automatically minimize over all possible directions of
motion, but with that approach the step (A3) becomes unavoidable.

Extension to piecewise-periodic problems. Our algorithm generalizes natu-
rally to problems with multiple regions, each with different periodic struc-
ture. Suppose Ω =

⋃k
i=1 Ωi is a (finite) partition of the domain, where each

Ωi is equipped with a speed function cεi(x, α). By repeating (A1) - (A3) in
each domain, we approximate c̄i(α) for each i. Define the piecewise constant
(in x) speed function on Ω by

c̄(x, α) = c̄i(α), x ∈ Ωi.

Then proceed as before with the weights assigned as in (B1) using the glob-
ally defined speed function c̄(x, α). A numerical example of this kind is
considered in §5.2.

Remark. In the periodic medium, the characteristics of the homogenized
PDE will be straight lines. In the piecewise-periodic case, the effective
Hamiltonian is discontinuous, and the characteristics might change the di-
rection upon crossing the boundary between Ωi and Ωj . Nevertheless, for a
reasonably small number of subdomains k, the fast sweeping approach will
be even more efficient than Dijkstra’s method here, since the characteristics
rarely switch direction from quadrant to quadrant.

5. Numerical Results
sec:numericalresults

Numerical results and validation are presented in this section. We present
homogenization results in several cases where an analytic solution is known.
The methods and parameters used in our implementation are described. We
numerically validate the first order convergence in ε. Finally, we present a
result for the three scale problem.

homof
5.1. Homogenized speed functions. In this section we compute homoge-
nized speed functions for homogeneous periodic materials, usually piece-wise
constant with speeds 1 and 2. Analytical values of H̄(p) given various c(x)
can be found in [11] [10] for most examples, and a full description of the
checkerboard example can be found in [1].
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We compared our numerically computed values b̄ with the analytical val-
ues of H̄(p) by performing the dual norm calculation numerically using (18)

‖q‖b̄ = sup
|p|=1
{q · p | H̄(p) = 1},

over a discrete set of unit vectors.
All the speed functions are defined on [−1, 1]2 and extended periodically.

Example (checkerboard).

cch(x, y) =

{
c0 xy ≥ 0,
1 otherwise.

The exact solution is an octagon for c0 ≥ c∗0,

H̄(p1, p2) =
c0

(
√

2− 1) min(|p1|, |p2|) + max(|p1|, |p2|)
, c0 ≥ c∗0,

and for c0 ∈ [1, c∗0] the solution interpolates between a circle and an oc-
tagon, [1]. The plot is for c0 = 2.

Example (Stripes).

cst(x) =

{
1 x2 ∈ [0, 1),
2 otherwise.

The exact solution for general stripes pattern can be found in [11]. We
explain a simple heuristic for computing the cost in this case. The total
cost for crossing a large number of stripes is the same even if the pattern is
rearranged so that all the slow parts come first and the fast parts second.
Then, given a path with slope m, the optimal path will have a corner at
the interface and slopes m1,m2 in the slow and fast parts, respectively. The
optimal path for this configuration can be found by solving for the optimal
slopes, which results in Snell’s law of refraction.

Example (Squares).

csq(x) =

{
1 x1 = 0 or x2 = 0,
1/2 otherwise.

The exact solution is readily seen to be given by a diamond shaped vec-
togram, since the optimal paths move only in the vertical and horizontal
directions.

circle Example (Circles).

ccir(x) =

{
1 ‖x‖ ≤ 1,
2 otherwise.

The exact solution is in [10] [11],

H̄(p1, p2) = max
{
|p1|, |p2|,

2
π

(|p1|+ |p2|)
}
.
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The optimal paths are made of segments which are either vertical lines,
horizontal lines, or quarter circles.

The numerically computed homogenized vectograms are shown in Figure
8, overlaid on the exact result. We also compared the error for a fixed pattern
(checkerboard or stripes) but different speed ratios c in the material. The
error was computed for a fixed directions as a function of c, and also as a
function of the direction for fixed c. See Figures 9 and 10.

