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Abstract.

Fast Marching and Fast Sweeping are the two most commonly used methods for solving the Eikonal equation.
Each of these methods performs best on a different set of problems. Fast Sweeping, for example, will outperform
Fast Marching on problems where the characteristics are largely straight lines. Fast Marching, on the other hand, is
usually more efficient than Fast Sweeping on problems where characteristics frequently change their directions and
on domains with complicated geometry. In this paper we explore the possibility of combining the best features of
both of these approaches, by using marching on a coarser scale and sweeping on a finer scale. We present three new
hybrid methods based on this idea and illustrate their properties on several numerical examples with continuous and
piecewise-constant speed functions in R2.

1. Introduction. Static Eikonal PDEs arise in a surprisingly wide range of applications: from
robotic path planning, to isotropic optimal control, to isotropic front propagation, to shape-from-
shading computations; see [39] and references therein for a detailed description. As a result, efficient
numerical methods for Eikonal PDEs are of interest to many practitioners and numerical analysts.
In this paper we introduce two hybrid methods intended to blend and combine the best properties
of the most popular current approaches (Fast Marching and Fast Sweeping).

These methods are built to solve the non-linear boundary value problem2

|∇u(x)|F (x) = 1, on Ω ⊂ R2;

u(x) = q(x), on ∂Ω. (1)

A discretized version of equation (1) is posed at every gridpoint, using upwind divided differences
to approximate the partial derivatives of u. The exact form of this discretization is introduced in
section 2; here we simply note that these discretized equations form a system of M coupled non-
linear equations (where M is the number of gridpoints) and that the key challenge addressed by
many “fast” methods is the need to solve this system efficiently. Of course, an iterative approach
is certainly a possibility, but its most straightforward and naive implementation typically leads to
O(M2) algorithmic complexity for Eikonal PDE (and potentially much worse for its anisotropic gen-
eralizations). This is in contrast to the “fast” methods, whose worst-case computational complexity
is O(M) or O(M log M).

Interestingly, most fast Eikonal-solvers currently in use are directly related to the fast algorithms
developed much earlier to find the shortest paths in directed graphs with non-negative edge-lengths;
see, e.g., [1], [8, 9]. Two such algorithmic families are particularly prominent: the label-setting meth-
ods, which have the optimal worst-case asymptotic computational complexity, and the label-correcting

methods, whose worst-case asymptotic complexity is not as good, but the practical performance is
at times even better than that of label-setting. We provide a basic overview of both families in
section 1.1. The prior fast Eikonal-solvers based on label-setting and label-correcting are reviewed
in sections 2.1 and 2.2-2.3 respectively.

The most popular methods from these two categories (Fast Marching and Fast Sweeping) have
been shown to be efficient on a wide range of Eikonal equations. However, each of these methods
has its own preferred class of problems, on which it significantly outperforms the other. Despite
experimental comparisons already conducted in [24] and [23], the exact delineation of a preferred
problem-set for each method is still a matter of debate. Fast Sweeping (reviewed in section 2.1) is
usually more efficient on problems with constant characteristic directions. But for general functions

1This research is supported in part by the National Science Foundation grants DMS-0514487 and DMS-1016150.
The first author’s research is also supported by Alfred P. Sloan Foundation Graduate Fellowship.

2For simplicity, we will restrict our exposition to first-order accurate discretizations of these problems on Cartesian
grids in R2, although generalizations to higher dimensional domains are straightforward and similar approaches are
applicable to higher-order accurate discretizations on unstructured meshes in Rn and on manifolds.
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F (x), its computational cost is clearly impacted by the frequency and magnitude of directional
changes of characteristic curves. Fast Marching (reviewed in section 2.1) is generally more efficient
on domains with complicated geometry and on problems with characteristic directions frequently
changing. Its causal algorithmic structure results in a provably converged solution on explicitly
determined parts of the computational domain even before the method terminates – a very useful
feature in many applications. Moreover, its efficiency is much more “robust”; i.e., its computational
cost is much less affected by any changes in functions F and q or the grid orientation. But as a
result, the Fast Marching also is not any faster in the simplest cases where F is constant on a convex
domain and all characteristics are straight lines – the exact scenario where the Fast Sweeping is at
its most efficient.

The fundamental idea underlying our hybrid two-scale methods is to take advantage of the best
features of both marching and sweeping. Suppose the domain is split in a moderate number of cells
such that F is almost-constant on each of them. (Such cell splitting is possible for any piecewise-
smooth F .) On the top scale, a version of Fast Marching can be used on a coarse grid (with each
gridpoint representing a cell of the fine grid). Once the ordering of coarse gridpoints is established,
the Fast Sweeping is applied to individual cells of the fine grid in the same order. This is the basis
of our Fast Marching-Sweeping Method (FMSM) described in section 3.1.

Unfortunately, the coarse grid ordering captures the information flow through the fine grid cells
only approximately: a coarse gridpoint yi might be “accepted” by Fast Marching before another
coarse gridpoint yj , even if on the fine grid the characteristics cross both from cell i to cell j and
from cell j to cell i. The “one-pass” nature of Fast Marching prevents FMSM from acting on such
interdependencies between different cells even if they are revealed during the application of Fast
Sweeping to these cells. To remedy this, we introduce the Heap-Cell Method (HCM) described in
section 3.2. The idea is to allow multiple passes through fine grid cells sorted by the representative
“cell-values” and updated as a result of cell-level fast sweeping. We also describe its heuristic version,
the Fast Heap-Cell Method (FHCM), where the number of cell-level sweeps is determined based on
the cell-boundary data.

Similarly to Fast Marching and Fast Sweeping, our HCM provably converges to the exact solution
of the discretized equations on the fine scale. In contrast, the even faster FHCM and FMSM usually
introduce additional errors. But based on our extensive numerical experiments (section 4), these
additional errors are small compared to the errors already present due to discretization. The key
advantage of all three new methods is their computational efficiency – with properly chosen cell sizes,
we can significantly outperform both Fast Sweeping and Fast Marching on examples difficult for those
methods, while matching their performance on the examples which are the easiest for each of them.
Additional performance/accuracy tests can be found in an extended version of this manuscript [13].
We conclude by discussing the current limitations of our approach and several directions for future
work in section 5.

1.1. Fast algorithms for paths on graphs. We provide a brief review of common fast meth-
ods for the classical shortest/cheapest path problems on graphs. Our exposition follows [8] and [9],
but with modifications needed to emphasize the parallels with the numerical methods in sections 2
and 3.

Consider a directed graph with nodes X = {x1, ..., xM}. Let N(xi) be the set of nodes to which
xi is connected. We will assume that κ≪M is an upper bound on outdegrees; i.e., |N(xi)| ≤ κ. We
also suppose that all arc-costs Cij = C(xi, xj) are positive and use Cij = +∞ whenever xj 6∈ N(xi).
Every path terminates upon reaching the specified exit set Q ⊂ X , with an additional exit-cost
qi = q(xi) for each xi ∈ Q. Given any starting node xi ∈ X , the goal is to find the cheapest path
to the exit starting from xi. The value function Ui = U(xi) is defined to be the optimal path-cost
(minimized over all paths starting from xi). If there exists no path from xi to Q, then Ui = +∞,
but for simplicity we will henceforth assume that Q is reachable from each xi and all Ui’s are finite.
The optimality principle states that the “tail” of every optimal path is also optimal; hence,

Ui = min
xj∈N(xi)

{Cij + Uj} , for ∀xi ∈ X\Q;

Ui = qi, for ∀xi ∈ Q. (2)
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This is a coupled system of M non-linear equations, but it possesses a nice “causal” property: if
xj ∈ N(xi) is the minimizer, then Ui > Uj .

In principle, this system could be solved by “value iterations”; this approach is unnecessarily
expensive (and is usually reserved for harder stochastic shortest path problems), but we describe it
here for methodological reasons, to emphasize the parallels with “fast iterative” numerical methods
for Eikonal PDEs. An operator T is defined on RM component-wise by applying the right hand side

of equation (2). Clearly, U =




U1

...

UM


 is a fixed point of T and one can, in principle, recover U by

value iterations:

W k+1 := T W k starting from any initial guess W 0 ∈ RM . (3)

Due to the causality of system (2), value iterations will converge to U regardless of W 0 after at
most M iterations, resulting in O(M2) computational cost. (It is easy to show by induction that
W k

i = Ui for every xi from which there exists an optimal path with at most k transitions.) A
Gauss-Seidel relaxation of this iterative process is a simple practical modification, where the entries
of W k+1 are computed sequentially and the new values are used as soon as they become available:
W k+1

i = Ti(W
k+1
1 , . . . , W k+1

i−1 , W k
i , . . . , W k

M ). The number of iterations required to converge will now
heavily depend on the ordering of the nodes (though M is still the upper bound). We note that,
again due to causality of (2), if the ordering is such that Ui > Uj =⇒ i > j, then only one full
iteration will be required (i.e., W 1 = U regardless of W 0). Of course, U is not known in advance
and thus such a causal ordering is usually not available a priori (except in acyclic graphs). If several
different node orderings are somehow known to capture likely dependency chains among the nodes,
then a reasonable approach would be to perform Gauss-Seidel iterations alternating through that
list of preferred orderings – this might potentially result in a substantial reduction in the number of
needed iterations. In section 2.2 we explain how such preferred orderings arise from the geometric
structure of PDE discretizations, but no such information is typically available in problems on graphs.
As a result, instead of alternating through a list of predetermined orderings, efficient methods on
graphs are based on finding advantageous orderings of nodes dynamically. This is the basis for
label-correcting and label-setting methods.

A generic label-correcting method is summarized below in algorithm 1. It is easy to prove that
this algorithm always terminates and that upon its termination V = U ; e.g., see [8]. Many different
label-correcting methods are obtained by using different choices on how to add the nodes to the list
L and which node to remove (in the first line inside the while loop). If L is implemented as a queue,
the node is typically removed from the top of L. Always adding the nodes at the bottom of L yields
the Bellman-Ford method [6]. (This results in a first-in/first-out policy for processing the queue.)
Always adding nodes at the top of L produces the depth-first-search method, with the intention of
minimizing the memory footprint of L. Adding nodes at the top if they have already been in L
before, while adding the “first-timers” at the bottom yields D’Esopo-Pape method [34]. Another
interesting version is the so called small-labels-first (SLF) method [7], where the node is added at
the top only if its value is smaller than that of the current top node and at the bottom otherwise.
Another variation is large-labels-last (LLL) method [10], where the top node is removed only if its
value is smaller than the current average of the queue; otherwise it’s simply moved to the bottom
of the queue instead. Yet another popular approach is called thresholding method, where L is split
into two queues, nodes are removed from the first of them only and added to the first or the second
queue depending on whether the labels are smaller than some (dynamically changing) threshold
value [21]. We emphasize that the convergence is similarly obtained for all of these methods, their
worst-case asymptotic complexity is O(M2), but their comparative efficiency for specific problems
can be dramatically different.

