
SIAM J. SCI. COMPUT. c© 2014 Society for Industrial and Applied Mathematics
Vol. 36, No. 5, pp. A2478–A2505

CAUSAL DOMAIN RESTRICTION FOR EIKONAL EQUATIONS∗

Z. CLAWSON† , A. CHACON‡ , AND A. VLADIMIRSKY§

Abstract. Many applications require efficient methods for solving continuous shortest path
problems. Such paths can be viewed as characteristics of static Hamilton–Jacobi equations. Several
fast numerical algorithms have been developed to solve such equations on the whole domain. In this
paper, we consider a somewhat different problem, where the solution is needed at one specific point,
so we restrict the computations to a neighborhood of the characteristic. We explain how heuris-
tic under/over-estimate functions can be used to obtain a causal domain restriction, significantly
decreasing the computational work without sacrificing convergence under mesh refinement. The dis-
cussed techniques are inspired by an alternative version of the classical A* algorithm on graphs. We
illustrate the advantages of our approach on continuous isotropic examples in two and three dimen-
sions. We compare its efficiency and accuracy to previous domain restriction techniques. We also
analyze the behavior of errors under the grid refinement and show how Lagrangian (Pontryagin’s
maximum principle-based) computations can be used to enhance our method.
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1. Introduction. The Eikonal equation

(1.1)

{ |∇u(x)| f(x) = 1 ∀ x ∈ Ω,
u(x) = q(x) ∀ x ∈ Q ⊆ ∂Ω

arises naturally in many applications including continuous optimal path planning,
computational geometry, photolithography, optics, shape from shading, and image
processing [24]. One natural interpretation for the solution of (1.1) comes from
isotropic time-optimal control problems. For a vehicle traveling through Ω̄, f de-
scribes the speed of travel and q gives the exit time-penalty charged on Q. In this
framework, u(x) is the value function, i.e., the minimum time to exit Ω̄ through Q if
we start from a point x ∈ Ω. The characteristic curves of the PDE (1.1) define the
optimal trajectories for the vehicle motion.

The value function is Lipschitz continuous but generally is not smooth on Ω. (The
gradient of u is undefined at all points for which an optimal trajectory is not unique.)
Correspondingly, the PDE (1.1) typically does not have a smooth solution and admits
infinitely many Lipschitz continuous weak solutions. Additional conditions introduced
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in [9] are used to restore the uniqueness: the viscosity solution is unique and coincides
with the value function of the above control problem.

In the last 20 years, many fast numerical methods have been developed to solve
(1.1) on the entire domain Ω̄; e.g., see [8, 23, 27, 31]. Many of these fast methods
were inspired by classical label-correcting and label-setting algorithms on graphs; e.g.,
Sethian’s fast marching method (FMM) [23] mirrors the logic of the classical Dijkstra’s
algorithm [10], which finds the minimum time to a target-node from every other node
in the graph.

Our focus here is on a somewhat different situation, with the solution needed
for one specific starting position only. On graphs, an A* modification of Dijkstra’s
method [13] is widely used for similar single source/single target shortest path prob-
lems. There have been several prior attempts to extend A* techniques to algorithms
for continuous optimal trajectory problems, but all of them have significant drawbacks:
these methods either produce additional errors that do not vanish under numerical
grid refinement [15, 16, 17, 18] or provide much more limited computational savings
[11, 29, 30]. We believe that these disadvantages stem from an overly faithful mir-
roring of the “standard” A* on graphs. Our own approach is based on an alternative
version of the A* algorithm [5] that has clear advantages in continuous optimal con-
trol problems. Numerical testing confirms that our method is both efficient (in terms
of the percentage of domain restriction) and convergent under grid refinement.

We begin by reviewing two flavors of A* techniques on graphs in section 2. We
then describe the standard FMM and its various A*-type modifications in section 3.
The numerical tests in section 4 are used to compare the efficiency and accuracy of
competing domain restriction techniques. We discuss the limitations of our approach
and directions of future work in section 5. The appendix (section 6) contains conver-
gence analysis of the alternative A* under grid refinement, exploiting the probabilistic
interpretation of the discretized equations.

2. Domain restriction techniques on graphs. We start by defining the
shortest path problem on a graph:

• A graph G is defined by a set of nodes (vertices) X = {x1,x2, . . . ,xM+1 = t}
and a set of directed arcs between these nodes.
• Along each arc we prescribe a transition time penalty C(xi,xj) = Cij > 0
and assume Cij = +∞ if there is no transition from xi to xj .
• The sets of in-neighbors and out-neighbors of a node xj are, respectively,
defined by

N−
j = N−(xj) � {xi | Cij < +∞} , N+

j = N+(xj) � {xk | Cjk < +∞} .
• Assume the graph is sparsely connected, i.e., |N±(xi)| ≤ κ�M ∀xi ∈ X for
some fixed κ ∈ N.
• The goal is to find the value function U : X → [0,+∞), defined as

Ui = U(xi) � the minimum total time to travel from xi to t = xM+1.

Naturally, UM+1 = 0. On the rest of the graph, Bellman’s optimality principle
[4] yields a coupled system of M nonlinear equations:

(2.1) Ui = min
xj∈N+

i

{Uj + Cij} ∀ i = 1, 2, . . . ,M.

Once the value function is known, an optimal path from any node to the target xM+1

can be quickly recovered by recursively transitioning to the minimizing neighbor. A
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straightforward iterative method for solving the system (2.1) would result in O(M2)
computational cost. Fortunately, this system is monotone causal: Ui cannot depend
on Uj unless Ui > Uj . This observation is the basis of the classical Dijkstra’s method,
which recovers the value function on the entire graph in O(M logM) operations [10].
In Dijkstra’s method, all nodes are split into three classes: far (no value yet assigned),
considered (assigned a tentative value), or accepted (assigned a permanent value).
Efficient implementations usually maintain the considered nodes as a binary heap,
resulting in the logM term in the computational complexity.

Algorithm 1. Dijkstra’s Algorithm.
Initialization:
1 Ui ← +∞ and mark xi as far for i = 1, 2, . . . ,M
2 U(t)← 0 and mark t as accepted
3 For all xi ∈ N−(t), mark as considered and Ui ← C(xi, t)

Algorithm :
4 while ∃ a considered node do
5 Find the considered node xj with minimal U -value and mark as

accepted

6 for xi ∈ N−
j such that Ui > Uj and xi is far or considered do

7 Ũ ← Uj + Cij

8 if Ũ < Ui then

9 Ui ← Ũ
10 Mark xi as considered

2.1. Estimates for single-source/single-target problems. If we are only in-
terested in an optimal path from a single starting location s ∈ X , Dijkstra’s method
can be terminated as soon s becomes accepted. (This changes the stopping criterion
on line 4 of the pseudocode.) Other modifications of the algorithm can be introduced
to further reduce the computational cost on this narrower problem. Consider a func-
tion

Vi = V (xi) � minimum total time to travel from s to xi.

Any node xi lying on an optimal path from s to t must satisfy Ui+Vi = U(s) = V (t).
This provides an obvious relevance criterion, since for any xi that is not on an optimal
path, Ui + Vi > U(s). But since V is generally unknown, all techniques for focusing
computations on a neighborhood of this optimal path must instead rely on some
heuristic underestimate

(2.2) ϕi = ϕ(xi) ≤ Vi.

A stronger consistency requirement is often imposed instead:

(2.3) ϕj ≤ Cij + ϕi ∀ i, j.

(Note that ϕ ≡ V is the maximum among all consistent heuristics that also satisfy
ϕ(s) = 0.)

Such consistent underestimates are readily available for geometrically embedded
graphs. Suppose X ⊂ R

n and dij = ‖xi − xj‖2. If the “maximum speed” F2 > 0 is
such that Cij ≥ dij/F2 for all i and j, then ϕi = ‖xi − s‖2 /F2 ≤ Vi. On a Cartesian
grid-type graph, the Manhattan distance provides a better (tighter) underestimate



CAUSAL DOMAIN RESTRICTION A2481

ϕi = ‖xi − s‖1 /F2. For more general embedded graphs, a much better underestimate
ϕ can be produced by landmark sampling [12], but this requires additional precom-
putation and increases the memory footprint of the algorithm.

Some algorithms for this problem also rely on heuristic overestimates

ψi = ψ(xi) ≥ Vi.
An overestimate can be obtained as a total cost of any path from xi to s or can
also be found using landmark precomputations [12]. For structured geometrically
embedded graphs, an analytic expression might also be available. For example, on a
Cartesian grid, if the “minimum speed” F1 > 0 is such that Cij ≤ dij/F1, we can use
ψi = ‖xi − s‖1 /F1.

