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Abstract. We introduce a family of highly efficient (non-iterative) nu-
merical methods for a wide class of hybrid control systems. The ap-
plication of Dijkstra’s classical method to a discrete optimal trajectory
problem on a network obtains the solution in O(M logM) operations.
The key idea behind the method is a careful use of the direction of infor-
mation propagation, stemming from the optimality principle. In a series
of recent papers, we have introduced a number of Ordered Upwind Meth-
ods (OUMs) to efficiently solve the fully anisotropic continuous optimal
control problems. These techniques rely on using a partial information
on the characteristic directions of the Hamilton–Jacobi–Bellman PDE,
stemming from the continuous variant of the optimality principle. The
resulting non-iterative algorithms have the computational complexity of
O(M logM), where M is the total number of grid points where the
solution is computed, regardless of the dimension of the control/state
variables. In this paper, we show how Ordered Upwind Methods may
be extended to efficiently solve the hybrid (discrete/continuous) control
problems. We illustrate our methods by solving a series of hybrid optimal
trajectory problems with and without time-dependence of anisotropic
speed functions.

1 Introduction

The dynamical programming approach to all (discrete, continuous, or hybrid)
control problems relies on some version of the optimality principle [1]. The re-
sulting equations for the value function are quite often non-linear and coupled
(in the continuous case, we are referring to the system of difference equations
which discretize the appropriate PDE). Solving a system of coupled non-linear
equations using iterative numerical methods can be rather expensive. Our goal is
to exploit the optimality principle to build fast numerical methods for equations
arising in control theory. The basis for our techniques is the notion of causality
(i.e., the direction of flow of information) corresponding to a particular class of
the control problems.

In this paper, we introduce a family of highly efficient (non-iterative) “Or-
dered Upwind Methods” (OUMs) for a wide class of hybrid control problems.
These methods combine the notion of discrete causality (the basis for Dijkstra’s
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method [5]) with the causality of continuous anisotropic control problems (stem-
ming from our recent work on Hamilton–Jacobi PDEs [12]). The resulting com-
putational complexity is the order of O(M logM), where M is the total number
of mesh points used to discretize the continuous state space of the system1.

We apply these methods to a collection of representative problems from hy-
brid (discrete/continuous) optimal trajectory planning. A traveler wishes to find
the minimum time necessary to reach some pre-defined destination in the domain
Ω, where the speed may depend on the direction of motion; this might be appli-
cable, for example, to walking in an area of hilly terrain. Here, we imagine the
continuous problem in which motion in any direction is allowed. Furthermore,
suppose that bus lines are also available from some fixed points to other given
points; these represent discrete links/transitions superimposed on the continu-
ous domain. The considered generalizations include dependence of continuous
dynamics upon the discrete state (a traveler carries a pair of skates, which can
be put on/taken off, thus changing the anisotropic speed function on different
slopes) and time-dependent dynamics (a traveler becomes more tired - and slower
- as time goes by, and buses follow their prescribed schedules instead of waiting
for the traveler at the stop).

The outline of this paper is as follow. In Section 2, we review Dijkstra’s
method for discrete control, framed as a single-pass algorithm whose efficiency
comes from exploiting the causality (i.e., the direction of flow of information).
In Section 3, we show how to build Ordered Upwind Methods for continuous
optimal control, again exploiting the (obtained and updated during the com-
putation) knowledge of the flow of information. In Section 4, we show how to
develop Ordered Upwind Methods for hybrid control systems and illustrate these
algorithms by solving several test-problems.