Label-setting algorithms can be viewed as a subclass of the above with an additional property:
nodes removed from L never need to be re-added later. Dijkstra’s classical method [19] is the most
popular in this category and is based on always removing the node with the smallest label of those
currently in L. (The fact that this results in no re-entries into the list is yet another consequence of
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Algorithm 1 Generic Label-Correcting pseudocode.

1: Initialization:
2: for each node xi do
3: if xi ∈ Q then
4: Vi ← qi

5: else
6: if N(xi)

⋂
Q 6= ∅ then

7: Vi ← min
xj∈N(xi)

⋂
Q
{Cij + qj}

8: add xi to the list L
9: else

10: Vi ←∞
11: end if
12: end if
13: end for
14:

15: Main Loop:
16: while L is nonempty do
17: Remove a node xj from the list L
18: for each xi 6∈ Q such that xj ∈ N(xi) and Vj < Vi do

19: Ṽ ← Cij + Vj

20: if Ṽ < Vi then
21: Vi ← Ṽ
22: if xi 6∈ L then
23: add xi to the list L
24: end if
25: end if
26: end for
27: end while

the causality; the inductive proof is simple; e.g., see [8].) The need to find the smallest label entails
additional computational costs. A common implementation of L using heap-sort data structures will
result in O(M log M) overall asymptotic complexity of the method on sparsely connected graphs
(i.e., provided κ ≪ M). Another version, due to Dial [18], implements L as a list of “buckets”, so
that all nodes in the current smallest bucket can be safely removed simultaneously, resulting in the
overall asymptotic complexity of O(M). The width of each bucket is usually set to be δ = mini,j Cij

to ensure that the nodes in the same bucket could not influence or update each other even if they
were removed sequentially.

We note that several label-correcting methods were designed to mimic the “no-re-entry” property
of label-setting, but without using expensive data structures. (E.g., compare SLF/LLL to Dijkstra’s
and thresholding to Dial’s.) Despite the lower asymptotic complexity of label-setting methods, label-
correcting algorithms can be more efficient on many problems. Which types of graphs favor which of
these algorithms remains largely a matter of debate. We refer readers to [8, 9] and references therein
for additional details and asynchronous (parallelizable) versions of label-correcting algorithms.

2. Eikonal PDE, upwind discretization & prior fast methods. Static Hamilton-Jacobi
equations frequently arise in exit-time optimal control problems. The Eikonal PDE (1) describes an
important subset: isotropic time-optimal control problems. The goal is to drive a system starting
from a point x ∈ Ω to exit the domain as quickly as possible. In this setting, F : Ω → R+ is the
local speed of motion, and q : ∂Ω → R is the exit-time penalty charged at the boundary. We note
that more general control problems (with an exit-set Q ⊂ ∂Ω and trajectories constrained to remain
inside Ω until reaching Q) can be treated similarly by setting q = +∞ on ∂Ω\Q.

The value function u(x) is defined to be the minimum time-to-exit starting from x and a formal
argument shows that u should satisfy the equation (1). Moreover, characteristics of this PDE,
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coinciding with the gradient lines of u, provide the optimal trajectories for moving through the
domain. Unfortunately, the equation (1) usually does not have a classical (smooth) solution on the
entire domain, while weak solutions are not unique. Additional test conditions are used to select
among them the unique viscosity solution, which coincides with the value function of the original
control problem [15, 14]. A detailed treatment of general optimal control problems in the framework
of viscosity solutions can be found in [4].

Many discretization approaches for the Eikonal equation have been extensively studied including
first-order and higher-order Eulerian discretizations on grids and meshes in Rn and on manifolds [37,
38, 29, 41], semi-Lagrangian discretizations [20, 22], and the related approximations with controlled
Markov chains [30, 12]. For the purposes of this paper, we will focus on the simplest first-order
upwind discretization on a uniform Cartesian grid X (with gridsize h) on Ω ⊂ R2. To simplify the
description of algorithms, we will further assume that both ∂Ω and Q are naturally discretized on
the grid X . Our exposition here closely follows [40, 39].

To introduce the notation, we will refer to gridpoints xij = (xi, yj), value function approx-
imations Uij = U(xij) ≈ u(xij), and the speed Fij = F (xij). A popular first-order accurate
discretization of (1) is obtained by using upwind finite-differences to approximate partial derivatives:

(
max

(
D−x

ij U, −D+x
ij U, 0

))2
+

(
max

(
D−y

ij U, −D+y
ij U, 0

))2
=

1

F 2
ij

, (4)

where ux(xi, yj) ≈ D±x
ij U =

Ui±1,j − Ui,j

±h
; uy(xi, yj) ≈ D±y

ij U =
Ui,j±1 − Ui,j

±h
.

If the values at four surrounding nodes are known, this equation can be solved to recover Uij . This is
best accomplished by computing updates from individual quadrants as follows. Focusing on a single
node xij , we will simplify the notation by using U = Uij , F = Fij , and {UE, UN , UW , US} for the
values at its four neighbor nodes.

First, suppose that max
(
D−x

ij U, −D+x
ij U, 0

)
= 0 and max

(
D−y

ij U, −D+y
ij U, 0

)
= −D+y

ij U . This
implies that U ≥ UN and the resulting equation yields

U = h/F + UN . (5)

To compute “the update from the first quadrant”, we now suppose that
max

(
D−x

ij U, −D+x
ij U, 0

)
= −D+x

ij U and max
(
D−y

ij U, −D+y
ij U, 0

)
= −D+y

ij U .
This implies that U ≥ UN and U ≥ UE . The resulting quadratic equation is

(
U − UE

h

)2

+

(
U − UN

h

)2

=
1

F 2
. (6)

We define “the update from the first quadrant” UNE to be the root of the above quadratic satisfying
U ≥ max(UN , UE). If no such root is available, we use the smallest of the “one-sided” updates,
similar to the previous case; i.e., UNE = h/F +min(UN , UE). If we similarly define the updates from
the remaining three quadrants, it is easy to show that U = min(UNE, UNW , USW , USE) satisfies the
original equation (4).

Remark 2.1. It is also easy to verify that this discretization is
• consistent, i.e., suppose both sides of (4) are multiplied by h2; if the true solution u(x) is smooth,
it satisfies the resulting discretized equation up to O(h2);
• monotone, i.e., U is a non-decreasing function of each of its neighboring values;
• causal, i.e., U depends only on the neighboring values smaller than itself [38, 39].
The consistency and monotonicity can be used to prove the convergence to the viscosity solution
u(x); see [5]. However, since (4) has to hold at every gridpoint xij ∈ X\Q, this discretization
results in a system of M coupled non-linear equations, where M is the number of gridpoints in the
interior of Ω. In principle, this system can be solved iteratively (similarly to the “value iterations”
process described in (3)) with or without Gauss-Seidel relaxation, but a naive implementation of this
iterative algorithm would be unnecessarily expensive, since it does not take advantage of the causal
properties of the discretization. Several competing approaches for solving the discretized system
efficiently are reviewed in the following subsections.

5



2.1. Label-setting methods for the Eikonal. The causality property observed above is the
basis of Dijkstra-like methods for the Eikonal PDE. The first such method was introduced by Tsitsiklis
for isotropic control problems using first-order semi-Lagrangian discretizations on uniform Cartesian
grids [46, 47]. The Fast Marching Method was introduced by Sethian [38] using first-order upwind-
finite differences in the context of isotropic front propagation. A detailed discussion of similarities and
differences of these approaches can be found in [43]. Sethian and collaborators have later extended
the Fast Marching approach to higher-order discretizations on grids and meshes [40], more general
anisotropic Hamilton-Jacobi-Bellman PDEs [42, 43], and quasi-variational inequalities [44]. Similar
methods were also introduced for semi-Lagrangian discretizations [16]. The Fast Marching Method
for the Eulerian discretization (4) is summarized below in Algorithm 2.

Algorithm 2 Fast Marching Method pseudocode.

1: Initialization:
2: for each gridpoint xij ∈ X do
3: if xij ∈ Q then
4: Label xij as Accepted and set Vij = q(xij).
5: else
6: Label xij as Far and set Vij =∞.
7: end if
8: end for
9: for each Far neighbor xij of each Accepted node do

10: Label xij as Considered and put xij onto the Considered List L.

11: Compute a temporary value Ṽij using the upwinding discretization.

12: if Ṽij < Vij then

13: Vij ← Ṽij

14: end if
15: end for
16: End Initialization
17:

18: while L is nonempty do
19: Remove the point x̄ with the smallest value from L.
20: for xij ∈ N(x̄) do

21: Compute a temporary value Ṽij using the upwinding discretization.

22: if Ṽij < Vij then

23: Vij ← Ṽij

24: end if
25: if xij is Far then
26: Label xij as Considered and add it to L.
27: end if
28: end for
29: end while

As explained in section 1.1, the label-setting Dijkstra’s method can be considered as a special
case of the generic label-correcting algorithm, provided the current smallest node in L is always
selected for removal. Of course, in this case it is more efficient to implement L as a binary heap
rather than a queue. The same is also true for the Fast Marching Method, and a detailed description
of an efficient implementation of the heap-sort data structure can be found in [39]. The re-sorting
of Considered nodes upon each update involves up to O(log M) operations, resulting in the overall
computational complexity of O(M log M).

Unfortunately, the discretization (4) is only weakly causal: there exists no δ > 0 such that
UNE > δ + max(UN , UE) whenever UNE > max(UN , UE). Thus, no safe “bucket width” can be
defined and Dial-like methods are not applicable to the resulting discretized system. In [47] Tsitsiklis
introduced a Dial-like method for a similar discretization but using an 8-neighbor stencil. More
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recently, another Dial-related method for the Eikonal PDE on a uniform grid was introduced in [28].
A more general formula for the safe bucket-width to be used in Dial-like methods on unstructured
acute meshes was derived in [48]. Despite their better computational complexity, Dial-like methods
often perform slower than Dijkstra-like methods at least on single processor architectures.