Figure 8: Period domains and computed vectograms: checkerboard, stripes,
squares, and circles.

fig:vectograms
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Figure 9: Results using the checkerboard pattern for speeds in ∈ [1, 5]. Left:
c̄(α) for α = (1, 1). Right: maximum error over all sampled directions.
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sec:toy3scale_results
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Figure 10: Results using the horizontal stripes pattern for various speeds in
[1, 5]. Left: c̄(α) for the direction α = (0, 1). Right: maximum error over
all sampled directions.

fig:varyHorizontal

5.2. The toy three scale problem. In this section we consider the model
problem from §1.4. Consider the following speed function:

c(x) =


cch(x) for x ∈ [−1,−1

3 ]2 ∪ [−1
3 ,

1
3 ]2 ∪ [1

3 , 1]2,
cst(x) for x ∈ [−1,−1

3 ]× [−1
3 ,

1
3 ] ∪ [−1

3 ,
1
3 ]× [1

3 , 1],
cvert(x) for x ∈ [−1

3 ,
1
3 ]× [−1,−1

3 ] ∪ [1
3 , 1]× [−1

3 ,
1
3 ],

csq(x) otherwise.

where cvert is the horizontal stripes cst rotated by 90 degrees. We solve for
u0(x) in (HJ ε), in [−1, 1]2 with starting point (−0.7,−0.7). The numerically
computed homogenized value function is shown in Figure 11.

5.3. Methods and parameters used. We used the first order Fast March-
ing Method to solve the boundary value problem (HJ ε) for grid size n =
1200 and 2400 (so the refinements are h = 1/600 and 1/1200). Then we
applied Richardson’s extrapolation on h, the spatial resolution, to obtain
second order accuracy. The grid directions {qi} were chosen to be the 24
directions on a 7× 7 stencil, see Figure 12.

For the connectivity C of the network, first note that the weights for
nodes on the edges of the 7× 7 stencil (marked by circles in Figure 12) are
known. Then, the weights for all other stencil nodes can be interpolated
along the grid direction rays (the weight at the origin is zero), except for
nodes not on the grid direction rays. Subsequently, for (B1) - (B3), the local
connectivities of the uniformly cartesian network X were chosen to be:

C = {(ah, bh) : a, b ∈ {0,±1,±2,±3}} − {(ah, 2bh), (2ah, bh) : a, b ∈ {±1}}.

The shortest path problem on X was computed using the Fast Sweeping
Method.
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Figure 11: Level sets of the homogenized solution T (x). The dotted lines
are the interfaces where the periodic pattern changes.

threeScaleProb

Figure 12: The grid directions {qi}. fig:24direction

The main script was written in Matlab, and the Fast Marching Method
was implemented in C, using code downloaded from [5]. The computations
took a few seconds on a desktop computer. The default ratio of fast and
slow speed in the cells was 2.

justifyextrap
5.4. Cell and domain resolutions. In practice, computations were per-
formed for finite values of ε. More accurate numerical results were obtained
by using Richardson extrapolation for two small values of ε. In this situa-
tion, there is a trade off between the number of periodic cells on the domain,
and the number of grid points in each cell.
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We found that accurate results could be obtained by resolving each pe-
riodic cell very well, even if a relatively small number of cells were used.
Finally, we extrapolated in the spatial resolution h as well. Table 1 com-
pares the errors resulting from different extrapolation choices. Extrapolation
in both parameters yields the best accuracy.

Given n (n2 is the number of grid points used in step (A1).), and ε, define
the cell refinement by

nε := nε.

The accuracy of our algorithm depends on two parameters: ε and nε. We
observed that the convergence rate depends more strongly on nε, than on ε.

10−1 100

−10−1

ε

U f

Circle, direction = π/4

 

 
n
ε
 = (20,40)

n
ε
 = (40,80)

n
ε
 = (80,160)

n
ε
 = (160,320)

O(ε)

Figure 13: Convergence rate in ε for various cell resolutions nε. circleepsiloninterp

extrapetable

pattern exact
f0(α)

error for
h = ε/25, ε/50
ε = 1/24

error for
h = ε/25, ε/50
ε = 1/12, 1/24

error for
h = ε/100, ε/200
ε = 1/3, 1/6

Checkerboard 1 -2.46E-02 -1.64E-02 -3.25E-03
Squares 1/

√
2 9.70E-04 9.65E-04 6.54E-05

Circles 0.90031 -5.10E-02 -4.74E-02 -1.70E-02
Stripes 0.70051 -2.58E-03 -1.53E-02 -1.60E-06

Table 1: Errors in c̄(α) using extrapolation in: h only; h and ε (ε small); h
and ε (ε large).
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Figure 13 shows the convergence rate as a function of ε of c̄(α) to the
exact c̄(α). We used α = (cos(3π/4), sin(3π/4)) for the circle pattern §5.1.
Similar results were observed for the other patterns.