2.2. A* restriction techniques. A* techniques restrict computations to po-
tentially relevant nodes by limiting the number of nodes that become considered.
A more accurate ϕ restricts a larger number of nodes from becoming considered,
and if ϕ = V , then only those nodes actually on the s → t optimal path are ever
accepted.

Standard A* (SA*). This version of A* is the one most often described in the
literature [13]. Unlike in Dijkstra’s algorithm, the considered nodes are sorted and
accepted based on (Ui + ϕi) values. This change affects line 5 in our pseudocode.
The resulting algorithm typically accepts far fewer nodes before terminating: irrele-
vant nodes with large ϕ values might still become considered (if their neighbors are
accepted) but will have lower priority, and most of them will never become accepted
themselves. Moreover, the consistency of ϕ ensures that accepted nodes receive ex-
actly the same values as would have been produced by the original Dijkstra’s method.
If xi actually depends on xj ∈ N+

i , then

Ui = Cij + Uj =⇒ Ui ≥ (ϕj − ϕi) + Uj ⇐⇒ Ui + ϕi ≥ Uj + ϕj ,

guaranteeing that under SA* xi will not be accepted before xj .
Alternative A* (AA*). A less common variant of A* is described in [5].

Instead of favoring nodes with small ϕ, AA* simply ignores nodes that are clearly
irrelevant. AA* relies on an underestimate ϕ (no longer required to satisfy (2.3)) and
an additional upper bound Ψ ≥ U(s). (If an analytic or precomputed ψ is available,
we can take Ψ = ψ(t). But it is also possible to use the total cost of any feasible path
from s to t.)

During Dijkstra’s algorithm, a node xi with Ui + ϕi > Ψ (hence Ui + Vi > Ψ)
is surely not a part of the optimal path. Thus, to speed up Dijkstra’s algorithm, in
AA* we still sort considered nodes based on U values, but on line 10 we only mark
xi considered if Ui + ϕi ≤ Ψ. Since the order of acceptance is the same, it is clear
that AA* produces the same values as Dijkstra’s, but the efficiency of this technique
is clearly influenced by the quality of Ψ (the smaller it is, the smaller is the number of
considered nodes). This reliance on Ψ is a downside (since SA* only needs ϕ) but
has the advantage of making AA* also applicable to the label-correcting methods [5].
In section 3 we argue that AA* is also more suitable for continuous optimal control
problems, in which an Ψ is often readily available.

AA* with branch and bound. In AA* Ψ remains static throughout the
algorithm. The idea of branch and bound (B&B) is to dynamically decrease Ψ as we
gain more information about the graph, making use of an overestimate function ψ.
When accepting a node xi, we can also set

Ψ ← min {Ψ, Ui + ψi} .
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Exact estimates. Using “exact estimates” with A* would result in the maximal
domain restriction. For both A* techniques, if ϕ ≡ V and Ψ ≡ U(s), the algorithm
would only accept the nodes lying on an optimal path.

3. Domain restriction in a continuous setting. The continuous time-optimal
isotropic control problem deals with minimizing the time-to-exit for a vehicle, whose
dynamics is governed by

(3.1)

{
ẏ(t) = f (y(t))a(t),
y(0) = x ∈ Ω ⊂ R

n.

Here x is the starting position, a(t) ∈ Sn−1 is the control (i.e., the direction of
motion) chosen at the time t, y(t) is the vehicle’s time-dependent position, and f
is the spatially dependent speed of motion. We will further assume the existence of
two constants F1 and F2 such that 0 < F1 ≤ f(x) ≤ F2 holds ∀ x ∈ Ω̄. For every
time-dependent control a(·), we define the total time to the exit set Q ⊆ ∂Ω as
Tx,a = min{t ≥ 0|y(t) ∈ Q}. The value function u : Ω → [0,+∞) is then naturally
defined as

u(x) = inf
a(·)
{Tx,a + q [y (Tx,a)]} ,

where q : Q → [0,+∞) is the exit-time penalty. Bellman’s optimality principle can
be used to show that, if u is a smooth function, it must satisfy a static Hamilton–
Jacobi–Bellman PDE

min
a∈A
{(∇u(x) · a) f(x) + 1} = 0

with the natural boundary condition u = q on Q. Using the isotropic nature of the
dynamics, it is clear that the minimizer (i.e., the optimal initial direction of motion
starting from x) is a∗ = −∇u(x)/‖∇u(x)‖ and the equation is equivalent to the
Eikonal PDE (1.1). If the value function u is not smooth, it can still be interpreted
as a unique viscosity solution of this PDE [9].

Solving this PDE to recover the value function is the key idea of the dynamic
programming. An analytic solution is usually unavailable, so numerical methods are
needed to approximate u. We use a first-order upwind discretization, whose mono-
tonicity and consistency yield convergence to the viscosity solution [3]. To simplify
the notation, we describe everything on a cartesian grid in R

2, though higher dimen-
sional generalizations are straightforward and similar discretizations are also available
on simplicial meshes (e.g., [14, 25]; see also Figure 3). We will assume the following:

• Ω̄ = [0, 1] × [0, 1] is discretized on a m × m uniform grid X with spacing
h = 1/(m− 1).
• A gridpiont or node is denoted by xij with corresponding value Uij = U(xij) ≈
u(xij), speed fij = f(xij), and neighbors

Nij = N(xij) � {xi−1,j , xi+1,j , xi,j−1, xi,j+1} .

This notation will be slightly abused (e.g., a gridpoint xi with a corresponding
value Ui, speed fi, etc.) whenever we emphasize the ordering of gridpoints
rather than their geometric position.
• We will assume that Q ⊆ ∂Ω is well-discretized on the grid, and we define the
discretized exit-set Q = Q⋂X. In particular, the focus of our computational
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experiments will be on the case Q = Q = {t} with the exit time-penalty
q(t) = 0. We note that t does not have to be on the boundary of the square
Ω̄: if t ∈ (0, 1)2, then Ω = (0, 1)2\{t}, and the border of the square is
treated as an essentially outflow boundary. This corresponds to solving a
Ω̄-constrained optimal control problem with u interpreted as a constrained
viscosity solution [2].

We use the upwind finite differences [22] to approximate the derivatives of (1.1),
resulting in a system of discretized equations. Using the standard four-point nearest-
neighbors stencil at each xij ∈ X , this results in

(3.2)
(
max

{
D−xUij ,−D+xUij , 0

})2
+
(
max

{
D−yUij ,−D+yUij , 0

})2
=

1

f2
ij

,

where ux(xi, yj) ≈ D±xUij =
Ui±1,j−Uij

±h and uy(xi, yj) ≈ D±yUij =
Ui,j±1−Uij

±h .
If all the neighboring values are known, this is really a “quadratic equation in

disguise” for Uij . Letting UH = min{Ui−1,j, Ui+1,j} and UV = min{Ui,j−1, Ui,j+1}
reduces (3.2) to

(3.3) (Uij − UH)
2
+ (Uij − UV )

2
=
h2

f2
ij

,

provided the solution satisfies Uij ≥ max {UH , UV }; otherwise we perform a one-sided
update:

(3.4) Uij = min {UH , UV }+
h

fij
.

The system of discretized equations ((3.3) and (3.4) for all (i, j)) are monotone causal
since Uij needs only its smaller neighboring values to produce an update.

Sethian’s FMM [23] and another Dijkstra-like algorithm [27] due to Tsitsiklis take
advantage of this monotone causality. FMM can be obtained from Dijkstra’s method
by changing lines 3 and 7 to instead use the continuous update procedure ((3.3) and
(3.4)). Similarly to Dijkstra’s method, FMM computes the value function on the
entire grid in O(M logM) operations, where M = m2 is the number of gridpoints.
The key question is whether a significant reduction of computational cost is possible
if we are only interested in an optimal trajectory starting from a single (prespecified)
source gridpoint s.

Remark 3.1. Restricting FMM to a smaller (relevant) subset of Ω via A*-
techniques is precisely the focus of this paper. But a legitimate related question
is whether the dynamic programming approach is at all necessary when a single tra-
jectory is all that we desire. In contrast to path planning on graphs, in the continu-
ous control community, optimal trajectories for single source problems are typically
recovered via Pontryagin maximum principle (PMP) [21]. This involves solving a
two-point boundary value problem for a state-costate system of ODEs, which in our
context could be also derived as characteristic ODEs of the Eikonal PDE (1.1). One
advantage of using PMP is that, unlike dynamic programming, it does not suffer
from the curse of dimensionality. In higher dimensions, solving a two-point bound-
ary value problem is much more efficient than solving a PDE on the whole domain.
Unfortunately, PMP is harder to apply if the speed function f is not smooth. Even
more unpleasantly, depending on the initial guess used to solve the two-point bound-
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Fig. 1. FMM expands computations outwards from t, shown by the large circle. The two
smaller circles each expand from t and s and represent the computations performed during BiFMM.
In this simple situation, BiFMM considers 50% of the domain that FMM considers. To recover the
global optimal trajectory from s to t using BiFMM, one must recover the optimal trajectories from
x to t and x to s and join them together.

ary value problem, that method often converges to locally optimal trajectories. In
contrast, dynamic programming always yields a globally optimal trajectory, and our
approach can be used to lower its computational cost in higher dimensions. In fact,
we show that both techniques can be used together, with a prior use of PMP improv-
ing the efficiency of A*, and A* verifying the global optimality of a PMP-produced
trajectory.