Finally, we note another convenient feature of label-setting methods: if the execution of the
algorithm is stopped early (before the list L becomes empty), all gridpoints previously removed from
L will already have provably correct values. This property (unfortunately not shared by the methods
in sections 2.2-2.3) is very useful in a number of applications: e.g., when computing a quickest path
from a single source to a single target or in problems of image segmentation [39].

2.2. Fast Sweeping Methods. Suppose all gridpoints in X are ordered. We will slightly
abuse the notation by using a single subscript (e.g., xi) to indicate the particular gridpoint’s place in
that ordering. The double subscript notation (e.g., xij) will be still reserved to indicate the physical
location of a gridpoint in the two-dimensional grid.

Consider discretization (4) and suppose that the solution U is known for all the gridpoints. Note
that for each xi, the value Ui will only depend on one or two of the neighboring values (depending
on which quadrant is used for a two-sided update, similar to (6), and on whether a one-sided up-
date is employed, similar to (5)). This allows us to define a dependency digraph G on the vertices
x1, . . . , xM with a link from xi to xj indicating that Uj is needed to compute Ui. The causality
of the discretization (4) guarantees that G will always be acyclic. Thus, if we were to order the
gridpoints respecting this causality (i.e., with i > j =⇒ there is no path in G from xj to xi), then
a single Gauss-Seidel iteration would correctly solve the full system in O(M) operations.

However, unless U was already computed, the dependency digraph G will not be generally
known in advance. Thus, basing a gridpoint ordering on it is not a practical option. Instead, one
can alternate through a list of several “likely” orderings while performing Gauss-Seidel iterations. A
geometric interpretation of the optimal control problem provides a natural list of likely orderings: if
all characteristics point from SW to NE, then ordering the gridpoints bottom-to-top and left-to-right
within each row will ensure the convergence in a single iteration (a “SW sweep”). The “Fast Sweeping
Methods” perform Gauss-Seidel iterations on the system (4) in alternating directions (sweeps). Let
m be the number of gridpoints in the x-direction and n be the number in the y-direction, and xij

will denote a gridpoint in a uniform Cartesian grid on Ω ⊂ R2. For simplicity, we will use the Matlab
index notation to describe the ordering of gridpoints in each sweep. There are four alternating
sweeping directions: from SW, from SE, from NE, and from NW. For the above described southwest
sweep, the gridpoints xij will be processed in the following order: i=1:1:m, j=1:1:n. All four
orderings are similarly defined in algorithm 3.

Algorithm 3 Sweeping Order Selection pseudocode.

1: sweepDirection← sweepNumber mod 4
2: if sweepDirection == 0 then
3: iOrder ← (1 : 1 : m)
4: jOrder ← (1 : 1 : n)
5: else if sweepDirection == 1 then
6: iOrder ← (1 : 1 : m)
7: jOrder ← (n : −1 : 1)
8: else if sweepDirection == 2 then
9: iOrder ← (m : −1 : 1)

10: jOrder ← (n : −1 : 1)
11: else
12: iOrder ← (m : −1 : 1)
13: jOrder ← (1 : 1 : n)
14: end if

The alternating sweeps are then repeated until convergence. The resulting algorithm is summa-
rized in 4.

Remark 2.2. The idea that alternating the order of Gauss-Seidel sweeps might speed up
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Algorithm 4 Fast Sweeping Method pseudocode.

1: Initialization:
2: for each gridpoint xij ∈ X do
3: if xij ∈ Q then
4: Vij ← q(xij).
5: else
6: Vij ←∞.
7: end if
8: end for
9:

10: Main Loop:
11: sweepNumber ← 0
12: repeat
13: changed ← FALSE
14: Determine iOrder and jOrder based on sweepNumber
15: for i = iOrder do
16: for j = jOrder do
17: if xij 6∈ Q then

18: Compute a temporary value Ṽij using upwinding discretization (4).

19: if Ṽij < Vij then

20: Vij ← Ṽij

21: changed ← TRUE
22: end if
23: end if
24: end for
25: end for
26: sweepNumber ← sweepNumber + 1
27: until changed == FALSE

the convergence is a centerpiece of many fast algorithms. For Euclidean distance computations it
was first used by Danielsson in [17]. In the context of general HJB PDEs it was introduced by
Boue and Dupuis in [12] for a numerical approximation based on controlled Markov chains. More
recently, a number of papers by Cheng, Kao, Osher, Qian, Tsai, and Zhao introduced related Fast
Sweeping Methods to speed up the iterative solving of finite-difference discretizations [45, 52, 26].
The key challenge for these methods is to find a provable and explicit upper bound on the number
of iterations. As of right now, such a bound is only available for boundary value problems in which
characteristics are straight lines. Experimental evidence suggests that these methods can be also very
efficient for other problems where the characteristics are “largely” straight. The number of necessary
iterations is largely independent of M and correlated with the number of times the characteristics
“switch directions” (i.e., change from one directional quadrant to another) inside Ω. However, since
the quadrants are defined relative to the grid orientation, the number of iterations will generally be
grid-dependent.

One frequently encountered argument is that, due to its O(M) computational complexity, the
Fast Sweeping is more efficient than the Fast Marching, whose complexity is O(M log M). However,
this asymptotic complexity notation hides constant factors – including this not-easily-quantifiable
(and grid-orientation-dependant) bound on the number of iterations needed in Fast Sweeping. As
a result, whether the O(M) asymptotic complexity actually leads to any performance advantage on
grids of realistic size is a highly problem-dependent question. Extensive experimental comparisons
of Marching and Sweeping approaches can be found in [24, 23]. Even though such a comparison is
not the main focus of the current paper, the performance of both methods is also tabulated for all
examples in section 4. On the grids we tested, we observe that the Fast Marching Method usually
performs better than the Fast Sweeping when the domain has a complicated geometry (e.g., short-
est/quickest path computations in a maze) or if the characteristic directions change often throughout
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the domain – the latter situation frequently arises in Eikonal problems when the speed function F
is highly inhomogeneous.

We note that the sweeping approach can be in principle useful for a much wider class of problems.
For example, the method introduced in [26] is applicable to problems with non-convex Hamiltonians
corresponding to differential games; however, the amount of required artificial viscosity is strongly
problem-dependent and the choice of consistently discretized boundary conditions can be compli-
cated. Sweeping algorithms for discontinuous Galerkin finite element discretizations of the Eikonal
PDE can be found in [31, 51].

The Fast Sweeping Method performs particularly well on problems where the speed function F
is constant, since in this case the characteristics of the Eikonal PDE will be straight lines regardless
of the boundary conditions. (E.g., if q ≡ 0, then the quickest path is a straight line to the nearest
boundary point.) As a result, the domain consists of 4 subdomains, each with its own characteristic
“quadrant direction”. Even though these subdomains are generally not known in advance, it is
natural to expect Fast Sweeping to converge in at most 4 iterations (e.g., if xij ’s characteristic comes
from the SE, then the same is true for all points immediately to SE from xij). However, on the grid,
the dependency graph can be more complicated – xij will depend on both its southern and eastern
neighbors. The characteristic directions are changing continuously everywhere, except at the shocks.
So, if xij is near a shock line, one of its neighbors might be in another subdomain, making additional
sweeps occasionally necessary even for such simple problems; see Figure 1 for an illustration.

xij

Fig. 1. Four subdomains with a different update quadrant in each of them. If the sweeping directions are
used in the order (SE, SW,NW, NE), then the node labeled xij near the shock line will not receive its final update
until the 5th sweep, since its southern neighbor lies in the southwest subdomain. For simplicity, this example uses
boundary conditions such that the characteristic directions are constant in each subdomain. As a result, all subdomain
boundaries coincide with shock lines, which need not be the case in general, but the illustrated effect is generic.

Nevertheless, when F is constant, the Fast Sweeping is usually more efficient than the Fast
Marching regardless of the boundary conditions – an observation which is the basis for the hybrid
methods introduced in the next section.

Remark 2.3. It might seem that the recomputation of Vij from (4) will generally require solving
4 quadratic equations to compare the updates from all 4 quadrants. However, the monotonicity
property noted in Remark 2.1 guarantees that only one quadrant needs to be considered. E.g., if
US < UN then USE ≤ UNE and the latter is irrelevant even if we are currently sweeping from NE.
Thus, the relevant quadrant can be always found by using min(US , UN ) and min(UE , UW ). We note
that this shortcut is not directly applicable to discretizations on unstructured meshes nor for more
general PDEs. Interestingly, Alton and Mitchell showed that the same shortcut can also be used
with Cartesian grid discretizations of Hamilton-Jacobi PDEs with grid-aligned anisotropy [2].

Remark 2.4. One of the problems in this basic version of the Fast Sweeping Method is the fact
that the CPU time might be wasted to recompute Vij even if none of xij ’s neighbors have changed
since the last sweep. To address this, one natural modification is to introduce “locking flags” for
individual gridpoints and to update the currently unlocked gridpoints only [3]. Briefly, all gridpoints
but those immediately adjacent to Q start out as locked. When an unlocked gridpoint xij is processed
during a sweep, if Uij changes, then all of its larger neighbors are unlocked. The gridpoint xij is

9



then itself locked regardless of whether updating Uij resulted in unlocking a neighbor.
The above modification does not change the asymptotic complexity of the method nor the total

number of sweeps needed for convergence. Nevertheless, the extra time and memory required to
maintain and update the locking flags are typically worthwhile since their use allows to decrease the
amount of CPU-time wasted on parts of the domain, where the iterative process already produced
the correct numerical solutions. In sections 3 and 4 we will refer to this modified version as Locking
Sweeping Method (LSM) to distinguish it from the standard implementation of the FSM.

2.3. Other fast methods for Eikonal equations. Ideas behind many label-correcting algo-
rithms on graphs have also been applied to discretizations of Eikonal PDEs. Here we aim to briefly
highlight some of these connections.