2 Discrete Control: Dijkstra’s Method

Consider a discrete optimal trajectory problem on a network. Here, given a
network and a time-penalty associated with each node, the global optimal tra-
jectory problem is to determine the quickest path from a starting node to some
exit set in the network. Dijkstra’s method [5] is a classic algorithm for solving
this problem; it is used to compute the minimal time of exiting starting at any
node of the network, and the solution is obtained in O(M logM) operations.
We note that the time-penalty can depend not only on the particular node, but
also on the particular link chosen in that node. Thus, Dijkstra’s method applies
to both isotropic and anisotropic control problems. The distinction is minor for
discrete problems, but significant for continuous problems. Dijkstra’s method is
a “single-pass” algorithm; if r is the maximum incidence of the nodes in the
network, each point on the network is “updated” at most r times to produce the

1 For the sake of notational clarity, we restrict our discussion to hybrid systems with
continuous state component in R2; all results can be restated for Rn and for meshes
on manifolds.
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solution. This efficiency comes from a careful use of the direction of information
propagation and stems from the optimality principle.

We briefly summarize Dijkstra’s method, since its overall structure will be
important in explaining our Ordered Upwind Methods. For simplicity, imagine
a rectangular grid of size h, where the time-penalty Cij > 0 is given for passing
through each grid point xij = (ih, jh). Given a starting point, the minimal total
time Uij of arriving at the node xij can be written in terms of the minimal total
time of arriving at its neighbors:

Uij = min (Ui−1,j , Ui+1,j, Ui,j−1, Ui,j+1) + Cij . (1)

To find the minimal total time, Dijkstra’s method works as follows. All the
mesh points are divided into three classes: Far (no information about the correct
value of U is known), Accepted (the correct value of U has been computed), and
Considered (adjacent to Accepted).

1. Start with all mesh points in Far (Uij = ∞).
2. Move the boundary mesh points (xij ∈ ∂Ω) to Accepted (Uij = q(xij)).
3. Move all the mesh points xij adjacent to the boundary into Considered and

evaluate the tentative value of Uij using the values at the adjacent Accepted
mesh points according to formula 1.

4. Find the mesh point xr with the smallest value of U among all the Consid-
ered.

5. Move xr to Accepted.
6. Move the Far mesh points adjacent to xr into Considered.
7. Re-evaluate the value for all the Considered xij adjacent to xr. If the new

computed value is less than the previous tentative value for xij then update
Uij .

8. If Considered is not empty then go to 4).

The described algorithm has the computational complexity of O(M log(M));
the factor of log(M) reflects the necessity of maintaining a sorted list of the
Considered values Ui to determine the next Accepted mesh point. An efficient
implementation of the algorithm can be constructed using heap-sort data struc-
tures.

3 Continuous Control: Ordered Upwind Methods

Consider now the problem of continuous optimal control; here, the goal is to find
the optimal path from a starting position to an exit set. It is well-known that
Dijkstra’s method does not converge to the continuous solution as the mesh
is refined. This can be seen by considering the simple problem of a uniform
Cartesian grid with a constant time-penalty C > 0 for passing through every
node. The minimal time from a starting point to an end point is the Manhattan
distance on this grid times C. Thus, Dijkstra’s method produces the solution to
the partial differential equation

max(|ux|, |uy|) = h · C,
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where h is the grid size (see [10]). As h goes to zero, this does not converge to
the solution of the continuous Eikonal problem given by

|u2
x + u2

y|1/2 = C

Thus, Dijkstra’s method cannot be used to obtain a solution to the continuous
problem.

3.1 Dijkstra-like Solvers for Isotropic Continuous Control Problems

In the isotropic case, when the speed depends only on the position and not
on the direction of motion, two recent algorithms, namely Tsitsiklis’s Method
[15],[16] and Sethian’s Fast Marching Method [9] have been introduced to solve
the problems with the same computational complexity as Dijkstra’s method.
Both methods exploit information about the flow of information to obtain this
efficiency; the causality allows one to build the solution in increasing order, which
yields the Dijkstra-like nature of the solutions.

Both algorithms result from a key feature of Eikonal equations, namely that
their characteristic lines coincide with the gradient lines of the viscosity solution
u(x); this allows the construction of single-pass algorithms. Tsitsiklis’ algorithm
evolved from studying isotropic min-time optimal trajectory problems, and in-
volves solving a minimization problem to update the solution. Sethian’s Fast
Marching Method evolved from studying isotropic front propagation problems,
and involves an upwind finite difference formulation to update the solution. Each
method starts with a particular (and different) coupled discretization and each
shows that the resulting system can be decoupled through a causality property.
We refer the reader to these papers for details on ordered upwind methods for
Eikonal equations.