3.1. Domain restriction without heuristic underestimates. Our algorith-
mic goal is to restrict FMM to a dynamically defined subset of the grid using under-
estimates of the cost-to-go and the previously computed values. This is the essence
of several A*-type techniques compared in sections 3.2–3.5. But to motivate the dis-
cussion, we start by considering several simpler domain restriction techniques that do
not involve the run-time use of underestimates.

First, we note that FMM can be terminated immediately after the gridpoint s
is accepted. In practice, this is unlikely to yield significant computational savings
unless the set

L = {x ∈ Ω̄ | u(x) ≤ u(s)}
is much smaller than the entire Ω̄ (e.g., see the bolded level set ∂L in Figure 2A).

Second, it is possible to use a bidirectional FMM (BiFMM) (similar to the bidi-
rectional Dijkstra’s [20]) by expanding two accepted clouds from the source and
the target and stopping the process when they meet. The first gridpoint accepted
in both clouds is guaranteed to lie on an O(h)-suboptimal trajectory from s to t.
This approach is potentially much more efficient than the above. For example, for a
constant speed function f = 1, it cuts the n-dimensional volume of the accepted set
by the factor of 2n−1; see Figure 1.

Third, a different “elliptical restriction” approach is also applicable (and can be
combined with the above bidirectional technique) whenever an overestimate for the
minimal time from s to t is available.

Lemma 3.2. Suppose the exit-set is given by a single target point t, d = |s− t| ,
and Ψ is a known constant such that Ψ ≥ u(s). Then the optimal trajectory y(·)
satisfying (3.1) from y(0) = s is contained within the prolate spheroid E(s, t) (an
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ellipse in two dimensions) satisfying

(3.5) Foci = {s, t} and

⎧⎪⎪⎨
⎪⎪⎩

Major semiaxis = a =
F2Ψ

2
,

Minor semiaxis = b =
1

2

√
F 2
2Ψ

2 − d2.

Proof. Let d∗ and T ∗ be the distance and time along the optimal trajectory from
s to t. Then

(3.6)
d∗

F2
≤ T ∗ ≤ Ψ.

For any x along the optimal trajectory, we have

|x− s|+ |t− x| ≤ d∗ ≤ F2Ψ.

This inequality defines a prolate spheroid in R
n, and (3.5) immediately follows.

Even if we are interested in an unconstrained problem (find the quickest (s, t)
trajectory in R

2), finite computer memory forces us to solve a state-constrained prob-
lem instead (find the quickest (s, t) trajectory contained in Ω̄). The above lemma is
thus also useful to answer a related question: for which starting points s does the
Ω̄-constrained problem have the same value function as the unconstrained? Clearly,
for any point s such that E(s, t) ⊂ Ω̄, enlarging the domain would not decrease u(s).

Higher dimensional savings. Restricting computations to E(s, t) has an in-
creasing effect in higher dimensions. The fraction P of the volume of E(s, t) to the

volume of the smallest bounding rectangular box B is given by P = πn/2

2nΓ(n/2+1) , which

quickly approaches zero as n grows. (For example, in R
2 this fraction is (π/4) ≈ 78.5%,

while in R
6 it is already ≈ 8%.) If Ω̄ = B, the restriction to E(s, t) yields the compu-

tational savings of (1−P); the savings are even higher if Ω̄ is any other box-rectangular
domain fully containing E(s, t).

Formulas for Ψ. These can be naturally obtained by can be naturally obtained
by computing (or bounding from above) the time along any feasible path from s to
t. On a convex domain Ω, the most obvious choice is Ψ1 = d/F1 (i.e., follow the
straight line from s to t at the minimum speed F1). For problems with the unit speed
of motion, f(x) = 1 = F1 = F2, Ψ1 = d, and the ellipse collapses to a straight line
segment.

A more accurate overestimate can be obtained by computing the exact time
needed to traverse that straight line trajectory:

Ψ2 =

∫ |t−s|

0

dr

f
(
s+ t−s

|t−s|r
) =

∫
1

0

|t− s|
f (s+ (t − s)r)

dr ≤ Ψ1.

For nonconvex domains, a similar upper bound can be obtained by integrating the
slowness 1/f along any feasible trajectory (e.g., the shortest Ω̄-constrained path from
s to t).

Finally, we will also consider the third (“ideal”) option with Ψ3 = u(s) ≤ Ψ2.
While practically unattainable, Ψ3 is useful to illustrate the upper bound on efficiency
of various domain restriction techniques. In practice, it can be approximated by using
U(s) precomputed on a coarser grid or using the output of PMP-based computations
(see the example in section 4.4). In the latter case, the techniques discussed in this
paper can be viewed as a method for verifying the global optimality of a known locally
optimal trajectory.
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Fig. 2. (A) Level sets of U computed with a highly oscillatory speed f(x, y) = 2 +
0.5 sin(20πx)(20πy). The curve ∂L is indicated by a thicker contour line. Three ellipses correspond-
ing to Ψ1,Ψ2, and Ψ3 are shown in black. (B) The level sets of log10[U(x) + V (x) − U(s) + 0.01]
for the same problem.

Figure 2A shows the (s, t)-focused ellipses for a specific example with a highly
oscillatory speed function.

3.2. Dynamic domain restriction: Underestimates and A*-techniques.
The previous subsection described a priori domain restriction techniques. Here, our
goal is to further restrict the computations dynamically by using the solution already
computed on parts of Ω̄. The actual viscosity solution u(s) depends only on val-
ues along a characteristic (i.e., an optimal (s, t) trajectory). Ideally, we would like
to compute the numerical solution U only for the gridpoints within an immediate
neighborhood of that trajectory, potentially yielding a much greater speedup than
the techniques described above.

Consider a function v(x) specifying the min-time from s to x. (It is easy to see
that v is also a viscosity solution of the Eikonal PDE (1.1), but with the different
boundary condition v(s) = 0.) We note that u(x)+ v(x) ≥ u(s) = v(t) for all x ∈ Ω,
and this becomes an equality if and only if x lies on an optimal (s, t) trajectory. (See
the level sets of u + v in Figure 2B.) Since v is generally unknown, any practical
restriction of computational domain will have to rely on an admissible underestimate
heuristic ϕ, satisfying ϕ(x) ≤ v(x), ∀ x ∈ Ω̄. As we will see, tighter underestimates re-
sult in more efficient domain restrictions. Here we enumerate several natural heuristic
underestimates:

1. Näıve heuristic is obtained by assuming the maximum speed of travel along
the straight line:

(3.7) ϕ0(x) = |s− x| /F2.

Several papers on SA* versions of FMM [11, 15, 29, 30] have relied on its
scaled-down version ϕ0

λ = λϕ0(x) with λ ∈ [0, 1].
2. Coarse grid heuristic [16, 18] is based on precomputing V on a coarser (Rm)×

(Rm) grid with R ∈ (0, 1). If we use V R to denote the interpolation of that
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solution on X , the heuristic is then defined as ϕC
λ,R = λV R, where λ ∈ [0, 1]

is chosen to ensure that the result is a true underestimate.
3. Landmarking-based heuristic [17, 18] is a continuous version of the landmark-

ing technique on graphs [12]. This relies on precomputing/storing the min-
imum time from every node to a number of “landmarks”; the triangle in-
equality is then used to obtain the lower bound ϕL(x) ≤ v(x). The high
computational cost and memory footprint make this approach useful for re-
peated queries only (i.e., only if the optimal trajectory problem has to be
solved for many different (s, t) pairs).

4. Higher-speed heuristic can be obtained by starting with a special speed-overes-
timate f0(x) ≥ f(x), such that the corresponding value function v0(x) ≤ v(x)
is known analytically, and then setting ϕ(x) = v0(x). (Note that (3.7) can be
also derived this way by taking f0(x) ≡ F2.) If the (s, t) path-planning has
to be performed for many different speed functions f , the above approach can
be useful even if v0 has to be approximated numerically. One such example
is included in section 4.4.

5. Scaled “oracle” heuristic [18] is defined as ϕ̄λ(x) = λv(x) with λ ∈ [0, 1].
This is clearly not a practical underestimate, but a theoretical device useful
in studying the accuracy/efficiency tradeoffs of various domain restriction
techniques. Since v is generally unavailable, our benchmarking relies on a
numerical approximation; i.e., ϕ̄λ(x) = λV (x), where V is (pre)computed on
the same grid X .