Perhaps the first label-correcting methods developed for the Eikonal PDE were introduced by
Polymenakos, Bertsekas, and Tsitsiklis based on the logic of the discrete SLF/LLL algorithms [35].
On the other hand, Bellman-Ford is probably the simplest label-correcting approach and it has
been recently re-invented by several numerical analysts working with Eikonal and more general
Hamilton-Jacobi-Bellman PDEs [11], [3], including implementations for massively parallel computer
architectures [25]. A recent paper by Bak, McLaughlin, and Renzi [3] also introduces another “2-
queues method” essentially mimicking the logic of thresholding label-correcting algorithms on graphs.
While such algorithms clearly have promise and some numerical comparisons of them with sweeping
and marching techniques are already presented in the above references, more careful analysis and
testing is required to determine the types of examples on which they are the most efficient.

All of the above methods produce the exact same numerical solutions as FMM and FSM. In
contrast, two of the three new methods introduced in section 3 aim to gain efficiency even if it
results in small additional errors. We know of only one prior numerical method for Eikonal PDEs
with a similar trade-off: in [50] a Dial-like method is used with buckets of unjustified width δ for a
discretization that is not δ-causal. This introduces additional errors (analyzed in [36]), but decreases
the method’s running time. However, the fundamental idea behind our new two-scale methods is
quite different, since we aim to exploit the geometric structure of the speed function.

3. New hybrid (two-scale) fast methods. We present three new hybrid methods based
on splitting the domain into a collection of non-overlapping rectangular “cells” and running the
Fast Sweeping Method on individual cells sequentially. The motivation for this decomposition is to
break the problem into sub-problems, with F nearly constant inside each cell. If the characteristics
rarely change their quadrant-directions within a single cell, then a small number of sweeps should
be sufficient on that cell. But to compute the value function correctly within each cell, the correct
boundary conditions (coming from the adjacent cells) should be already available. In other words, we
need to establish a causality-respecting order for processing the cells. The Fast Marching Sweeping
Method (FMSM) uses the cell-ordering found by running the Fast Marching Method on a coarser
grid, while the Heap-Cell Methods (HCM and FHCM) determine the cell-ordering dynamically, based
on the value-updates on cell-boundaries.

3.1. Fast Marching-Sweeping Method (FMSM). This algorithm uses a coarse grid and
a fine grid. Each “coarse gridpoint” is taken to be the center of a cell of “fine gridpoints”. (For
simplicity, we will assume that the exit-set Q is directly representable by coarse gridpoints.) The Fast
Marching is used on the coarse grid, and the Acceptance-order of “coarse gridpoints” is recorded.
The Fast Sweeping is then used on the corresponding cells in the same order. An additional speed-up
is obtained, by running a fixed number of sweeps on each cell, based on the upwind directions de-
termined on the coarse grid. Before providing the details of our implementation, we introduce some
relevant notation:
• Xc = {xc

1, ..., x
c
J}, the coarse grid.

• Xf = {xf
1 , ..., xf

M}, the fine grid (same as the grid used in FMM or FSM).
• Qc ⊂ Xc, the set of coarse gridpoints discretizing the exit set Q.
• U c, the solution of the discretized equations on the coarse grid.
• V c, the temporary label of the coarse gridpoints.
• Z = {c1, ..., cJ}, the set of cells, whose centers correspond to coarse gridpoints.
• N c(ci), the neighbors of cell ci; i.e., the cells that exist to the north, south, east, and west of ci.
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(The set N c(ci) may contain less than four elements if ci is a boundary cell.)

• Nf (ci), the fine grid neighbors of ci; i.e., Nf (ci) = {xf
j ∈ Xf | xf

j 6∈ ci and N(xf
j )

⋂
ci 6= ∅}.

• P : {1, ..., J} → {1, ..., J}, a permutation on the coarse gridpoint indices.
• hc

x, the distance along the x-direction between two neighboring coarse gridpoint.
Assume for simplicity that hc

x = hc
y = hc.

All the obvious analogs hold for the fine grid (Uf , hf , etc). Since Fast Marching will be used on
the coarse grid only, the heap L will contain coarse gridpoints only.

Algorithm 5 Fast Marching-Sweeping Method pseudocode.

1: Part I:
2: Run FMM on Xc (see algorithm 2).
3: Build the ordering P to reflect the Acceptance-order on Xc.
4:

5: Part II:
6: Fine grid initialization:
7: for each gridpoint x

f
i ∈ Xf do

8: if x
f
i ∈ Qf then

9: V f
i ← qf

i ;
10: else
11: V f

i ←∞;
12: end if
13: end for
14:

15: for j = P (1) : P (J) do
16: Define the fine-grid domain c̃ = cj

⋃
Nf(cj).

17: Define the boundary condition as
18: q̃(xf

i ) = q(xf
i ) on cj

⋂
Qf and

19: q̃(xf
i ) = V f

i on Nf (cj).
20: Perform Modified Fast Sweeping (see Remark 3.1) on c̃ using boundary conditions q̃.
21: end for
22:

Remark 3.1. The “Modified Fast Sweeping” procedure applied to individual cells in the
algorithm 5 follows the same idea as the FSM described in section 2.2. For all the cells containing
parts of Q (i.e., the ones whose centers are Accepted in the initialization of the FMM on the coarse
grid) we use the FSM without any changes. For all the remaining cells, our implementation has 3
important distinctions from the algorithm 4:

1. No initialization of the fine gridpoints within c̃ is needed since the entire fine grid is pre-
initialized in advance.

2. Instead of looping through different sweeps until convergence, we use at most four sweeps
and only in the directions found to be “upwind” on the coarse grid. As illustrated by Figure
2, the cells in N c(ci) whose centers were accepted prior to xc

i determine the sweep directions
to be used on ci.

3. When computing V f
i during the sweeping, we do not employ the procedure described in

Remark 2.3 to find the relevant quadrant. Instead, we use “sweep-directional updates”; e.g.,
if the current sweeping direction is from the NE, we always use the update based on the
northern and eastern neighboring fine gridpoints. The advantage is that we have already
processed both of them within the same sweep.

In [13] we also illustrate the cell-acceptance order in FMSM for a checkerboard example similar
to those in section 4.2.

The resulting algorithm clearly introduces additional numerical errors – in all but the simplest
examples, the FMSM’s output is not the exact solution of the discretized system (4) on Xf . We
identify three sources of additional errors: the fact that the coarse grid computation does not capture
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Fig. 2. Sweeping directions on ci chosen based on the neighboring cells accepted earlier than ci (shown in green).
Note that 2 sweeping directions are conservatively used in the case of a single accepted neighbor.

all cell interdependencies, and the two cell-sweeping modifications described in Remark 3.1. Of these,
the first one is by far the most important. Focusing on the fine grid, we will say that the cell ci

depends on cj ∈ N c(ci) if there exists a gridpoint x
f
k ∈ ci such that Uf

k directly depends on Uf
l

for some gridpoint x
f
l ∈ cj . In the limit, as hf → 0, this means that ci depends on cj if there is a

characteristic going from cj into ci (i.e., at least a part of ci’s boundary shared with cj is inflow). For
a specific speed function F and a fixed cell-decomposition Z, a causal ordering of the cells need not
exist at all. As shown in Figure 3, two cells may easily depend on each other. This situation arises
even for problems where F is constant on each cell; see Figure 8. Moreover, if the cell refinement is
performed uniformly, such non-causal interdependencies will be present even as the cell size hc → 0.
This means that every algorithm processing each cell only once (or even a fixed number of times)
will unavoidably introduce additional errors at least for some speed functions F .

ci cj

Fig. 3. Two mutually dependent cells.

One possible way around this problem is to use the characteristic’s vacillations between ci to cj

to determine the total number of times that these cells should be alternately processed with FSM.
This idea is the basis for heap-cell methods described in the next section. However, for the FMSM we
simply treat these “approximate cell-causality” errors as a price to pay for the higher computational
efficiency. Our numerical experiments with FMSM showed that, as hc → 0, the effects due to the
approximate cell-causality dominate the errors stemming from using a finite (coarse-grid determined)
number of sweeps. I.e., when the cells are sufficiently small, running FSM to convergence does not
decrease the additional errors significantly, but does noticeably increase the computational cost. The
computational savings due to our use of “sweep-directional updates” are more modest (we simply
avoid the necessity to examine/compare all neighbors of the updated node), but the numerical
evidence indicates that it introduces only small additional errors and only near the shock lines,
where ∇u is undefined. Since characteristics do not emanate from shocks, the accuracy price of
this modification is even more limited if the errors are measured in L1 norm. In section 4 we show
that on most of Xf the cumulative additional errors in FMSM are typically much smaller than the
discretization errors, provided hc is sufficiently small.

The monotonicity property of the discretization ensures that the computed solution V f will
always satisfy V f

i ≥ Ui. The numerical evidence suggests that V f becomes closer to Uf as hc

decreases, though this process is not always monotone.
The computational cost of Part I is relatively small as long as J ≪ M. However, if hf and M

are held constant while hc decreases, this results in J → M , and the total computational cost of
FMSM eventually increases. As of right now, we do not have any method for predicting the optimal
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hc for each specific example. Such a criterion would be obviously useful for realistic applications of
our hybrid methods, and we hope to address it in the future.

3.2. Label-correcting methods on cells. The methods presented in this section also rely on
the cell-decomposition Z = {c1, . . . , cJ}, but do not use any coarse-level grid. Thus, X = Xf and
we will omit the superscripts f and c with the exception of N c(ci) and Nf (ci). We will also use hc

to denote the distance between the centers of two adjacent square cells. In what follows, we will also
define “cell values” to represent coarse-level information about cell dependencies. Unlike in finite
volume literature, here a “cell value” is not necessarily synonymous with the average of a function
over a cell.

3.2.1. A generic cell-level convergent method. To highlight the fundamental idea, we start
with a simple “generic” version of a label-correcting method on cells. We maintain a list of cells to
be updated, starting with the cells containing the exit set Q. While the list is non-empty, we choose
a cell to remove from it, “process” that cell (by any convergent Eikonal-solver), and use the new grid
values near the cell boundary to determine which neighboring cells should be added to the list. The
criterion for adding cells to the list is illustrated in Figure 4. All other implementation details are
summarized in Algorithm 6.

cell ckcell cl

xjxi

Fig. 4. Suppose that, as a result of processing the cell cl an eastern border value Vi becomes updated. If Vi < Vj

and xj 6∈ Q, the cell ck will be added to L (unless it is already on the list).