3.2 Ordered Upwind Methods for General Anisotropic Continuous
Control Problems

Consider now the general continuous optimal trajectory problem, in which the
speed function depends on both position and direction. In [12], Sethian and
Vladimirsky built and developed single-pass “Ordered Upwind Methods” for the
anisotropic continuous optimal control problems. They showed how to to produce
the solution Ui by recalculating each Ui at most r times, where r depends only on
the degree of anisotropy present in the PDE and on the mesh structure, but not
upon the number of mesh points. The convergence to the viscosity solution was
proven, and numerical schemes were developed for a wide range of applications.

Building efficient single-pass methods for general optimal control problems
is considerably more challenging than it is for the Eikonal case, since the char-
acteristics no longer coincide with the gradient lines of the viscosity solution.
As a result, the characteristics and gradient lines may in fact lie in different
simplexes. Therefore, the approximation Ui to the min-time function u(xi) may
well depend upon the approximate min-time value Uj at some adjacent mesh
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point xj even if Ui is smaller than Uj . This is precisely why both Sethian’s Fast
Marching Method and Tsitsiklis’ Algorithm cannot be directly applied in the
anisotropic (non-Eikonal) case: it is no longer possible to de-couple the system
by computing/accepting the mesh points in the ascending order.

We now explain the idea behind Ordered Upwind Methods for general con-
tinuous optimal control. The key idea behind the Ordered Upwind Methods for
the non-Eikonal optimal control (introduced in [12],[17]) is to use the measure
of the local anisotropy of the speed function to limit the number of Accepted
points that might contribute to the update of each Considered point. Consider
the anisotropic min-time optimal trajectory problems, in which the speed of mo-
tion depends not only on position but also on direction. The value function u
for such problems is the viscosity solution of the static Hamilton-Jacobi-Bellman
equation

maxa∈S1 {(∇u(x) · (−a))f(x,a)} = 1, x ∈ Ω,
u(x) = q(x), x ∈ ∂Ω. (2)

In this formulation, a is the unit vector determining the direction of motion,
f(x,a) is the speed of motion in the direction a starting from the point x ∈ Ω,
and q(x) is the time-penalty for exiting the domain at the point x ∈ ∂Ω. The
maximizer a corresponds to the characteristic direction for the point x. If f does
not depend on a, Eqn. 2 reduces to the Eikonal equation, see [1]. Furthermore,
we assume that

0 < F1 ≤ f(x,a) ≤ F2 <∞,
and define the anisotropy ratio Υ = F2/F1.
Technical comment: This is sufficient to show that the value function is contin-
uous in the interior of Ω (and is equal to the viscosity solution of Eqn. 2) even in
the presence of continuous-state constraints: the above assumptions can be used
to demonstrate both Soner’s tangentiality along the boundary of the constraint
set (as in [14]) and the local controllability near ∂Ω (as in [2], for example). For
every point x ∈ Ω, we define the speed profile Sf (x) = {af(x,a) | a ∈ S1}, and
note that, if all speed profiles are convex, then a min-time optimal trajectory
exists for all points in Ω; for non-convex speed profiles the value function u(x)
is still well-defined even if no minimizing trajectory exists for that point (see
[17],[13] for the detailed discussion).