The first of these (the Näıve heuristic) is a conservative underestimate that is
cheaply available for all problems—including the situations with discontinuous speed
functions or nonconvex domains. The other underestimates are more expensive to
produce but usually result in a more significant domain restriction. Thus, their use
is particularly justified when the same speed function is used repeatedly to solve
numerous (single source/single target) problems.

We emphasize that this paper is in a sense “underestimate-neutral.” A good
underestimate is obviously important, but our focus is on how it should be used
rather than on how to build it.

Continuous A* techniques. Both SA* and AA* algorithms on graphs may be
easily adapted to the continuous setting using any of the above heuristics. Just like
on graphs, SA*-FMM increases the “processing-priority” of nodes with low ϕ values,
whereas our AA*-FMM avoids considering nodes guaranteed not to be a part of any
(s, t)-optimal trajectory. Each of these methods successfully restricts the computa-
tions, but with different trade-offs between the execution time, memory footprint,
amount of restriction, and computational error.

3.3. Prior work on SA*-FMM. From the implementation standpoint, SA*-
FMM is fairly straightforward. It requires modifying a single line 5 of FMM (see
Dijkstra’s algorithm): accept the node with minimal U +ϕ. (Since u+ v is minimal
along the (s, t)-optimal trajectory, U(x) + ϕ(x) is used to indicate how close x is to
that trajectory.) However, the analysis of this method’s output is more subtle.

On graphs, the consistency of the heuristic underestimate (i.e., the condition
(2.3)) guarantees that all SA*-accepted nodes receive the same values as would have
been produced by Dijkstra’s. In contrast, SA*-FMM exhibits a performance trade-
off based on whether ϕ satisfies a more restrictive and stencil-dependent consistency
condition (defined below). If ϕ is inconsistent, some of the gridpoints may be ac-

cepted prematurely, resulting in additional numerical errors. On the other hand, if
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Fig. 3. Four computational stencils for a node xi: four-point and eight-point stencils on a
Cartesian grid (A) and (B), a six-point stencil on a regular triangular mesh (C), and a five-point
stencil on a unstructured triangular mesh (D).

ϕ is consistent, the efficiency of the domain restriction is significantly decreased, and
this restricted domain does not shrink to zero volume as h→ 0.

The presence of additional errors might seem counterintuitive. After all, if an
(xi, t)-optimal trajectory passes through some xj , then, for ϕ defined by formula
(3.7),

u(xi) = (time from xi to xj) + u(xj) ≥ |xj − xi|
F2

+ u(xj) ≥ ϕ(xj)− ϕ(xi) + u(xj),

guaranteeing that u(xi) + ϕ(xi) ≥ u(xj) + ϕ(xj). Turning to numerical solutions,
we would hope for the same argument to work for Ui and Uj , and indeed it does if
Ui is computed by a one-sided update formula (3.4). But for a first-order upwind
discretization in R

2, a generic gridpoint xi depends on two other gridpoints that
straddle xi’s characteristic. To produce the same numerical values under SA*-FMM
and FMM, we would need to know that Ui+ϕ(xi) ≥ Uj+ϕ(xj) whenever xi directly
depends on xj .

Suppose there exists a constant λ > 0 such that

(3.8) Ui directly depends on Uj =⇒ Ui > Uj + λ|xi − xj| ∀ i, j.
The proper ordering is then guaranteed provided the underestimate ϕ satisfies the
consistency condition

(3.9) |ϕ(xi)− ϕ(xj)| ≤ λ|xi − xj | ∀ i, j,
which is easy to ensure by using the underestimate

ϕ0
λ(x) = λϕ0(x).

Unfortunately, the condition (3.8) is stencil-dependent, and in this section we explore
its implications both on grids and triangular meshes; see Figure 3. Suppose that
xi’s characteristic is straddled by xj and xk, where θ is the angle ∠xjxixk and
γ is the angle between the characteristic and xixj . Since for the Eikonal equation
the characteristics coincide with gradient lines and our numerical approximation is
piecewise linear, it is easy to show that1

(Ui − Uj) = cos γ |xi − xj |/f(xi) ≥ cos(θ)h/f(xi).

The latter lower bound is actually sharp when the characteristic is parallel to xixk

and h = |xi − xj |. This means that the following hold:

1We note that this observation was previously used in [28] to find the conditions for applicability
of Dial-like algorithms.
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• ϕ0
0 ≡ 0 is the only consistent underestimate for stencil 3A (i.e., λ = 1

F2
cos π

2 =
0). Thus, SA*-FMM will usually result in additional errors.

• For stencil 3B, ϕ0
λ becomes consistent for λ ≤ 1

F2

√
2
=

cos π
4

F2
.

• For a local stencil used on a general triangular mesh (e.g., Figure 3D), if
θ̄ < π

2 is an upper bound on angles θ present in the mesh, then ϕ0
λ becomes

consistent for λ ≤ cos(θ̄)/F2.
Interestingly, the importance of consistency conditions for SA*-FMM was only re-
cently recognized in [29, 30], while all the prior versions treated this in an ad-hoc
fashion. To summarize:

• [2005] Ferguson and Stentz [11] adapt D* algorithms to continuous optimal
trajectory problems discretized on stencil 3B. They also introduce an SA*-
type technique within D* to further improve the performance. The method
relies on ϕ0

λ to ensure the right order of gridpoint processing, but the choice
of λ is never explained explicitly.
• [2005, 2006, 2008] Peyré and Cohen [16, 17, 18] adapt SA* for FMM on stencil
3A using underestimates ϕC

λ,R and ϕL. The authors acknowledge that their
version of SA*-FMM produces additional errors and experimentally study the
dependence of these errors on the tightness of underestimates. However, they
do not analyze the behavior of errors under grid refinement.
• [2007] Pêtrès [15] defines an SA*-FMM variant on a stencil 3A with ϕ0

λ.
A brief description of a bidirectional version of SA*-FMM is also included.
Pêtrès acknowledges that, for large λ, the additional (SA*-induced) errors
can be larger than discretization errors but does not analyze how that ratio
changes under grid refinement.
• [2011, 2012] Yershov and LaValle [29, 30] use FMM with acute triangular
meshes as in [25] in R

2, R3, and on two-dimensional manifolds. Their prob-
lems of interest use f ≡ 1 on a domain with obstacles. The authors use
SA*-FMM with ϕ0

λ and prove that λ = cos(θ̄) guarantees absence of ad-
ditional errors. In their experiments, the authors observe that SA*-FMM
processed only 50% of the gridpoints processed by FMM.

Remark 3.3. Every implementation of SA*-FMM also involves an “efficiency
versus memory footprint” trade-off. Since the binary heap of considered nodes
is sorted based on U + ϕ, every heap-maintenance operation relies on availability
of ϕ(x) for many nodes on the heap. This happens whenever a far node becomes
considered, or a considered node receives a smaller value or becomes accepted.
If ϕ is recomputed each time it is needed (e.g., by (3.7)), this introduces a noticeable
overhead to each heap operation. An alternative (to cache ϕ the first time it is
computed for each considered node) is certainly more efficient but significantly
increases the memory footprint, particularly on larger grids and in higher dimensional
problems. In section 4 we include the performance data for both of these approaches.

3.4. Accuracy or efficiency? The errors introduced by any A*-type restriction
techniques are not very surprising once we recall that the numerical viscosity of the
discretization results in a large domain of computational dependency for U(s). To
formalize this argument, we will consider a dependency digraph G built on the nodes
of X . For xi and xj ∈ Ni, G includes an arc (xi,xj) if xi directly depends on xj ; i.e.,
if Uj is needed to compute Ui. We will say that xi depends on xj if there exists a path
in G from xi to xj . Due to the monotone causality of the upwinding discretization,
this dependence implies Ui > Uj; thus, G is acyclic and every path on it leads to t.
We will also use G(s) to denote the subset of G reachable from s.
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Fig. 4. Domain restriction for the constant speed example. The full dependency graph is
shown for a four-point stencil on a Cartesian grid (A) and for a six-point stencil on a triangular
mesh (C). Thin black arrows show the arcs of G(s). The shorter arrows show the characteristic
direction for each node. Subfigure (B) shows a domain-restricted computation. The nodes inside of
the dashed lines represent the nodes that pass the A* condition (3.10). The thicker characteristic
arrows highlight the “optimal” directions that have changed due to this domain restriction.