It is easy to prove by induction that this method terminates in a finite number of steps; in
Theorem 3.2 we show that upon its termination V = U on the entire grid X , regardless of the
specific Eikonal-solver employed to process individual cells (e.g., FMM, FSM, LSM or any other
method producing the exact solution to (4) will do). We emphasize that the fact of convergence also
does not depend on the specific selection criteria for the next cell to be removed from L. However,
even for a fixed cell-decomposition Z, the above choices will significantly influence the total number of
list removals and the overall computational cost of the algorithm. One simple strategy is to implement
L as a queue, adding cells at the bottom and always removing from the top, thus mirroring the logic
of Bellman-Ford algorithm. In practice, we found the version described in the next subsection to be
more efficient.

Theorem 3.2. The generic cell-based label-correcting method converges to the exact solution of

system (4).
Proof.

First we describe notation and recall from section 2.2 the dependency digraph G.
• We say xj depends on xi if Ui is used to compute Uj (see discussion of formulas (5) and (6)).
• Γx = {nodes in G on which x depends directly}. For each node x, the set Γx will have 0, 1,

or 2 elements. If x ∈ Q, then Γx is empty. If a one-sided update was used to compute U(x) (see
formula (5)), then there is only one element in Γx.
• Gx denotes the subgraph of G that is reachable from the node x.
• We define the cell transition distance d(x) = maxxi∈Γx{d(xi)+ cell dist(x, xi)},

where cell dist(x, xi) = 0 if both x and xi are in the same cell and 1 otherwise. Note that in general
d(x) < M , but in practice max d(x) is typically much smaller. In the continuous limit d(x) is related
to the number of times a characteristic that reaches x crosses cell boundaries.
• Ds = {x ∈ G | d(x) = s}. See Figure 5 for an illustration of Gx split into D0, D1, . . . , Dd(x).

• D̃s = {xj ∈ Ds | ∃xi ∈ Ds−1 such that xj depends on xi }, i.e., the set of gridpoints in Ds

that depend on a gridpoint in a neighboring cell. Note that D̃0 = ∅.
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Algorithm 6 Generic Label-Correcting on Cells pseudocode.

1: Cell Initialization:
2: for each cell ck do
3: if ck ∩Q 6= ∅ then
4: add ck to the list L
5: end if
6: end for
7:

8: Fine Grid Initialization:
9: for each gridpoint xi do

10: if xi ∈ Q then
11: Vi ← q(xi)
12: else
13: Vi ←∞
14: end if
15: end for
16:

17: Main Loop:
18: while L is nonempty do
19: Remove a cell c from the list L.
20: Define a domain c̃ = c ∪Nf (c).
21: Define the boundary condition as
22: q̃(xi) = q(xi) on c ∩Q and
23: q̃(xi) = Vi on Nf (c).
24: Process c by solving the Eikonal on c̃ using boundary conditions q̃.
25: for each cell ck ∈ N c(c)\L do
26: if ∃xi ∈

(
c ∩Nf(ck)

)
AND xj ∈ (ck ∩N(xi)\Q) such that

( Vi has changed OR (xi ∈ Q AND c is removed from L for the first time) )
AND (Vi < Vj) then

27: Add ck to the list L.
28: end if
29: end for
30: end while

• D̂s = {xi ∈ Ds | ∃xj ∈ Ds+1 such that xj depends on xi }, i.e., the set of gridpoints in Ds

that influence a gridpoint in a neighboring cell.
• ⋆ denotes any method that exactly solves the Eikonal on c̃ (see line 20 of algorithm 6).
Recall that by the monotonicity property of the discretization (4), the temporary labels Vj will

always be greater than or equal to Uj throughout algorithm 6. Moreover, once Vj becomes equal to
Uj , this temporary label will not change in any subsequent applications of ⋆ to the cell c containing
xj . The goal is to show that Vj = Uj for all xj ∈ X upon the termination of Algorithm 6.

To prove convergence we will use induction on s. First, consider s = 0 and note that every cell
c containing some part of D0 is put in L at the time of the cell initialization step of the algorithm.
When c is removed from L and ⋆ is applied to it, every x ∈ D0 ∩ c will obtain its final value
V (x) = U(x) because Gx contains no gridpoints in other cells by the definition of D0.

Now suppose all x ∈ Dk already have V (x) = U(x) for all k ≤ s. We claim that:
1) If a cell c contains any x ∈ Ds+1 such that V (x) > U(x), then this cell is guaranteed to be in L
at the point in the algorithm when the last xi ∈ Ds ∩Nf (c) receives its final update.
2) The next time ⋆ is applied to c, V (x) will become equal to U(x) for all x ∈ Ds+1 ∩ c.

To prove 1), suppose Ds+1 ∩ c 6= ∅ and note that there exist xj ∈ D̃s+1 ∩ c and xi ∈ Γxj
with

xi ∈ D̂s ∩ ĉ for some neighboring cell ĉ. Indeed, if each gridpoint x ∈ Ds+1 ∩ c were to depend
only on those in Ds+1 (gridpoints within the same cell) and/or those in Dk for k < s, this would
contradict x ∈ Ds+1 (it is not possible for Γx ⊂ ∪k<sDk; see Figure 5). At the time the last such
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x
xq ∈ Q

Ds+1 Ds Ds−1 D0

Fig. 5. A schematic view of dependency digraph Gx.

xi receives its final update, we will have Vj ≥ Uj > Ui = Vi since xi ∈ Γxj
. Thus, c is added to L

(if not already there) as a result of the add criterion in Algorithm 6.
To prove 2), we simply note that all nodes in (Gx\c) ⊂ (

⋃s
k=0 Dk) will already have correct

values at this point.

Remark 3.3. We note that the same ideas are certainly applicable to finding shortest paths on
graphs. The Algorithm 1 can be similarly modified using a collection of non-overlapping subgraphs
instead of cells, but so far we were unable to find any description of this approach in the literature.

3.2.2. Heap-Cell Method (HCM). To ensure the efficiency of cell-level label-correcting al-
gorithms, it is important to have the “influential” cells (on which most others depend) processed as
early as possible. Once the algorithm produces correct solution V = U on those cells, they will never
enter the list again, and their neighboring cells will have correct boundary conditions at least on a
part of their boundary. The same logic can be applied repeatedly by always selecting for removal the
most “influential” cells currently on the list. We introduce the concept of “cell values” V c

k = V c(ck)
to estimate the likelihood of that cell influencing others (the smaller is V c

k , the more likely is ck to
influence subsequent computations in other cells, and the higher is its priority of removal from the
list). In Fast Marching-Sweeping Method of section 3.1, the cell values were essentially defined by
running FMM on the coarse grid. That approach is not very suitable here, since each cell ck might
enter the list more than once and it is important to re-evaluate V c

k each time this happens. Instead,
we define and update V c

k using the boundary values in the adjacent cells, and modify Algorithm 6
to use the cell values as follows:

1. Amend the cell initialization to set

V c
k ← max

xi∈(ck∩Q)
q(xi) or V c

k ←∞ if ck ∩Q = ∅.

2. Always remove and process the cell with the smallest value currently on the list. Efficient
implementation requires maintaining L as a heap-sort data structure – hence the name of
“Heap-Cell Method” (HCM) for the resulting algorithm.

3. After solving the Eikonal on c, update the cell values for all ck ∈ N c(c) (including those
already in L). Let bk be a unit vector pointing from the center of c in the direction of ck’s
center and suppose that xi has the largest current value among the gridpoints inside c but
adjacent to ck; i.e., xi = argmax

xj∈(c∩Nf(ck))

Vj . Define yi = xi + h+hc

2 bk. Then

Ṽ c
k ← Vi +

(h + hc)/2

F (yi)
; (7)

V c
k ← min

(
V c

k , Ṽ c
k

)
.

Remark 3.4. We note that, in the original Dijkstra’s and Bellman-Ford methods on graphs,
a neighboring node’s temporary label is updated before that node is added to L. In the Heap-Cell
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xi yi

c ck

Fig. 6. An illustration corresponding to equation 7 (the estimate for a cell value) with bk = (1, 0).

Method, the cell value is also updated before adding that cell to the list, but the grid values within
that cell are updated after it is removed from L.

Regardless of the method used to compute cell values, they can only provide an estimate of the
dependency structure. As explained in section 3.1, a causal cell-ordering need not exist for a fixed
Z and a general speed functions F . Thus, V c

k < V c
i does not exclude the possibility of ck depending

on ci, and we do not use cell values to decide which neighboring cells to add to the list – this is still
done based on the cell boundary data; see Algorithm 6. As a result, the fact of convergence of such
cell-level methods does not depend on the particular heuristic used to define cell values. There are
certainly many reasonable alternatives to formula (7) (e.g., a more aggressive/optimistic version can
instead select xi = argminVj on the boundary; an average value of F on ck could also be used here;
or the distance to travel could be measured from xi to the center of ck, etc). Empirically, formula
(7) results in smaller computational cost than the mentioned alternatives and it was therefore used
in our implementation.

Remark 3.5. The cell-values are useful even if L is implemented as a queue and the cells are
always removed from the top. Indeed, V c

k can still be used to decide whether ck should be added at
the top or at the bottom of L. This is the SLF/LLL strategy previously used to solve the Eikonal
PDE on the grid-level (i.e., without any cells) by Polymenakos, Bertsekas, and Tsitsiklis [35]. We
have also implemented this strategy and found it to be fairly good, but on average less efficient than
the HCM described above. (The performance comparison is omitted to save space.) The intuitive
reason is that the SLF/LLL is based on mimicking the logic of Dijkstra’s method, but without the
expensive heap-sort data structures. However, when J ≪ M , the cost of maintaining the heap is
much smaller than the cost of occasionally removing/processing less influential cells from L.

To complete our description of HCM, we need to specify how the Eikonal PDE is solved on
individual cells. Since the key idea behind our hybrid methods is to take advantage of the good
performance of sweeping methods when the speed is more or less constant, we follow the same idea
as the FSM described in section 2.2, but with the following important distinctions from the basic
version of algorithm 4:

1. No initialization of gridpoint values Vi is needed within c̃ – indeed, the initialization is carried
out on the full grid at the very beginning and if c is removed from L more than once, the
availability of previously computed Vi’s might only speed up the convergence on c. Here
we take advantage of the comparison principle for the Eikonal PDE: the viscosity solution
cannot increase anywhere inside the cell in response to decreasing the cell-boundary values.