In [12,17], the following two lemmas were proven:

– Lemma 1. Consider the characteristic passing through a point x̄ ∈ Ω and a
level curve u(x) = C, where qmax < C < u(x̄). The characteristic intersects
that level set at some point x̃. If x̄ is distance d away from the level set then

‖x̃ − x̄‖ ≤ dF2

F1
. (3)

– Lemma 2. Consider an unstructured mesh X of diameter h on Ω. Consider
a simple closed curve Γ lying inside Ω with the property that for any point
x on Γ , there exists a mesh point y inside Γ such that ‖x−y‖ < h. Suppose
the mesh point x̄i has the smallest value u(x̄i) of all of the mesh points inside
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the curve. If the characteristic passing through x̄i intersects that curve at
some point x̃i then

‖x̃i − x̄i‖ ≤ hF2

F1
. (4)

This means that one may use the anisotropy ratio to exclude a large fraction
of the Accepted points in computing the update of any Considered points.

Building on these results we construct the following single-pass method.
As before, mesh points are divided into three classes (Far, Considered, and
Accepted). The AcceptedFront is defined as a set of Accepted mesh points,
which are adjacent to some not-yet-accepted mesh points. Define the set AF
of the line segments xjxk, where xj and xk are adjacent mesh points on the
AcceptedFront, such that there exists a Considered mesh point xi adjacent to
both xj and xk. For each Considered mesh point xi we define the part of AF
“relevant to xi”:

NF (xi) =
{

(xj ,xk) ∈ AF |∃x̃ on (xj ,xk) s.t. ‖x̃ − xi‖ ≤ hF2

F1

}
.

We will further assume that some consistent upwinding update formula is avail-
able: if the characteristic for xi lies in the simplex xixjxk then Ui = K(Uj, Uk,
xi,xj ,xk). For the sake of notational simplicity we will refer to this value as
Kj,k.

1. Start with all mesh points in Far (Ui = ∞).
2. Move the boundary mesh points (xi ∈ ∂Ω) to Accepted (Ui = q(xi)).
3. Move all the mesh points xi adjacent to the boundary into Considered and

evaluate the tentative value of
Ui = min(xj ,xk)NF (xi)Kj,k.

4. Find the mesh point xr with the smallest value of U among all the Consid-
ered.

5. Move xr to Accepted and update the AcceptedFront.
6. Move the Far mesh points adjacent to xr into Considered.
7. Recompute the value for all the Considered xi within the distance hF2

F1
from

xr. If the new computed value is less than the previous tentative value for
xi then update Ui.

8. If Considered is not empty then goto 4).

– Efficiency: This results in a “single-pass” method since the maximum num-
ber of times each mesh point can be re-evaluated is bounded by the number
of mesh points in the hF2

F1
neighborhood of that point. Thus, this method

formally has the computational complexity of O((F2
F1

)2M log(M)). Moreover,
since the AcceptedFront is approximating the level set of the viscosity solu-
tion u, as the mesh is refined, the complexity will behave as O(F2

F1
M log(M)).

Here, the “efficiency” refers to the complexity of computing an approximate
solution on a fixed grid; the above orders of complexity are proven for the
implementation using heap-sort data structures [12,17].
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– Convergence: In [12,17] we prove the convergence (assuming the conti-
nuity of f) of the numerical solution to the viscosity solution of the PDE
for a particular update formula Kij , related to the iterative schemes de-
scribed in [7], [8], and [6]. The asymptotic order of convergence of the
method generally depends upon the order of the upwinding update formula
Ui = K(Uj , Uk,xi,xj ,xk).

– In [12] we also use the above method with other the finite-difference up-
winding update formulas, obtained as the anisotropic generalizations of the
discretizations presented in [11]. The notable advantage of this approach is
that it can be easily generalized for the higher-order upwinding finite differ-
ence approximations.

3.3 Numerical Results

The first example we consider corresponds to finding geodesic distances on a
surface. Consider a pedestrian walking with the unit speed on a surface z =
g(x, y). The pedestrian is interested in finding the shortest path on the surface.
As shown in [12], the problem can be solved in the x − y plane by considering
the dynamics of the pedestrian’s shadow. The shadow will move from point A
to point B in the plane, as the pedestrian walks from (A, g(A)) to (B, g(B)) on
the manifold. The speed of the shadow in the direction a ∈ S1 is, therefore,

f(x, y,a) =
(
1 + (∇g(x, y) · a)2

)− 1
2 .