Consider any domain restriction technique that results in accepting only nodes
from some X̂ ⊂ X and produces some numerical approximation of the value function
U∗(x) for each x ∈ X̂. If G(s) �⊂ X̂, we cannot expect U∗(s) to be the same as
U(s) produced by FMM on the full X . In other words, if we insist on avoiding any
additional (restriction-induced) errors, this typically results in severe constraints on
the efficiency of the domain restriction. To illustrate this point, we consider a very
simple problem with t and s in opposite corners of Ω̄; see Figure 4A. With f ≡ 1,
the optimal trajectory from every starting position x is just a straight line to t. But
it is easy to see that G(s) includes all nodes in X ; thus, any restriction will result
in U∗(s) > U(s). We emphasize that this phenomenon has nothing to do with the
nonexistence of consistent ϕ for the four-point stencil discretization on a cartesian
grid. Figure 4C shows an equivalent example on a regular triangular mesh. As
explained in [29, 30], taking λ = 1/2 will ensure that ϕ0

λ is consistent for this problem
and stencil. As a result, SA*-FMM will produce U∗(s) = U(s), but at the cost of
accepting exactly the same set of nodes2 as FMM (i.e., X̂ = X).

For these reasons, we believe that asking for U∗(s) = U(s) on every fixed grid is
unrealistic and makes the domain restriction much less efficient. A more attractive
strategy is to ensure that |U∗(s)−U(s)| is small relative to discretization errors and
U∗(s)→ u(s) as h→ 0. This can be ensured provided X̂ covers a neighborhood of the
(s, t)-optimal trajectory and U∗ = Û , the solution that FMM would have produced

on X̂. This is precisely what AA*-FMM does when used with an inconsistent ϕ; on
the other hand, the different order of acceptance under SA*-FMM typically results
in U∗ �= Û and a lack of convergence (or a very slow convergence—see section 4.1)
under grid refinement.

3.5. The new method: AA*-FMM. The AA* technique is also quite easy
to use in the continuous setting as a modification of the standard FMM. Our current
implementation is based on the upwind discretization (3.2) on a standard four-point

2The computational savings of 50% were reported in [29, 30] for f ≡ 1 on the domain with
obstacles. Based on the above discussion, such savings are in fact highly dependent on the size of
G(s) relative to the total number of meshpoints. This percentage is, in turn, defined by the type of
the mesh and the positions of s and t relative to the obstacles.



CAUSAL DOMAIN RESTRICTION A2491

Fig. 5. Level sets for u+ v computed by FMM on a 4012 grid. In each subfigure, the bold lines
show the boundaries of C1, C2, and C3 (from out-to-in) for the specified Ψ.

stencil, but the required FMM-changes would be the same for any other monotone-
causal stencil (either on a grid or on a simplicial mesh). Similarly to a version of AA*
for graphs,

• we rely on an overestimate Ψ of the time along the (s, t)-optimal trajectory
(see section 3.1);
• the considered nodes are still sorted by U -values, and thus the underesti-
mate ϕ does not have to satisfy any consistency conditions;
• we only mark a node x as considered if it satisfies the “A* condition”

(3.10) U(x) + ϕ(x) ≤ Ψ.

This simple criterion allows for AA* to be adapted to both label-setting and label-
correcting methods. If ϕ satisfies the consistency condition (3.9), the values produced
by AA*-FMM are also the same as those resulting from FMM, but on a smaller
(accepted) subset of the grid X̂ . However, AA*-FMM can be also used even if ϕ
does not satisfy (3.9), which results in additional errors but does not prevent the
convergence to viscosity solution of the PDE under grid refinement.

To illustrate the efficiency of the AA*-type domain restrictions, we consider the
boundaries of three sets:

(3.11)

C1 = {x | |x− s|+ |x− t| ≤ F2Ψ} ,
C2 = {x | u(x) + ϕ(x) ≤ Ψ} ⊆ C1,

C3 = {x | u(x) + v(x) ≤ Ψ} ⊆ C2.

All three are shown in Figure 5 for the example introduced in section 3.1. Both u and
v are numerically approximated by FMM on the entire domain Ω̄. The boundaries
∂Ci are shown by bold lines for Ψ1,Ψ2, and Ψ3. The set C1 corresponds to the ellipse
defined for each specific Ψ. The set C2 ∩L is roughly the set accepted by AA*-FMM
with the specified Ψ and the underestimate ϕ0. The set C3 ∩ L is the minimum part
of the domain that AA*-FMM would have to accept with that Ψ even if we were to
use the perfect ϕ = ϕ̄1. If Ψ = Ψ3, then C3 collapses to the optimal trajectory. This
figure also clearly demonstrates the importance of an accurate Ψ for the efficiency
of the domain restriction in AA*-FMM. If the initial Ψ is not particularly tight, the
performance can be further improved by decreasing Ψ dynamically in a B&B fashion.
This approach relies on availability of a heuristic overestimate ψ(x) ≥ v(x) ∀ x ∈ Ω̄.
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For a convex domain, our implementation uses an obvious (and cheaply computed)
overestimate

(3.12) ψ(x) = |x− s| /F1,

which is consistent with our definition of Ψ1 in section 3.1. Each time a gridpoint x
is accepted, this AA*BB-FMM algorithm attempts to decrease Ψ as follows:

(3.13) Ψ ← min {Ψ, U(x) + ψ(x)} .

A better ψ can be obtained by numerically integrating the slowness along any feasible
(s, t) trajectory, or even using PMP-based techniques. Performing such computations
for every accepted gridpoint would be clearly prohibitive, but using it every so often
(in addition to the systematic use of formula (3.12)) could be a useful technique to
investigate in the future.

Remark 3.4. On graphs, using the “exact underestimate” ϕ = V simply resulted
in accepting only those nodes that lie on the optimal path. In the continuous case,
the optimal trajectory does not pass through every node it directly depends on. Even
for a node x immediately next to the optimal (s, t) trajectory, if the underestimate ϕ
is very accurate, this may cause the A* condition (3.10) to fail (resulting in x never
becoming considered). This situation rarely arises in practice; e.g., with ϕ = ϕ0

this can happen only if Ψ is exact and the speed f(x) = F2 on some neighborhood
of s.

We have used two different approaches to address this issue:
• Introduce a numerical tolerance factor, i.e., use (1 + εtolh

μ)Ψ instead of Ψ.
Our analysis of restriction-caused errors in section 6 applies as long as εtol > 0
and μ ∈ [0, 1/2). All the numerical tests in section 4 rely on this approach
and confirm the convergence even with μ = 1/2.
• Alternatively, if s has not been accepted by the end of AA*-FMM, one can
simply take U(s) = Ψ. Since Ψ was obtained as a cost of some known (s, t)
trajectory, that trajectory is then declared optimal (at least for the current
grid resolution).

4. Numerical results. All algorithms were implemented in C++ and compiled
with g++ version 4.2 on a Macbook Pro (4 GB RAM and an Intel Core i7 processor—
four 2 GHz cores). To make the benchmarking results as compiler/platform-indepen-
dent as possible, we have turned off all compiler optimizations (option -O0). For all
of the 2D and 3D examples, Ω̄ = [0, 1]n is discretized by a uniform cartesian grid with
mn gridpoints. To test the numerical approximation errors in distance computations
(section 4.1), we have used an analytical solution u(x) = |x− t|. In all other cases,
the “ground truth” u was computed numerically by FMM on the full domain using
the “highly” refined grid:

Dimension Ground truth Resolutions considered
n = 2 m = 6401 m = 101, 201, 401, 801, 1601 and 3201
n = 3 m = 401 m = 26, 51, 101, 201 (and 401 when f ≡ 1)

Accuracy metrics. Since we are interested in single-source/single-target prob-
lems, all accuracy metrics are based on comparing various numerical approximations
and the true solution at a single point s. As before, we use U to denote the solu-
tion produced by FMM on the entire X while U∗ denotes the solutions produced by
the respective A*-modifications of FMM. We base our comparison on the following
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“relative errors” for each example:

Ed = relative discretization error (DE) at s using FMM = |U(s)− u(s)| /u(s),
E∗ = relative error at s when using A* = |U∗(s)− u(s)| /u(s),
E∗N = relative error at s explicitly due to A* = [U∗(s)− U(s)] /U(s) ≥ 0.

Since the upwind discretization is convergent, U → u and thus Ed → 0 as h → 0.
Correspondingly, a successful domain restriction should have E∗ → 0 (and thus E∗N →
0) as h→ 0.

To measure the efficiency of the domain restriction, we also define

P = fraction of domain computed

= (# of gridpoints accepted or considered)/mn.

Underestimate functions. In all examples except for section 4.4, we rely on
näıve and scaled-oracle heuristics (i.e., ϕ0

λ and ϕ̄λ). We consider this sufficient since
the accuracy of the AA* approach is really underestimate-neutral (though the effi-
ciency is clearly dependent on both ϕ and Ψ). We expect that the results based on
any other heuristics (including those in [16, 17, 18]) will be qualitatively similar.