2. We use the Locking Sweeping version described in Remark 2.4.
3. The standard FSM and LSM loop through the four sweep directions always in the same

order. In our implementation of HCM, we choose a different order for the first four sweeps
to ensure that the “preferred sweep directions” (determined for each cell individually) are
used before all others. For all other sweeps after the first four, we revert to the standard
loop defined in Algorithm 3. Of course, as in the standard FSM, the sweeps only continue as
long as grid values keep changing somewhere inside the cell. The procedure for determining
preferred sweep directions is explained in Remark 3.6.

Remark 3.6. Recall that in FMSM, the coarse grid information was used to determine the
sweep directions to use on each cell; see Remark 3.1 and Figure 2. Similarly, in HCM we use the
neighboring cells of ck that were found to have newly changed ck-inflow boundary since the last time
ck was added to L. We maintain four “directional flags” – boolean variables initialized to FALSE

and representing all possible preferred sweeping directions – for each cell ck currently in L. When a
neighboring cell cl is processed/updated and is found to influence ck, this causes two of ck’s directional
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flags to be set to TRUE. To illustrate, supposing that cl is a currently-processed-western-neighbor of
ck (as in Figure 4). If the value of xi ∈ cl ∩Nf (ck) has just changed and Vi < Vj , then both relevant
preferred direction flags in ck (i.e., both NW and SW) will be raised. Once ck is removed from L
and processed, its directional flags are reset to FALSE.

As explained in section 3.2.3, a better procedure for setting these directional flags could be built
based on fine-grid information on the cell-boundary. However, we emphasize that the procedure for
determining preferred directions will not influence the ultimate output of HCM (since we will sweep
on ck until convergence every time we remove it from L), though such preferred directions are usually
useful in reducing the number of sweeps needed for convergence.

The performance and accuracy data in section 4 shows that, for sufficiently small h and hc, HCM
often outperforms both FMM and FSM on a variety of examples, including those with piecewise
continuous speed function F . This is largely due to the fact that the average number of times a cell
enters the heap tends to 1 as hc → 0.

3.2.3. Fast Heap-Cell Method (FHCM). We also implement an accelerated version of HCM
by using the following modifications:

1. Each newly removed cell is processed using at most four iterations – i.e., it is only swept
once in each of the preferred directions instead of continuing to iterate until convergence.

2. Directional flags in all cells containing parts of Q are initialized to TRUE.
3. To further speed up the process, we use a “Monotonicity Check” on cell-boundary data to

further restrict the preferred sweeping directions. For concreteness, assume that cl and ck

are related as in Figure 4. If the grid values in Nf (ck) ∩ cl are monotone non-decreasing
from north to south, we set ck’s NW preferred direction flag to TRUE; if those grid values are
monotone non-increasing we flag SW; otherwise we flag both NW and SW. (In contrast, both
HCM and FMSM are always using two sweeps in this situation; see Figure 2 and Remark
3.6.) We note that the set c∩Nf (ck) already had to be examined to compute an update to
V c

k and the above Monotonicity Check can be performed simultaneously.
The Monotonicity Checks result in a considerable increase in performance since, for small enough

hc, most cell boundaries become monotone. However, generalizing this procedure to higher dimen-
sional cells is less straightforward. For this reason we decided against using Monotonicity Checks in
our implementation of HCM.

The resulting Fast Heap-Cell Method (FHCM) is significantly faster than HCM, but at the cost
of introducing additional errors. Not surprisingly, these additional errors are usually much smaller
than those in FMSM (see section 4), since in FHCM the cells are allowed to enter the heap more
than once.

In [13] we also illustrate the changing cell values, sweeping directions, and positions within the
heap-sort data structure under FHCM for a checkerboard example.

Remark 3.7. To conclude the discussion of our heap-cell methods, we briefly describe a re-
cent algorithm with many similar features, but very different goals and implementation details. The
“Raster scan algorithm on a multi-chart geometry image” was introduced in [49] for geodesic dis-
tance computations on parametric surfaces. Such surfaces are frequently represented by an atlas of
overlapping charts, where each chart has its own parametric representation and grid resolution (de-
pending on the detail level of the underlying surface). The computational subdomains corresponding
to charts are typically large and the “raster scan algorithm” (similar to the traditional FSM with a
fixed ordering of sweep directions) is used to parallelize the computations within each chart. The
heuristically defined chart values are employed to decide which chart will be raster-scanned next.

Aside from the difference in heuristic formulas used to compute chart values, in [49] the emphasis
is on providing the most efficient implementation of raster scans on each chart (particularly for
massively parallel architectures). The use of several large, parametrization/resolution-defined charts,
typically results in complicated chart interdependencies since most chart boundaries are generally
both inflow and outflow. Moreover, if this method is applied to any Eikonal problems beyond the
geodesic distance computations, the monotonicity of characteristic directions will generally not hold
and a high number of sweeps may be needed on each chart. In contrast, our focus is on reducing
the cell interdependencies and on the most efficient cell ordering: when hc is sufficiently small, most

17



cell boundaries are either completely inflow or outflow, defining a causal relationship among the
cells. Relatively small cell sizes also ensure that F is approximately constant, the characteristics are
approximately straight lines, and only a small number of sweeps is needed on each cell. Finally, the
cell orderings are also useful to accelerate the convergence within each cell by altering the sweep-
ordering based on the location of upwinding cells (as in FMSM and HCM) or based on fine-grid cell-
boundary data (as in FHCM). The hybrid methods introduced here show that causality-respecting
domain decompositions can accelerate even serial algorithms on single processor machines.

4. Numerical Experiments. All examples were computed on a unit square [0, 1]× [0, 1] do-
main with zero boundary conditions q = 0 on the exit set Q (defined separately in each case). In
each example that follows we have fixed the grid size h = hf , and only the cell size hc is varied. Since
analytic formulas for viscosity solutions are typically unavailable, we have used the Fast Marching
Method on a much finer grid (of size h/4) to obtain the “ground truth” used to evaluate the errors
in all the other methods.

Suppose ei is the absolute value of the error-due-to-discretization at gridpoint xi (i.e., the error
produced by FSM or FMM when directly executed on the fine grid), and suppose Ei is the absolute
value of the error committed by one of the new hybrid methods at the same xi. Define the set
X+ = {xi ∈ X | ei 6= 0} and let M+ = |X+| be the number of elements in it. (We verified that
xi 6∈ X+ ⇒ Ei = 0 in all computational experiments.) To analyze the “additional errors” introduced
by FMSM and FHCM, we report
• the Maximum Error Ratio defined asR = maxi(Ei/ei), where the maximum is taken over xi ∈ X+;

• the Average Error Ratio defined as ρ =
∑

(Ei/ei)
M+

, where the sum is taken over xi ∈ X+;

• the Ratio of Maximum Errors defined as R = maxi(Ei)
maxi(ei)

.

R is relevant since on parts of the domain where ei’s are very small, additional errors might result in
large R even if Ei’s are quite small compared to the L∞ norm of discretization errors. In the ideal
scenario, with no additional errors, R = ρ = R = 1.
For the Heap-Cell algorithms we also report
• AvHR, the average number of heap removals per cell,
• AvS, the average number of sweeps per cell, and
• Mon %, the percentage of times that the “cell-boundary monotonicity” check was successful.
Finally, we report the number of sweeps needed in FSM and LSM for each problem.

Remark 4.1. Performance analysis of competing numerical methods is an obviously delicate
undertaking since the implementation details as well as the choice of test problems might affect
the outcome. We have made every effort to select representative examples highlighting advantages
and disadvantages of all approaches. All tests were performed on an AMD Turion 2GHz dual-core
processor with 3GB RAM. Only one core was used to perform all tests. Our C++ implementations
were carefully checked for the efficiency of data structures and algorithms, but we did not conduct
any additional performance tuning or Assembly-level optimizations. Our code was compiled using
the g++ compiler version 3.4.2 with compiler options -O0 -finline. We have also preformed all
tests with the full compiler optimization (i.e., with -O3); the results were qualitatively similar, but
we opted to report the performance data for the unoptimized version to make the comparison as
compiler-independent as possible. For each method, all memory allocations (for grids and heap data
structures) were not timed; the reported CPU times include the time needed to initialize the relevant
data structures and run the corresponding algorithm. We also note that the speed function F (x)
was computed by a separate function call whenever needed, rather than precomputed and stored for
every gridpoint during initialization. All CPU-times are reported in seconds for the Fast Marching
(FMM), the standard Fast Sweeping (FSM), the Locking Sweeping (LSM), and the three new hybrid
methods (HCM, FHCM, and FMSM).

4.1. Comb Mazes. The following examples model optimal motion through a maze with slowly
permeable barriers. Speed function F (x, y) is defined by a “comb maze”: F = 1 outside and 0.01
inside the barriers; see Figure 7. The exit set consists of the origin: Q = {(0, 0)}. The computational
cost of sweeping methods is roughly proportional to the number of barriers, while FMM is only
minimally influenced by this. The same good property is inherited by the hybrid methods introduced
in this paper. The first example with 4 barriers uses barrier walls aligned with cell boundaries and
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all hybrid methods easily outperform the fastest of the previous methods (LSM); see Table 1.

 

 

0

1

2

3

4

5

6

7

8

 

 

1

2

3

4

5

6

7

8

9

A B

Fig. 7. Min time to the point (0, 0) on comb maze domains: 4 barriers (A), and 8 barriers (B).