In conclusion, the best accuracy is achieved when the two values of ε were
chosen to be the two largest cell sizes such that the grid directions {qi} all
lie on corners of periodic cells, and Richardson’s extrapolation is applied.
When we used 24 directions, {qi}, the best choice was ε = 1/3 and 1/6.

sec:random_media_results
5.5. Front propagation in random media. We now consider a random
media example. Consider a random checkerboard structure, where in each
cell the speed

c(x) =

{
1 with probability 0.5,
c0 > 1 with probability 0.5.

In this section, computations were performed using higher resolution, but
plots use coarser computations for visualization purposes. Sample optimal
paths are shown in Figure 4 for two different values of c0, and with ε = 1/40.
Experimentally, the homogenized speed c̄(α), averaged over several realiza-
tions, is isotropic; the vectogram is a circle. Computations were performed
averaging over 20 trials, and sampling 24 sampled directions.

The mean and variance of c̄ were computed, as a function of c0. In each
case, the variance was less than 10−3. Figure 14 shows the averaged c̄(α)
for ε = 0.01 on a 20002 grid (but plotted on an 802 grid) and the ENO
interpolated vectogram with 24 sampled directions, averaged over 20 trials.
The dependence of c̄ on the value c0 is also plotted, It was more informative
to plot b̄ = 1/c̄ as a function of 1/c0., see Figure 14.

Remark (Average cost in the random case). An upper bound for the homog-
enized cost is the average of the costs in each cell. This is achieved by paths
moving in a straight line in the direction α. But since optimal paths can
wander to lower cost cells, the actual computed cost is lower. Better upper
bounds can be achieved by estimating the probability that a neighboring cell
is low cost. We are not aware of any known formulas for the homogenized
speed in this case.

6. Conclusions

We have introduced a new efficient method for approximating front prop-
agation in periodic multi-scale media. Our approach is based on homog-
enization of static convex Hamilton-Jacobi equations. We discuss the re-
lationship between several interpretations of such PDEs (from front prop-
agation to time-optimal control to geodesic distance computations). The
effective Hamiltonian, resulting from the homogenization, is homogeneous.
In more general settings it may vary slowly on the large scale. We include
a brief overview of prior methods for homogenization based on solving the
cell problem for each direction of front propagation. In contrast, our new
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Figure 14: Illustration of the homogenized speed/cost in the random case.
Left: computed vectogram, averaged over several trials, for c = 1, 1/2 with
probability 1/2. Right: computed homogenized cost b̄ as a function of the
random cost b = 1, or b = b0 = 1/c0 with probability 1/2.
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technique uses a single auxiliary boundary value problem to approximate
the homogenized speed of particle motion for all directions. The method
takes advantage of the special structure of the Hamiltonian, and the re-
lationship to the Finsler metric, to compute the homogenized metric, and
then recover the homogenized Hamiltonian. The homogenized metric cost
function and the homogenized particle speed function are related to dual
norms, an equivalent way to relate front speeds and particle speeds is via
the homogeneous Legendre transform. The added advantage of is the ease
of use of semi-Lagrangian numerical schemes on the large scales.

We have illustrated our method with a number of examples of periodic,
piecewise-periodic and random checkerboards. All of these examples start
with an isotropic front propagation on the small scale, but still result in
anisotropic speeds of front propagation after homogenization. Our numerical
algorithm uses a Fast Marching Method [26] to solve an auxiliary (isotropic,
highly-oscillatory) problem to approximate the homogenized particle-speeds
for a finite number of directions, then applies ENO-type interpolation to
complete the speed profile. With the anisotropic particle speed profile in
hand, we then use a variant of Fast Sweeping Method to solve the semi-
Lagrangian discretization of the homogenized Hamilton-Jacobi PDE.

Several extensions of the above approach will be of interest in applica-
tions. First, if the small-scale propagation is anisotropic, we would need to
use Ordered Upwind Methods [28] to approximate the homogenized speed
profiles. Second, if the small-scale behavior is described by a non-convex
Hamiltonian, then our homogenization results do not apply directly, and
new methods are required. Third, if additional length scales are present in
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the problem, our methods must be generalized. The toy 3-scale problem con-
sidered in this paper is piecewise-periodic, so one homogenized speed profiles
was computed for each periodic piece. If instead, the homogenized profile
varies continuously on some intermediate scale, any efficient computation
on the large scale would require additional interpolation of homogenized
speed profiles. Fourth, further exploration of the random case, where we
are not aware of analytical solutions. Numerical results suggest the profile
is isotropic, and give the homogenized speed as a function of the ratio of
the slow and fast speeds for a range of speeds. We intend to address these
extensions in the near future.
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