4.1. Constant speed f ≡ 1 in two and three dimensions. In the constant
speed case, all characteristics are straight lines and the näıve heuristic coincides with
the actual time-to-go (i.e., ϕ0 = v). In this subsection we use the underestimate
ϕ = ϕ0

λ and place s and t at opposite corners of Ω̄. Our goal is to test the effect of
λ ∈ [0, 1] on the accuracy and efficiency for different grid resolutions h = 1/(m− 1).
In testing AA*-FMM, we use Ψ = (1 + εtolh

μ)|s− t|, where μ = 1/2 with εtol = 1/4
in two dimensions and εtol = 1/3 in three dimensions. This ensures that AA*-FMM
does not terminate before s is accepted and also results in the set C3 = C2 shrinking
to a straight line as h→ 0.

Figure 6 shows the level sets of U∗ computed by SA*-FMM and AA*-FMM on
a 2D grid with m = 351 and λ ∈ {0.25, 0.5, 0.75, 1}. The nonsmoothness of the
level-sets produced by SA*-FMM is due to the additional errors introduced by that
method. For λ = 1, these errors also result in a larger P—despite the fact that our
AA*-FMM has a built-in “restriction slackness” (since Ψ > u(s)). Figure 7 shows
log10(E∗N ) as m and λ vary. For λ ≥ 0.55, the errors produced by SA*-FMM are
not only relatively large but also do not decrease much under grid refinement. In
contrast, the errors in AA*-FMM decrease quite rapidly even though the set C3 is
also shrinking as h→ 0; see also the convergence analysis in section 6.

Since in this example G(s) = X , additional errors should result from any domain
restriction. However, the finite-precision of the floating point arithmetic results in
“zero domain restriction errors” (white spaces in Figure 7) for AA*-FMM even for
many test runs where G(s) is partly truncated; e.g., see the case (λ = 0.75, m = 351)
in Figures 6 and 7.

Figures 8 and 9 show the full accuracy/efficiency data holding λ = 1 and vary-
ing m.

4.2. Oscillatory speed function in two and three dimensions. For the
next 2D example, we set s = (0.95, 0.7) and t = (0.5, 0.5) and consider a highly
oscillatory speed

(4.1) f(x, y) = 1 + 0.5 sin(20πx) sin(20πy),

resulting in frequent directional changes along most optimal paths. We start by
focusing on a scaled oracle heuristic ϕ = ϕ̄λ with AA*-FMM also relying on Ψ =



A2494 Z. CLAWSON, A. CHACON, AND A. VLADIMIRSKY

Fig. 6. The top row was produced with SA*-FMM, and the error can be seen in two ways: (1)
the deformation of the level sets and (2) the value at the source is ≈ 1.61. The bottom row shows
the results of AA*-FMM. We hold m = 351 while λ values increase from left to right.

Fig. 7. SA* versus AA* comparison based on E∗
N errors. The horizontal axis shows the grid

resolution m, and the vertical axis corresponds to the heuristic strength λ. White corresponds to
errors smaller than the machine ε.
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Fig. 8. The CPU-time, the fraction P of the domain computed, and the error E∗ for both SA*
and AA* using a constant speed function in two dimensions. The solid square markers in the time
plot indicate the time for a version of SA*-FMM that stores each ϕ(x) after it is first computed. The
underestimate function used is ϕ0 and the benchmarking is performed for λ = 1 (i.e., corresponding
to the very top slice in Figure 7).

Fig. 9. The same data as in Figure 8, but for 3D computations.

(1 + εtolh
μ)v(s). Figure 10 shows the level sets of numerical solutions obtained with

m = 401. We note that the SA*-errors result in a significant distortion of the optimal
trajectory. (See the switch between λ = 0.3 and λ = 0.7.)

Figure 11 compares the accuracy of these techniques for different (m,λ) pairs.
Qualitatively, the picture is largely the same as in Figure 7, but with two nontrivial
differences. First, the “white block” in the lower-left corner of the SA* plot indicates
the lack of additional errors with m = 101 and λ ≤ 0.15. Based on our computational
experiments, this is an extremely rare situation—the only example we could find,
where the entire G(s) is processed by SA*-FMM in the correct order despite the fact
that the heuristic ϕ is inconsistent. Second, we observe that the AA*-FMM-generated
errors are not always monotone decreasing in m; e.g., the errors are present for (m =
401, λ = 0.75) but not for (m = 201, λ = 0.75), where the entire G(s) is accepted.

Since the oracle heuristic is generally unavailable, we now consider the accu-
racy/efficiency trade-offs using the näıve heuristic ϕ = ϕ0 and a realistically obtain-
able (but conservative) overestimate Ψ = Ψ2. Figure 12 shows that AA*-FMM yields
comparable efficiency (despite accepting a larger part of the domain) while also en-
suring U∗(s) = U(s) since the entire G(s) is accepted. We also consider similar
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Fig. 10. Numerical results of FMM combined with SA* and AA*, showing the fraction of
domain computed P and the relative error E∗

N . Note the change in the optimal trajectory for SA*
between λ = 0.3 and λ = 0.70. The solutions were produced using m = 401.

Fig. 11. This plot shows the same results as Figure 7 except with the sinusoid speed (4.1).

oscillatory examples in three dimensions with

(4.2) f(x, y, z) = 1 +A sin(10πx) sin(10πy) sin(10πz)

for two amplitudes A = 0.1 and A = 0.35. The source/target locations are s =
(0.72, 0.6, 0.8) and t = (0.32, 0.4, 0.36). Figure 13 shows the accuracy/efficiency data
based on realistic ϕ = ϕ0 and Ψ = Ψ2. The errors due to AA* are negligible compared
to discretization errors, while the errors due to SA* are again quite noticeable and
decrease much slower as h→ 0.
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Fig. 12. The CPU-time, the fraction P of the domain computed, and the error E∗ for both
SA* and AA* using a highly oscillatory sinusoid function in two dimensions. The näıve heuristic
was used, and for AA* we took Ψ = Ψ2.

Fig. 13. These results again show the average time (in seconds) of 10 trial runs, fraction
domain calculated, and the error E∗ for both SA* and AA* using (4.2). The näıve heuristic was
used, and for AA* Ψ = Ψ2. The top row corresponds to A = 0.1, and the bottom row shows the
results when A = 0.35. When A = 0.1, the result might seem counterintuitive: AA* takes less CPU
time even though it processes more of the domain. Careful profiling shows that for SA*, the three-
neighbor update fails more frequently and causes the algorithm to perform more two-sided updates.
This makes an average node update in SA* more computationally expensive, hence the slower time.

4.3. Satellite image. The following path-planning example is borrowed from
[16, 17, 18]. The grayscale intensities of a satellite photograph (Figure 14A) are
imported into the range [0, 755] using the imread() routine of MATLAB. For a given
gridpoint x, assume that it falls into a pixel with grayscale value i(x) ∈ [0, 755]. This
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Fig. 14. A. The original satellite image mapped to a speed f ∈ [0.001, 1.001]. B. The solution
to the PDE on a 350 × 350 grid with ∂L and ∂C2 (using ϕ0 and Ψ3) drawn in bold. C. The upper
marker is approximately the same s as in [18]; the lower marker is the same s used in B and
Figure 15A.

then defines the speed f : Ω̄→ [0.001, 1.001] via rescaling:

f(x) = 0.001 + i(x)/755.

This is the same intensity/speed mapping used in [18], but our experimental setup is
slightly different:

• Unlike Peyré and Cohen, we omit the pre-smoothing of the original 744×744
image and simply downsample it to 350× 350.
• Peyré and Cohen use ϕ = ϕC

λ,R; they fix λ = 1
2 and vary R. Instead, we first

use ϕ = ϕ0 (Figure 14B) and then switch to ϕ = ϕ̄λ (Figure 15). Unlike with
ϕC
λ,R, the use of ϕ̄λ directly illustrates the performance of A* as the quality

of ϕ improves.
• We use slightly different source and target locations (s = (337h, 161h) and
t = (16h, 188h); see Figure 14C). Our s falls on the opposite side of a shockline
compared to s used in [18].

Figure 14B shows the level sets of the solution on the full domain, with ∂L and ∂C2

(using ϕ0 and Ψ3) shown in bold. (The set accepted by SA* is approximately the
same as AA*.)

This example illustrates the use of A*-techniques with a discontinuous speed
function. The rather limited computational savings in 14B are clearly caused by
the use of an “overly optimistic” ϕ0. However, the lack of accuracy of this naive
underestimate is not caused by any discontinuities in f—instead it is simply a result
of a large F2/F1, with f values much closer to F1 on most of the domain.