Table 1

Performance/convergence results for a 4 wall comb maze example.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 5.9449e-002 1.4210e-002 2.45 6.41 2.05 12

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22 × 22 cells 1.08 1.151 3.971

HCM 44 × 44 cells 1.10 1.078 3.724

HCM 88 × 88 cells 1.08 1.040 3.593

HCM 176 × 176 cells 1.10 1.020 3.518

HCM 352 × 352 cells 1.24 1.015 3.496

HCM 704 × 704 cells 1.63 1.008 3.468
FHCM 22 × 22 cells 0.79 1.0460 1.0000 1.0000 1.151 1.618 85.5

FHCM 44 × 44 cells 0.74 1.0191 1.0000 1.0000 1.078 1.310 92.6

FHCM 88 × 88 cells 0.74 1.0085 1.0000 1.0000 1.040 1.156 96.2

FHCM 176 × 176 cells 0.78 1.0073 1.0000 1.0000 1.020 1.080 98.4

FHCM 352 × 352 cells 0.95 1.0002 1.0000 1.0000 1.015 1.049 99.3

FHCM 704 × 704 cells 1.41 1.0000 1.0000 1.0000 1.008 1.022 100.0
FMSM 22 × 22 cells 0.58 1.1659 1.0000 1.0000 1.436

FMSM 44 × 44 cells 0.54 1.0706 1.0000 1.0018 1.218

FMSM 88 × 88 cells 0.53 1.0821 1.0000 1.0018 1.110

FMSM 176 × 176 cells 0.57 1.0468 1.0000 1.0008 1.055

FMSM 352 × 352 cells 0.71 1.0378 1.0000 1.0004 1.028

FMSM 704 × 704 cells 1.24 1.0064 1.0000 1.0001 1.014

We note that even the slowest of the HCM trials outperforms FMM, FSM, and LSM on this
example. Despite the special alignment of cell boundaries, this example is typical in the following
ways:

1. In both Heap-Cell algorithms, as the number of cells increases, the average number of heap
removals per cell decreases.

2. In FHCM the average number of sweeps per cell decreases to 1 as hc decreases.
3. In FHCM the percentage of monotonicity check successes increases as hc decreases.
4. For timing performance in both HCM and FHCM, the optimal choice of hc is somewhere in

the middle of the tested range.
The reason for #2 is that, as the number of cells J increases, most cells will pass the Monotonicity

Check. When the monotonicity percentage is high and each cell has on average 2 “upwinding”
neighboring cells, each cell on the heap will have one sweeping direction tagged. This observation
combined with #1 explains #2.
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Combining #1 and #2 and the fact that the length of the heap also increases with J there
is a complexity trade-off that explains #4. As J tends to M , the complexity of both Heap-Cell
algorithms is similar to that of Fast Marching. As J tends to 1, the complexity of HCM is similar
to that of Locking Sweeping.

In the second example we use 8 barriers and the boundaries of the cells are not aligned with
the discontinuities of the speed function. This example was chosen specifically because it is difficult
for our new hybrid methods when using the same cell-decompositions as in the previous example.
The performance data is summarized in Table 2.

Table 2

Performance/convergence results for an 8 wall comb maze example.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 6.5644e-002 1.6865e-002 2.50 11.1 3.20 20

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22 × 22 cells 2.13 2.795 9.293

HCM 44 × 44 cells 7.68 8.738 28.046

HCM 88 × 88 cells 6.68 6.798 22.804

HCM 176 × 176 cells 5.86 5.655 18.872

HCM 352 × 352 cells 2.95 2.456 8.314

HCM 704 × 704 cells 1.74 1.037 3.587
FHCM 22 × 22 cells 1.75 1.4247 1.0000 1.0000 2.946 4.087 84.7

FHCM 44 × 44 cells 5.86 1.4250 1.0000 1.0000 8.991 10.209 94.0

FHCM 88 × 88 cells 4.54 1.3083 1.0000 1.0000 6.976 7.329 98.1

FHCM 176 × 176 cells 3.96 1.2633 1.0000 1.0000 5.754 5.910 99.1

FHCM 352 × 352 cells 2.13 1.8922 1.0000 1.0000 2.468 2.549 99.1

FHCM 704 × 704 cells 1.48 1.5700 1.0000 1.0000 1.037 1.066 100.0
FMSM 22 × 22 cells 0.68 604.49 6.6555 21.036 1.783

FMSM 44 × 44 cells 0.59 228.29 3.1529 19.442 1.385

FMSM 88 × 88 cells 0.56 313.01 2.7666 6.4608 1.195

FMSM 176 × 176 cells 0.58 381.98 1.7374 5.5944 1.097

FMSM 352 × 352 cells 0.74 45.397 1.1718 2.0506 1.049

FMSM 704 × 704 cells 1.26 23.303 1.1738 1.3536 1.024

Notice that since the edges of cells do not coincide with the edges of barriers, the performance of
the hybrid methods is not as good as in the previous 4-barrier case, where the edges do coincide. In
this example the cells that contain a discontinuity of the speed function may not receive an accurate
cell value (for either the Heap-Cell algorithms or FMSM) and may often have poor choices of planned
sweeping directions (for FHCM & FMSM). For FHCM, since the error is small in most trials, this
effect appears to be rectified at the expense of the same cells being added to the heap many times.
For FMSM, since each cell is processed only once, large error remains. The non-monotonic behavior
of R in FMSM and FHCM appears to be due to changes in positions of cell centers relative to barrier
edges as hc decreases.

These comb maze examples illustrate the importance of choosing cell placement and cell sizes so
that the speed is roughly constant in each cell. This is necessary both for a small number of sweeps
to be effective and for choosing cell values accurately.

4.2. Checkerboards. We consider a checkerboard domain with the speed function F = 1 in
white (slow) checkers and F = 2 in black (fast) checkers. The exit set consists of a single point in
the center Q = {(0.5, 0.5)}. Figure 8 shows the level curves of solutions on both 11× 11 and 41× 41
checkerboards.

Remark 4.2. Such checkerboard examples arise naturally in the context of front propagation
through composite medium, consisting of a periodic mix of isotropic constituent materials with
different speed function F . The idea of homogenization is to derive a homogeneous but anisotropic
speed function F (n), describing the large-scale properties of the composite material. After F (n) is
computed, the boundary value problems can be solved on a coarser grid. A new efficient method for
this homogenization was introduced in [33], using FMM on the fine scale grid since the characteristics
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Fig. 8. Min time to the center on checkerboard domains: 11 × 11 checkers (A), and 41 × 41 checkers (B).

are highly oscillatory and the original implementation of sweeping was inefficient. The same test
problems were later attacked in [32] using a version of FSM with gridpoint locking (see Remark
2.4). The results in Table 4 shows that even the Locking-Sweeping Method becomes significantly
less efficient than FMM with the increase in the number of checkers.

Table 3

Performance/convergence results for 11 × 11 checkerboard example.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 3.2639e-003 1.7738e-003 3.44 12.3 2.28 16

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22 × 22 cells 1.84 1.397 5.254

HCM 44 × 44 cells 1.73 1.209 4.613

HCM 88 × 88 cells 1.69 1.083 4.117

HCM 176 × 176 cells 1.72 1.029 3.864

HCM 352 × 352 cells 1.87 1.009 3.768

HCM 704 × 704 cells 2.51 1.003 3.746
FHCM 22 × 22 cells 1.17 1.0122 1.0000 1.0000 1.399 1.779 86.3

FHCM 44 × 44 cells 1.11 1.0208 1.0000 1.0000 1.227 1.535 90.6

FHCM 88 × 88 cells 1.08 1.0111 1.0000 1.0000 1.091 1.247 95.1

FHCM 176 × 176 cells 1.14 1.0050 1.0000 1.0000 1.029 1.103 97.8

FHCM 352 × 352 cells 1.33 1.0006 1.0000 1.0000 1.009 1.043 99.4

FHCM 704 × 704 cells 2.08 1.0000 1.0000 1.0000 1.003 1.020 100.0
FMSM 22 × 22 cells 0.87 40.312 1.5725 13.016 1.269

FMSM 44 × 44 cells 0.91 18.167 1.0875 7.4581 1.334

FMSM 88 × 88 cells 0.89 7.6692 1.0113 3.1400 1.222

FMSM 176 × 176 cells 0.91 5.4947 1.0025 2.4813 1.127

FMSM 352 × 352 cells 1.07 2.4557 1.0004 1.3888 1.067

FMSM 704 × 704 cells 1.84 1.5267 1.0000 1.0032 1.035

In both examples the cell sizes were chosen to align with the edges of the checkers (i.e., the
discontinuities of the speed function). On the 11 × 11 checkerboard, almost all of the HCM trials
outperforms FMM and LSM, and most of the FHCM trials are more than twice as fast as LSM and
three times faster than FMM while the additional errors are negligible; see Table 3.

The 41× 41 example is much more difficult for the sweeping algorithms because the number of
times the characteristics changes direction increases with the number of checkers. We note that the
performance of FMM is only moderately worse here (mostly due to a larger length of level curves
and the resulting growth of the “Considered List”). Again, almost all hybrid methods outperform
all other methods. The difference is less striking than in the 11 × 11 example when compared with
FMM, but FHCM and FMSM are 4 to 6 times faster than LSM; see Table 4.
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Table 4

Performance/convergence results for 41 × 41 checkerboard example.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1312 × 1312 1.2452e-002 6.6827e-003 4.13 58.9 11.7 45

METHOD TIME R ρ R AvHR AvS Mon %

HCM 41 × 41 cells 4.18 3.261 11.926

HCM 82 × 82 cells 3.05 1.571 5.939

HCM 164 × 164 cells 2.84 1.314 4.831

HCM 328 × 328 cells 2.81 1.080 3.972

HCM 656 × 656 cells 3.36 1.026 3.768
FHCM 41 × 41 cells 2.83 1.7506 1.0041 1.7123 3.261 4.600 75.5

FHCM 82 × 82 cells 2.09 1.0299 1.0006 1.0128 1.584 2.147 78.8

FHCM 164 × 164 cells 1.95 1.0103 1.0001 1.0000 1.321 1.670 90.4

FHCM 328 × 328 cells 2.01 1.0173 1.0000 1.0000 1.080 1.236 96.9

FHCM 656 × 656 cells 2.79 1.0075 1.0000 1.0000 1.026 1.106 100.0
FMSM 41 × 41 cells 1.46 12.398 3.4110 3.3991 1.164

FMSM 82 × 82 cells 1.54 10.551 1.0975 1.7662 1.211

FMSM 164 × 164 cells 1.70 4.7036 1.0142 1.7123 1.281

FMSM 328 × 328 cells 1.88 2.0192 1.0020 1.7123 1.242

FMSM 656 × 656 cells 2.65 1.7506 1.0004 1.7123 1.147

4.3. Continuous speed functions with a point source. Suppose the speed function is
F ≡ 1 and the exit set consists of a single point Q = {(0.5, 0.5)}. In this case the viscosity solution
is simply the distance to the center of the unit square. We also note that the causal ordering of cells
is clearly available here; as a result, FHCM and FMSM do not introduce any additional errors. The
performance data is summarized in Table 5. For constant speed functions LSM performs significantly
better than FMM on fine meshes (such as this one). The reason why FMSM and FHCM are faster
than LSM in some trials is that LSM checks all parts of the domain in each sweep, including non-
downwinding or already-computed parts. Additionally LSM must perform a final sweep to check
that all gridpoints are locked. All of the hybrid algorithms slow down monotonically as J increases
because of the cost of sorting the heap.