Solving the equation 2 in the x−y plane with the boundary condition u(B) = 0,
we obtain the level sets of the min-time to exit function u. The characteris-
tics of the PDE will correspond to the globally optimal trajectories for the
pedestrian’s shadow (and, hence, to the projections of the pedestrian’s opti-
mal walking paths). Figure 1 illustrates the solution of this PDE for the surface
g(x, y) = 45 sin(πx

50 )sin(πy
50 ) over the square [0, 100] × [0, 100].

We now make the problem harder by accounting for the fact that the (sus-
tained) speed of walking on the surface is generally dependent on the slope of
the surface in that direction. Let θ be the angle between the direction of motion
on the surface and the positive direction of z-axis:

θa =
π

2
− arctan(∇g(x, y) · a).

If the pedestrian is moving on the surface with the positive speed φ(θa), then
the shadow moves in the direction a ∈ S1 with the speed

f(x, y,a) = φ(θa)
(
1 + (∇g(x, y) · a)2

)− 1
2 .

We use two different slope-dependencies φw(θ) = sin6(θ) + 0.1 and φs(θ) =
2 sin40(θ) + 0.1, generating the speed functions fw and fs. (In our simplistic
model, we consider them as speeds for walking and skating on the surface, re-
spectively.) The level sets of the corresponding min-time functions are shown in
Figure 2.
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Fig. 1. The test surface and the level sets of the min-time function (for traveling to
the origin with unit speed).
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Fig. 2. The min-time function for walking (left) and skating (right) to the origin.

Our third example is the problem of finding an optimal continuous trajectory
for traveling on the manifold if the traveler becomes “tired” (i.e., slows down)
as time goes by:

fwt(y,a, t) = fw(y,a)ψ(t),

where ψ is a positive, monotone decreasing function of t. This is a simple example
in which the speed function depends on time in the controlled dynamics.

In general, the time-dependence of speed conflicts with the optimality prin-
ciple: the optimal route from A to B might be irrelevant for computing the
optimal route from C to B even if that optimal route passes through the point
A. A simple way to deal with the situation is to add the time to the state vari-
ables, but the computational cost of such a solution is prohibitive. We use a
different approach instead: reversing the direction of information propagation.
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If the dynamics were time independent (i.e., y′(t) = f(y(t),a(t))a(t)), we
would use u(B) = 0 as a boundary value for the HJB PDE:

maxa∈S1 {(∇u(x) · (−a))f(x,a)} = 1, x ∈ Ω. (5)

The level sets u(x) = T would include all the points, from which one could
(optimally) travel to B in time T . In principle, the value function u could be
used to compute the optimal route to B from any point in the domain.

For the time dependent dynamics (i.e., y′(t) = f(y(t),a(t), t)a(t)), we are
using the initial condition u(A) = 0 and solving the HJB PDE:

maxa∈S1 {(∇u(x) · a)f(x,a, u(x))} = 1, x ∈ Ω. (6)

The level sets of the viscosity solution (u(x) = T ) include all the points, to
which one could (optimally) travel from A in time T . In principle, the value
function u could be used to compute the optimal route from A to any point in
the domain2.

Figure 3 shows the level sets of the viscosity solution u(x) for the speed
function fwt(y,a, t) = fw(y,a)e−λt.
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Fig. 3. The min-time function for walking from the origin with time-dependent speed:

λ = 0.001 (left) and λ = 0.005 (right). The level sets are plotted at the same values as

in Figure 2.

2 It is easy to see that, if the speed f is not a continuous function of time, the value
function u does not have to be a continuous function of x. In such cases, the HJB
equation 6 can still be interpreted if u(x) is substituted by lim supy→x u(y).
We also note that a wide class of static convex Hamilton–Jacobi PDEs of the form

‖∇u‖F
(
x, ∇u

‖∇u‖ , u
)
= 1 can be interpreted as the HJB equation 6 and, therefore,

can be solved by the OUMs; see [13] for details.
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4 Ordered Upwind Methods for Hybrid Control
Problems

The Fast Marching Method for the continuous isotropic Eikonal equation can be
extended to hybrid control, as was done in [3],[4]; this can be applied in cases in
which the speed of motion is isotropic (dependent only upon the current state of
the system). We now extend the continuous control Ordered Upwind Methods to
compute the value function for the hybrid systems with the general (anisotropic)
continuous-state dynamics.