We now switch to “oracle tests” with ϕ = ϕ̄λ and AA*-FMM relying on Ψ =
(1 +

√
h/8)V (t). Using this heuristic, the domain restriction becomes much more

effective for both SA* and AA*. But since s is close to a shockline, additional errors
due to SA*-FMM are sufficiently large to change the optimal trajectory in several
ways (see Figure 15A). In contrast, the errors from AA*-FMM are much smaller and
the optimal trajectory remains the same for all λ.

4.4. Replanning in a dynamic environment. Our final example illustrates
several important points:

1. A related control problem can be used to produce a custom/special underes-
timate ϕ.
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Fig. 15. A. The λ-dependent “optimal” trajectories recovered by SA*-FMM (red, green, and
blue curves). AA*-FMM always recovers the truly optimal (red) trajectory. When the trajectories
overlap, the red red curve lies under the green, and the green curve lies under the blue. B. and C.
The time (in seconds) and E∗

N produced by SA* and AA* as λ changes in [0, 1].

2. The optimal trajectory from a related control problem is valuable as an initial
guess for the PMP.

3. The PMP-computed trajectory is not necessarily globally optimal but can be
used to produce an accurate Ψ.

Here we will use a slightly more general setup where the task is to minimize the total
cost (instead of considering only the time) to reach t. Given a running cost function
K : Ω → (0,+∞) integrated along the trajectory and a speed f0, the value function
u now satisfies a different Eikonal PDE given by

(4.3) |∇u(x)| f0(x) = K(x).

Our specific problem is to find the “safest” trajectory in an adversarial environment,
with K higher on the parts of the domain more closely monitored by the adversary.

If we assume no prior information on enemy locations and monitoring patterns,
it is natural to select K ≡ 1, which implies that the quickest trajectory is in fact the
safest. Consider the domain Ω̄ = [−0.05, 0.85]× [0, 0.9] with the speed and running-
cost defined by

f0(x, y) = 1 + 0.99 sin(4πx) sin(4πy) and K0 ≡ 1.

The solution u to this “no enemy observers” problem is shown in Figure 16C. Fig-
ure 16A shows the contours of f0 with two locally optimal trajectories. The “upper”
solid trajectory is globally optimal and found by tracing the gradient of u; the “lower”
locally optimal trajectory is computed using PMP.

Our perception of the trajectory safety will change once we discover specific loca-
tions of enemy observers. For example, if we know that there are two observers located
at x1 = (0.50, 0.77) and x2 = (0.33, 0.45), we might encode this new information in
the cost function:

K(x) = 1 + 2 exp

(
|x− x1|2

0.01

)
+ 8 exp

(
|x− x2|2
0.002

)
.

The solution to (4.3) with speed f0 and the above cost K can be shown to satisfy
(1.1) with f = f0/K. The contours of this new modified speed f can be seen in
Figure 16B with two “locally safest” trajectories that can be viewed as perturbations
of the locally time-optimal paths from Figure 16A. Note that, because of the higher
cost around x1, the upper locally optimal trajectory is no longer globally optimal.
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Fig. 16. A. Contours of the original speed function f0. B. Contours of “modified speed
function” f = f0/K with the enemy locations shown by asterisks. C. Contours of the original
solution to the problem with speed f0 and constant running cost. D. Contours of the solution
corresponding to the modified speed function f = f0/K with ∂L drawn in bold black. ∂C2 is in dark
purple using Ψ = ΨB , and in orange when using Ψ = U(s).

The full solution to the time-optimal problem becomes useful if we want to in-
troduce A* techniques for all “multiple enemy observers” problems. Let V0(x) be the
minimum time to reach s using the speed f0. Suppose that V0 is precomputed by
FMM and stored for the entire X . Returning to the problem with known observers,
we may take ϕ = V0 since f0 ≤ f =⇒ V0 ≤ V . The overestimate Ψ can be obtained
by integrating K/f0 along any feasible trajectory. If we use the globally time-optimal
trajectory (the solid black curve in Figure 16A), this yields a good ΨA ≈ 0.6752. An
even better overestimate ΨB ≈ 0.6447 is obtained if we use the globally time-optimal
trajectory as the initial guess for PMP and then integrate K/f0 along the resulting
“locally safest” trajectory (the upper black curve in Figure 16B).

Figure 16D shows the solution level sets for the “multiple enemy observers” prob-
lem together with boundaries of several computational sets. The bold black curve is
∂L, showing the part of Ω̄ accepted by FMM. The next (inward) bold curve is ∂C2

with Ψ = ΨB—the boundary of a subset accepted by AA*-FMM. The final bold
curve is ∂C2 with Ψ = U(s)—this approximates the boundary of a subset accepted
by SA*-FMM. (AA*-FMM would also restrict to the latter set, but only if we were
lucky enough to start with Ψ corresponding to the lower curve in Figure 16B).

Even though AA*-FMM computes the solution on a larger part of the domain,
its computational efficiency is still comparable and the accuracy is superior to SA*-
FMM. For example, with m = 201 (using 100 trial runs averaged for the time) we
have

Method Time (seconds) Ratio P Error E∗
N

FMM 0.02665 0.82 0
SA*-FMM 0.004950 0.130 0.02550

AA*-FMM, Ψ = ΨB 0.0101 0.29 1.77× 10−11

AA*-FMM, Ψ = U (s) 0.00526 0.14 0.00150

5. Conclusions. We have described a new A*-type modification of the FMM
solving Eikonal equations for a single source/target problem. Unlike the prior methods
for this problem, which were developed to mirror the “standard A*” algorithm on
graphs [13], our approach is based on a lesser known “alternative A*” [5]. These prior
SA*-FMM methods [11, 15, 16, 17, 18, 29, 30] either introduce additional errors that
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vanish slowly (if at all) under grid refinement, or must accept a much larger portion of
the domain. In contrast, our AA*-FMM is able to significantly restrict computations,
with any additional errors quickly decreasing under grid refinement.

One weakness of AA*-FMM is the reliance on an overestimate Ψ, especially when
the feasibility of any (s, t) trajectory is in question (e.g., in the presence of obstacles).
A good Ψ can be also found from related control problems or based on PMP. Here
we mention two more approaches not tested in the current paper:

• One can use Ψ = ζUC(s), where ζ > 1 and UC is the solution found by FMM
on a much coarser grid.
• One can also use the output of SA*-FMM on the same grid with an aggres-
sive/inconsistent ϕ, setting Ψ = U∗(s).

In the latter case, AA*-FMM should be viewed as a postprocessing technique to
improve the accuracy. This might seem superfluous: after all, PMP could also be
applied using the output of SA*-FMM as an initial guess. But as we show in Figures 10
and 15, the errors from SA*-FMM are likely to result in PMP converging to some
other (locally, rather than globally) optimal trajectory.

The effectiveness of the AA* domain restriction depends on the quality of ϕ and
Ψ. If the initial Ψ is overly conservative, it can also be improved dynamically using
the Branch & Bound techniques. For the sake of brevity, no benchmarking results for
the latter approach were included here.

We also list several desirable future extensions with significant impact on appli-
cations. First, AA* can be used instead of SA* within D* and E* path replanners
[11, 19]. Second, the original AA* on graphs is applicable in both label-setting and
label-correcting algorithms. It should not be hard to incorporate the same idea into
other noniterative and fast iterative methods for Hamilton–Jacobi PDEs. Our prelimi-
nary results for the locking sweeping method [1] prove the feasibility of this approach.
Third, since many gridpoints will never be used, allocating memory for the entire
grid may be wasteful (particularly in high dimensions). One approach, described in
[16, 17, 18], is to allocate gridpoints as needed and make use of a hash lookup table.
Our current implementation of AA*-FMM does not use this idea, but we hope to ex-
plore it in the future. Finally, we note that all of the A* techniques can be also trivially
extended to problems with a single-source and multiple targets. Similar underesti-
mates can be also built for a moderately large set of sources {si} (e.g., ϕ = mini ϕ

0
i ).

The error analysis in the appendix relies on a conjecture, which so far has been
proved only for a linear advection equation. For the Eikonal case, we currently rely
on experimental/numerical confirmation. Nevertheless, we believe that a similar ap-
proach will be also useful in analyzing errors in more general domain restriction prob-
lems, e.g., for the errors due to an “almost causal” domain decomposition in [6].

6. Appendix: Why does it converge? If AA*-FMM is used with an incon-
sistent heuristic ϕ, the domain restriction usually affects the dependency graph (i.e.,
G(s) �⊂ X̂), and the produced solution is larger than would result from running FMM
on the full grid: U∗(s) > U(s). In this section we analyze why (U∗(s) − U(s)) → 0
as h→ 0.

We first note that the answer is simple if there exists an open set Ω0 ⊂ Ω such
that

• the (s, t)-optimal trajectory lies in Ω0 and
• all gridpoints falling into Ω0 are accepted by AA*-FMM regardless of h.