Table 5

Performance/convergence results for constant speed function.

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 1.0956e-003 6.8382e-004 2.72 2.07 0.83 5

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22 × 22 cells 1.05 1.000 3.692

HCM 44 × 44 cells 1.12 1.000 3.718

HCM 88 × 88 cells 1.10 1.000 3.733

HCM 176 × 176 cells 1.14 1.000 3.742

HCM 352 × 352 cells 1.29 1.000 3.746

HCM 704 × 704 cells 1.76 1.000 3.748
FHCM 22 × 22 cells 0.66 1.0000 1.0000 1.0000 1.000 1.025 100.0

FHCM 44 × 44 cells 0.67 1.0000 1.0000 1.0000 1.000 1.006 100.0

FHCM 88 × 88 cells 0.69 1.0000 1.0000 1.0000 1.000 1.002 100.0

FHCM 176 × 176 cells 0.75 1.0000 1.0000 1.0000 1.000 1.000 100.0

FHCM 352 × 352 cells 0.92 1.0000 1.0000 1.0000 1.000 1.000 100.0

FHCM 704 × 704 cells 1.47 1.0000 1.0000 1.0000 1.000 1.000 100.0
FMSM 22 × 22 cells 0.47 1.0000 1.0000 1.0000 1.103

FMSM 44 × 44 cells 0.47 1.0000 1.0000 1.0000 1.049

FMSM 88 × 88 cells 0.49 1.0000 1.0000 1.0000 1.024

FMSM 176 × 176 cells 0.53 1.0000 1.0000 1.0000 1.012

FMSM 352 × 352 cells 0.67 1.0000 1.0000 1.0000 1.006

FMSM 704 × 704 cells 1.23 1.0000 1.0000 1.0000 1.003
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Next we consider examples of min-time to the center under two different oscillatory contin-
uous speed functions. For F (x, y) = 1 + 1

2 sin(20πx) sin(20πy) the level sets of the value func-
tion are shown in Figure 9A and the performance data is summarized in Table 6. For F (x, y) =
1 + 0.99 sin(2πx) sin(2πy) the level sets of the value function are shown in Figure 9B and the perfor-
mance data is summarized in Table 7.

f(x,y) = 1 + .5*sin(20πx)*sin(20πy)
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Fig. 9. Min time to the center under sinusoidal speed functions.

Table 6

Performance/convergence results for F (x, y) = 1 + 1

2
sin(20πx) sin(20πy).

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 4.7569e-003 1.9724e-003 3.74 23.7 6.39 24

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22 × 22 cells 3.61 1.913 10.785

HCM 44 × 44 cells 2.97 1.446 6.811

HCM 88 × 88 cells 2.60 1.245 5.201

HCM 176 × 176 cells 2.40 1.117 4.350

HCM 352 × 352 cells 2.40 1.047 3.945

HCM 704 × 704 cells 2.92 1.016 3.788
FHCM 22 × 22 cells 2.72 5.6062 1.1358 2.0960 4.413 5.310 67.3

FHCM 44 × 44 cells 1.82 3.1094 1.1480 1.0000 1.555 2.132 78.7

FHCM 88 × 88 cells 1.61 1.4025 1.0122 1.0000 1.277 1.575 88.2

FHCM 176 × 176 cells 1.53 1.0560 1.0022 1.0000 1.125 1.262 94.5

FHCM 352 × 352 cells 1.65 1.0226 1.0004 1.0000 1.048 1.106 98.1

FHCM 704 × 704 cells 2.40 1.0037 1.0001 1.0000 1.016 1.035 100.0
FMSM 22 × 22 cells 1.14 10.497 2.4811 2.9653 1.262

FMSM 44 × 44 cells 1.10 6.0892 1.3657 2.2889 1.200

FMSM 88 × 88 cells 1.16 4.6801 1.0515 1.9504 1.213

FMSM 176 × 176 cells 1.18 3.4828 1.0074 1.3705 1.126

FMSM 352 × 352 cells 1.34 1.5987 1.0007 1.0000 1.067

FMSM 704 × 704 cells 2.14 1.1262 1.0001 1.0000 1.035

Note that HCM outperforms Fast Marching on all trials, and outperforms the sweeping methods
significantly on the first example (Table 6) despite the fact that no special selection of cell boundaries
was made. Small changes in the frequency of the speed function did not significantly alter the
performance of the hybrid algorithms. In the second example (Table 7) most HCM trials were
again faster than LSM and FMM. Note that for some cell sizes, both FMSM and FHCM have
R≪R = maxj(Ej/ej). Whenever R is close to 1, the rate of convergence of hybrid methods (based
on L∞ errors) is the same as that of FMM and FSM.

Remark 4.3. All examples considered above strongly suggest that for each problem there
exists an optimal cell size hc such that our hybrid methods significantly outperform both FMM and
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Table 7

Performance/convergence results for F (x, y) = 1 + 0.99 sin(2πx) sin(2πy) .

Grid Size L∞ Error L1 Error FMM Time FSM Time LSM Time # Sweeps

1408 × 1408 2.1793e-002 9.8506e-004 3.69 12.7 2.73 13

METHOD TIME R ρ R AvHR AvS Mon %

HCM 22 × 22 cells 2.29 1.165 4.651

HCM 44 × 44 cells 2.15 1.070 4.132

HCM 88 × 88 cells 2.11 1.034 3.920

HCM 176 × 176 cells 2.13 1.015 3.811

HCM 352 × 352 cells 2.26 1.008 3.763

HCM 704 × 704 cells 2.80 1.002 3.741
FHCM 22 × 22 cells 1.37 60.848 1.0020 1.0014 1.174 1.409 92.7

FHCM 44 × 44 cells 1.28 4.5786 1.0002 1.0001 1.078 1.185 96.1

FHCM 88 × 88 cells 1.28 1.0224 1.0000 1.0000 1.039 1.086 98.2

FHCM 176 × 176 cells 1.35 1.0019 1.0000 1.0000 1.017 1.039 99.3

FHCM 352 × 352 cells 1.55 1.0003 1.0000 1.0000 1.008 1.018 99.7

FHCM 704 × 704 cells 2.27 1.0001 1.0000 1.0000 1.002 1.006 100.0
FMSM 22 × 22 cells 1.13 1362.4 1.0270 1.0053 1.231

FMSM 44 × 44 cells 1.06 174.62 1.0054 1.0053 1.116

FMSM 88 × 88 cells 1.05 38.545 1.0021 1.0046 1.057

FMSM 176 × 176 cells 1.09 7.1581 1.0006 1.0046 1.029

FMSM 352 × 352 cells 1.28 1.1687 1.0001 1.0028 1.014

FMSM 704 × 704 cells 2.08 1.0724 1.0000 1.0000 1.007

FSM provided h is sufficiently small. An important practical question is whether such optimal hc

can be also found for not-so-fine grids (that is, when M is relatively small). The goal is to choose
hc sufficiently small (to ensure that most cell-boundaries are either fully inflow or fully outflow), but
not too small relative to h (e.g., for hc = h the FMM will be clearly more efficient). In the extended
version of this paper, [13], we have also revisited all examples considered above on grids of size
176×176 and 352×352 gridpoints. For each example we chose the faster of two prior methods (FMM
and LSM) and compared its performance to the new hybrid algorithms. The numerical evidence
shows that, for suitably chosen hc, both HCM and FHCM are at least as fast, while FMSM is usually
more than twice faster even on these grids. Since FHCM and FMSM introduce additional errors, the
actual trade-off between efficiency and accuracy is more subtle than just comparing the execution
times, but our careful analysis in [13] confirms that FHCM and FMSM remain advantageous even
considering these additional errors. In addition, we consider the issue of using “early termination”
criteria to speed-up sweeping methods at the cost of additional errors; we use the 412 checkerboard
example to show that FHCM and FMSM are still significantly faster, provided LSM terminates only
after reaching comparable accuracy. Finally, in [13] we also show that the performance of hybrid
methods is similar for Eikonal problems with more general boundary conditions; these numerical
results are omitted here for the sake of brevity.

5. Conclusions. We have introduced three new efficient hybrid methods for Eikonal equations.
Using a splitting of the domain into a number of cells (with the speed function approximately
constant on each of them), our methods employ sweeping methods on individual cells with the order
of cell-processing and the direction of sweeps determined by a marching-like procedure on a coarser
scale. Such techniques may introduce additional errors to attain higher computational efficiency. Of
these new methods FMSM is generally the fastest and somewhat easier to implement, while FHCM
introduces smaller additional errors, and HCM is usually the slowest of the three but provably
converges to the exact solutions. The numerical evidence presented in this paper strongly suggests
that
• when h and hc are sufficiently small, additional errors introduced by FMSM and FHCM are
negligible compared to those already present due to discretization;
• for the right (h, hc)-combinations, our new hybrid algorithms significantly outperform the prior
fast methods (FMM, FSM, and LSM).
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Of course, the rate of change of the speed function F determines the suitable size of cells and our
methods are particularly efficient for the examples where F is piecewise constant.

All of the examples considered here used predetermined uniform cell-sizes. From a practitioner’s
point of view, the value of the proposed methods will greatly increase once we develop bounds and
estimates for the additional errors in both FMSM and FHCM. Such estimates would be also very
useful for the computational costs of all three hybrid methods on a given cell-decomposition. In the
future, we intend to automate the choice of cell-sizes (based on the speed function and user-specified
tolerances for additional errors) and further relax the requirement that all cells need to be uniform.
A generalization of this approach to cell-subdivision of unstructured meshes will also be valuable.

We expect the extensions of these techniques to higher dimensional problems to be useful for
many applications and relatively straight-forward – especially for FMSM and HCM. A higher dimen-
sional version of the “cell boundary monotonicity check” will be needed to extend FHCM.

Other obvious directions for future work include extensions to higher-order accurate discretiza-
tions and parallelizable cell-level numerical methods for Eikonal equations.

More generally, we hope that the ideas presented here can serve as a basis for causal domain
decomposition and efficient two-scale methods for other static nonlinear PDEs, including those arising
in anisotropic optimal control and differential games.
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