4.1 Formulation of Algorithm

Hybrid systems are often modeled as hybrid automata, represented by a di-
rected graph with continuous dynamics at each node. The continuous state of
the system evolves according to the chosen continuous control and the differ-
ential equations specified for the particular node; when certain conditions are
satisfied, the transition to another node may occur, leading to a change in the
dynamics of a continuous state of the system.

In order to find an optimal hybrid control numerically, we also need to
discretize the continuous state space corresponding to each discrete state of
the hybrid system. Let Xi be the discretization of the continuous state space
corresponding to the hybrid automata node σi. The full computational mesh
X =

⋃
Xi will also include the directed links representing transitions between

different modes of continuous dynamics. Let xi ∈ Xi be a node for which the
transition rules are satisfied. Define the sets

Lfrom(xi) = {xj ∈ Xj | there is a transition from xi to xj}
and

Lto(xi) = {xj ∈ Xj | there is a transition from xj to xi}
(jump successors and jump predecessors of xi in the terminology of [4]). These
transitions are represented inX by the directed links (xi,xj) with the associated
transition/link costs Cij ≥ 0.

As before, mesh points are divided into three classes (Far, Considered, Ac-
cepted). The AcceptedFront is defined as a set of Accepted mesh points, which
are adjacent to some not-yet-accepted mesh points. Define the set AF of the line
segments xjxk, where xj and xk are adjacent mesh points on the AcceptedFront,
such that there exists a Considered mesh point xi adjacent to both xj and xk.
For each Considered mesh point xi we define the part of AF “relevant to xi”:

NF (xi) =
{

(xj ,xk) ∈ AF |∃x̃ on (xj ,xk) s.t. ‖x̃ − xi‖ ≤ hF2

F1

}
.

We also define the set of Accepted “neighbors” accessible via discrete transition
links LAfrom(xi) = Lfrom(xi)

⋂
Accepted. We will further assume that some

consistent upwinding update formula is available for each “mode” of continuous
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dynamics: if the characteristic for xi lies in the simplex xixjxk then Ui =
K(Uj, Uk,xi,xj ,xk). For the sake of notational simplicity we will refer to this
value as Kj,k.

1. Start with all mesh points in Far (Ui = ∞).
2. Move the boundary mesh points (xi ∈ ∂Ω) to Accepted (Ui = q(xi)).
3. Move all the mesh points xi adjacent to the boundary (and all the xi s.t.
LAfrom(xi) �= ∅) into Considered and evaluate the tentative value of

Ui = min
{

min(xj ,xk)NF (xi)Kj,k, minxs∈LAfrom(xi){Us + Cis}
}

.
4. Find the mesh point xr with the smallest value of U among all the Consid-
ered.

5. Move xr to Accepted and update the AcceptedFront.
6. Move the Far mesh points adjacent to xr into Considered.
7. Move the Far mesh points in Lto(xr) into Considered.
8. Recompute the value for all the Considered xi such that ‖xr−xi‖ ≤ hF2

F1
or

xi ∈ Lto(xr). If the new computed value is less than the previous tentative
value for xi then update Ui:
Ui = min

{
Ui, min(xrxj )∈NF (xi)Kr,j, Ur + Cir

}
.

9. If Considered is not empty then goto 4).

The efficiency of the resulting method is O
(

(F2
F1

+ d)MlogM
)

, where M is
the total number of mesh points in X and d is the maximum number of discrete
transitions/links from a single mesh point.