In this case, an Ω̄0-constrained viscosity solution will already yield the correct u(s)
in the limit. In previous sections, we showed that such Ω0 often arises because Ψ
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and/or ϕ are not tight. But if the over/underestimates also improve in quality as
h → 0, then the AA*-FMM accepted region shrinks under grid refinement, and a
more careful argument is needed to explain the convergence.

To address this, we compare solutions produced by the original FMM solving
the same discretized system (3.2) but on different grid subsets and with different
boundary conditions. For the rest of this section, we will not rely on the fact that
X̂ is defined through AA*-FMM. As a benefit, our error analysis is also relevant for
domain decomposition-based parallelizations of FMM; e.g., see [6].

Consider a restriction of FMM computations to any X̂ ⊂ X containing both s
and t, and define the “restriction boundary” set Ξ = {x ∈ X\X̂ | N(x) ∩ X̂ �= ∅}.
For notational simplicity, we will assume that the (s, t)-optimal trajectory is unique
and that the upwind neighbors (xH ,xV ) are uniquely defined for every gridpoint x.

We will discuss the relationship between the following discretized solutions:
• As before, U denotes the solution on the entireX with the boundary condition
U(t) = 0.
• Û denotes the solution on X̂ with the same boundary condition Û(t) = 0. We
can also interpret it as a solution on X̂

⋃
Ξ with Q = {t}⋃Ξ and q = +∞ on

Ξ. Recall that, if X̂ is defined as the set of nodes accepted by AA*-FMM,
then this method also produces the same solution (i.e., U∗ = Û on X̂).
• Ū denotes the solution computed on X̂

⋃
Ξ with Ū(t) = 0 and the more

general boundary conditions Ū(xi) = qi specified ∀ xi ∈ Ξ.
Observation 6.1. The following properties are easy to verify based on the causal-

ity of (3.2):
1. qi = Ui ∀ xi ∈ Ξ =⇒ Ūj = Uj ∀ xj ∈ X̂.
2. qi ≥ Ui ∀ xi ∈ Ξ =⇒ Ūj ≥ Uj ∀ xj ∈ X̂.
3. Ûj ≥ Ūj ∀ xj ∈ X̂.
4. Suppose C is a constant such that C ≥ maxxj∈X̂ Ûj. Then

qi ≥ C ∀ xi ∈ Ξ =⇒ Ūj = Ûj ∀ xj ∈ X̂.
5. Suppose D(x) is the arclength of the shortest grid-aligned path within X̂ from

x to t. Then C = maxxj∈X̂ D(x)/F1 ≥ maxxj∈X̂ Ûj .

For any specific xi ∈ X , if we define X̂ = X\{xi} and choose qi > Ui, this
might result in Û(s) > U(s). This “add-one-gridpoint-to-Q” procedure motivates our
definition of sensitivity coefficients:

αi = α(xi) =
∂U(s)

∂Ui
or, more rigorously,

αi =
∂Û(s)

∂qi
computed on X̂ = X\{xi} with qi = Ui.

Due to the monotonicity of (3.2), αi ≥ 0 and it is strictly positive if and only if
xi ∈ G(s).

Lemma 6.2. The net effect of a domain restriction can be bounded from above
using α’s even for a general set X̂:

1. If q(x) ≥ U(x) ∀ x ∈ Ξ, then Ū(s)− U(s) ≤∑x∈Ξ α(x) (q(x)− U(x)) .

2. If C ≥ Û(x) ∀ x ∈ X̂, then Û(s)− U(s) ≤ C∑x∈Ξ α(x).

Proof. The upwind finite difference discretization (3.3) is equivalent to a semi-
Lagrangian discretization:

(6.1) U(xij) = min
β∈[0,1]

{ |βxH + (1− β)xV − xij |
f(x)

+ βU(xH) + (1 − β)U(xV )

}
.
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Despite the very different Eulerian perspective and notation, (3.3) can actually be
derived from Kuhn–Tucker optimality conditions for (6.1); see [27, 26, 28]. Moreover,
the latter can be also viewed as the dynamic programming equation for a stochastic
shortest path problem on the grid X ; see [28] for a detailed discussion. In this inter-
pretation, the transition from xij to the neighboring node (either xH or xV ) happens

probabilistically, with respective probabilities β and (1− β), and |(βxH+(1−β)xV −xij |
f(x)

is the cost we incur for choosing this probability distribution. The process continues
until we reach t, and the goal is to select β∗ : X → [0, 1] that minimizes the ex-
pected cumulative cost up to that termination. We note that, for xij = s, we have
α(xV ) = (1−β∗(s)), α(xH) = β∗(s) and α values on the rest of G(s) can be similarly
computed using (6.1) recursively; see [7]. Moreover, if we start from s and use the
optimal “stochastic routing policy” β∗(·), then α(x) can be naturally interpreted as
a probability of passing through x before arriving at t.

Suppose we now use β∗(·), but on a X̂-restricted problem, starting from s and
terminating the process (+ paying the additional cost of q(x)) if we transition into
any x ∈ Ξ before reaching t. Denote by Ũ the expected total cost of using this policy
and by α̃(x) the probability of reaching x before termination. We first note that
α̃(x) ≤ α(x) ∀ x ∈ X̂ ∪ Ξ since some stochastic paths previously leading through x
are now removed due to an earlier entry to Ξ. Second, Ũ ≥ Ū , since the latter is
found by optimizing over all possible β : X̂ → [0, 1], including the restriction of β∗(·).
Thus,

Ū(s)− U(s) ≤ Ũ(s)− U(s) =
∑
x∈Ξ

α̃(x) (q(x)− U(x)) ≤
∑
x∈Ξ

α(x) (q(x)− U(x)) ,

which completes the proof of part 1. To prove part 2, select q(x) = C ∀ x ∈ Ξ. Since
the exit-penalty C is prohibitively high, the stochastic path starting from s ∈ X̂ and
using the optimal routing policy will avoid Ξ with probability 1. Thus, Ū(s) = Û(s)
(see the last part of Observation 6.1), and using the above result

Û(s)− U(s) ≤
∑
x∈Ξ

α(x) (C − U(x)) ≤ C
∑
x∈Ξ

α(x).

Let d(x) be the distance from x to the characteristic passing through s (i.e., the
(s, t)-optimal trajectory).

Conjecture 6.3. There exists a constant ρ > 0 such that, for small enough h,
α(x) ≤ e−ρ[d(x)]2/h.

As of right now, we only have a rigorous proof of this statement for an upwind
discretization of a constant-coefficient advection PDE [7, Chapter 4]. The same proof
also covers the Eikonal equation when all characteristics are parallel, but this clearly
does not hold for the case Q = {t}. Still, the numerical evidence (see Figure 17)
indicates that this exponential decay is also present in the current context as well.

Theorem 6.4. Let {Xh} be a family of Cartesian grids on Ω with gridsize
h = 1/(m − 1) such that both s and t are gridpoints for all m. Define X̂h = {x ∈
Xh | d(x) < r } where r = O(hμ) for some μ ∈ [0, 12 ). Let Uh and Ûh be numerical

solutions of the system (3.2) on Xh and X̂h, respectively. If Conjecture 6.3 holds,
then (Ûh(s)− Uh(s))→ 0 as h→ 0.

Proof. We note that the n-volume of the optimal-trajectory-centered r-cylinder
approaches zero, though the total number of gridpoints in X̂h grows as h → 0. For
convenience, we also define k = r2/h = O(h2μ−1), which tends to +∞ as h → 0. If
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Fig. 17. Alpha values decaying away from the characteristic. Subfigure (A) shows the level sets
of log10(α) for the constant speed example considered in section 4.1. The solid and dashed arrows
are perpendicular to the (s, t)-optimal trajectory. Subfigure (B) shows the rate of decay of log10(α)
along each of these arrows computed for several different grid resolutions.

S is the path length of the (s, t)-optimal trajectory, then the number of gridpoints

in Ξh is O(Srn−2

hn−1 ) = O(kν), where ν = (n−1)−μ(n−2)
1−2μ > 0. Considering the shortest

grid-aligned and X̂h-constrained path from any x ∈ X̂h to t, it is easy to show that
Dh = (S + r)

√
n is the upper bound for that path’s length. Thus, Ch = Dh/F1 is

an upper bound for maxx∈X̂h Ûh(x). If Conjecture 6.3 holds, then asymptotically

αh(x) ≤ e−ρr2/h = e−ρk ∀x ∈ Ξh. By Lemma 6.2, (Ûh(s) − Uh(s)) is bound
from above by [Ch

∑
x∈Ξh αh(x)] = O(kνe−ρk), which converges to 0 under grid

refinement.
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