4.2 Examples

As the first example, we consider the problem of finding an optimal trajectory
on a surface; the continuous problem is augmented by assuming that there are
discrete transitions between a finite number of pre-defined points on the mesh.
A realistic analogue is the time-optimal path planning for traveling on a varied
landscape if there are shuttle buses waiting for travelers at pre-defined locations
xi and carrying them (for a fee - or time penalty - Cij ≥ 0) to the pre-defined
locations xj . Thus, even if the traveler is trying to get from A to B, it might
save him time to diverge from the geodesic path to the point C if the shuttle
going from C to D is fast and if D is not far from the final destination.

This example is not the most general possible hybrid system, since the di-
rected discrete links (i.e., the transitions) change only the position in the contin-
uous state space but not the underlying dynamics. Thus, we are able to compute
the value function using a single discretization X of the continuous state space
and superimposing on it the “shuttle lines” (Figure 4). This example can also
be interpreted for the buses (unlike shuttles, buses are not waiting for the trav-
eler); if Cij is the average time for traveling on bus from xi to xj , including the
average waiting time at the bus stop. In this case, the computed value function
is interpreted as the expected value of the time taken by the optimal route.
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Fig. 4. The min-time function for traveling to the point B in the presence of shuttles

(left), and the min-time function for traveling from the point A in the presence of the

buses running on schedule (right).

Our second test problem involves the buses going exactly on schedule3. This
is an example of the discrete dynamics depending on time: the time-penalty as-
sociated with the bus-route transition is assumed to be infinite at all times other
than the scheduled departures. As in the fully continuous case, this endangers
the optimality principle: the optimal route from A to B might be irrelevant for
computing the optimal route from C to B even if that optimal route passes
through the point A. (The optimal route from A to B could include catching a
bus, which might be gone by the time we get from C to A.)

As before, we deal with this difficulty by setting the boundary condition to
be zero at the “source” A rather than the “target” B. As shown in Figure 4, the
level sets of the viscosity solution (u(x) = T ) include all the points, to which
one could (optimally) travel from A in time T .

For a more complete and realistic example, we now demonstrate the appli-
cation of OUMs to “real” hybrid control problems - i.e., the problems, in which
taking the discrete transition forces a change in the dynamics (rather than just
a position of) the continuous state. In most cases, such problems require using
multiple discretizations Xi of the continuous state space, corresponding to mul-
tiple nodes σi of the hybrid automata. Consider a person walking on a varied
landscape, but also carrying a pair of inline roller skates. This walker has an op-
tion of paying the time-penalty (spending time to put on the skates) to become a
skater and to modify his speed function as a result. Correspondingly, the skater
can pay a different time-penalty to take of the skates and return to walking. We
compute the value function u for this problem using two copies (Xs and Xw)
of the discretized continuous state space4. Figure 5 shows the level sets of u(x)

3 Depending on where you live, this may be extremely unrealistic.
4 Of course, if the time-penalties are zero, the optimal strategy will correspond to the
value function obtained by using the speed f = max{fw, fs}. In this simple case,
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computed under the assumption that putting on the skates requires 10 seconds
and taking them off - only 5.
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Fig. 5. The min-time function for traveling to the origin using the hybrid (walk-

ing/skating) dynamics: for those, who start out walking (left), or skating (right). The

level sets are plotted at the same values as in Figure 2.

5 Conclusions

We have demonstrated that single-pass Ordered Upwind Methods can be built
for a variety of anisotropic hybrid control problems. The obvious generalizations
of the considered optimal hybrid trajectory problems (simultaneously taking
into account multiple modes of continuous dynamics, time dependence of the
continuous and discrete controls, etc) can be treated similarly. The continuous
state constraints can be handled by representing only the constraint set in the
meshes Xi; the numerical evidence confirms the convergence to the viscosity
solution even for piecewise continuous anisotropic speed functions [12].

We are currently investigating applicability of OUMs to other classes of
PDEs, and to other application domains. Work in progress includes devising
Ordered Upwind Methods for differential games and extending the capabilities
to more complex systems [13].
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