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SUMMARY

In complicated geologic environments with multipathing in
traveltime fields, Kirchhoff migration can improve imaging
results, if the integration is performed in the angle domain.
Angle-domain migration operates on a traveltime table ex-
pressed as a function of image points and subsurface angles.
For the necessary function to be computed, ray tracing can
simply be performed from subsurface locations using different
initial take-off angles. Unfortunately, the computational cost
of such a bottom-up approach may be prohibitive. However,
initial-value ray tracing can be reformulated as escape equa-
tions in phase space, which allow for a grid-based solution at a
possibly lower cost. In this paper, we derive escape equations
for general 2-D and 3-D anisotropic media, derive the reduced
phase-space formulation of escape equations, introduce a sta-
ble upwind finite-difference discretization, and suggest the use
of a hybrid Eulerian-Lagrangian approach for a practical and
accurate numerical solution.

INTRODUCTION

Integral-operator Kirchhoff migration remains a staple in the
toolbox of imaging practitioners, even in complex geologic
settings (Leveille et al., 2011). Fundamentally, this type of
imaging rests on a high-frequency approximation of wave prop-
agation and a necessity to compute Green’s functions. Various
efficient algorithms have been developed over the years for
this purpose, all of which generally can be divided into two
groups: Eulerian and Lagrangian methods (Engquist and Run-
borg, 2003; Runborg, 2007).

Finite-difference eikonal solvers belong to the first group. Al-
though they enable a fast computation of minimum-time ar-
rivals between two points (van Trier and Symes, 1991; Sethian
and Popovici, 1999; Popovici and Sethian, 2002; Zhao, 2005;
Fomel et al., 2009), they are not always sufficient for imag-
ing difficult geologic areas (Geoltrain and Brac, 1993). A fre-
quently used alternative, initial-value ray tracing (Virieux and
Farra, 1991; Farra, 1993; Vinje et al., 1993; Gibson, 2000), is
a Lagrangian method that produces multiple arrivals.

Incorporation of multiple arrivals into Kirchhoff migration is
critical to high-quality imaging in complex geologic environ-
ments (Operto et al., 2000). This high quality can be achieved
if migration is carried out in the angle domain, which naturally
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unravels multipathing (Xu et al., 2001; Brandsberg-Dahl et al.,
2003). Green’s functions for angle-domain migration can be
computed using initial-value ray tracing from image locations
(Koren and Ravve, 2011), which, however, can be costly and
limit the feasibility of such an approach.

Initial-value ray tracing can be reformulated in a Eulerian phase-
space framework in the form of escape equations (Fomel and
Sethian, 2002), which are partial differential equations that re-
place the evolution of individual ray trajectories with the flow
of escape variables in phase space. Such a formulation poten-
tially enables the computation of everything that is necessary
for angle-domain imaging less expensively.

In Part I of this paper, we derive a reduced-phase space formu-
lation for the escape equations in both heterogeneous isotropic
and anisotropic media and introduce an upwind finite-difference
discretization for them. We then analyze the behavior of the
escape functions in phase space and devise a hybrid, Eulerian-
Lagrangian strategy for computing accurate numerical solu-
tions to the escape equations. Part II (Bashkardin et al., 2012)
describes details of our implementation and its application to
angle-domain Kirchhoff migration.

THEORY

Escape equations

For general anisotropic media, the eikonal equation takes the
form

|p|2−S2 (x,n) = 0 , (1)
where p is the phase slowness vector, n = p

|p| is the direction
of the traveltime gradient, and S (x,n) is the phase slowness.

Using Hamilton’s canonical equations, we can find the system
of ray-tracing equations (Červeny̌, 2001)

ẋ = p−S (x,n) ∇pS , (2)

ṗ = S (x,n) ∇x S , (3)

where ḟ denotes d f
dσ

and σ is a parameter changing along the
ray.

These equations define the characteristic directions or rays in
phase space. In a finite domain, a ray eventually escapes the
phase-space domain at location ŷ(x,p). For every point on
the ray, because the escape location remains constant, we can
write

˙̂y = ∇x ŷ ẋ+∇p ŷ ṗ =

∇x ŷ
(
p−S∇pS

)
+∇p ŷ (S∇x S) = 0 .

(4)

Escape traveltime decreases along the ray toward the bound-
ary; therefore, from equations 2 and 3 we can derive ˙̂T =−S2

and write a similar expression:
˙̂T = ∇x T̂ · ẋ+∇p T̂ · ṗ =(

p−S∇pS
)
· ∇x T̂ +S∇x S · ∇p T̂ =−S2 .

(5)
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Phase-space computation of traveltimes, Part I

Equations 4 and 5 are partial differential equations, which de-
fine escape time and locations for all arrivals originating from
x with initial phase vector p (Fomel and Sethian, 2002).

Reduced phase space

For computational purposes, it is beneficial to derive similar
equations in the reduced phase space, in which phase dimen-
sions are replaced with angles associated with the phase vector
direction (Osher et al., 2002). Reduced phase space has fewer
dimensions, because n components of phase slowness vector p
are related by (n−1) angles.

For a 2-D medium, we define the slowness vector as
p(px, pz) = {−S sinθ ,−S cosθ} ,

where θ is the angle between the phase vector and the vertical
direction. Then, by using the relations

∂

∂ px
=

∂

(
tan−1 px

pz

)
∂ px

∂

∂θ
=− pz

p2
x + p2

z

∂

∂θ
,

∂

∂ pz
=

∂

(
cot−1 pz

px

)
∂ pz

∂

∂θ
=

px

p2
x + p2

z

∂

∂θ
,

(6)

we can derive from equation 5 the following equation for es-
cape traveltime in reduced phase space

(S sinθ −Sθ cosθ)
∂ T̂
∂x

+(S cosθ +Sθ sinθ)
∂ T̂
∂ z

+

(Sx cosθ −Sz sinθ)
∂ T̂
∂θ

= S2 (7)

where Sθ , Sx, and Sz are angular and spatial derivatives of the
phase slowness field, respectively. Escape equations for x̂ and
ẑ have their right-hand sides equal to zero.

In a 3-D medium, the phase-vector direction is defined by two
angles: θ , the angle between p and the z axis (inclination), and
φ , the angle between the projection of p onto the x− y plane
and the x axis (azimuth). Then, the vector is

p
(

px, py, pz
)
= {−S sinθ cosφ ,−S sinθ sinφ ,−S cosθ} ,

and by changing variables from p to φ , θ and using φ = tan−1
(

py
px

)
and θ = tan−1

(
−
√

p2
x+p2

y
pz

)
for ∂

∂ px
, ∂

∂ py
, ∂

∂ pz
in a way simi-

lar to that used in equation 6 we can derive the corresponding
reduced phase space equation in 3-D as(

S sinθ cosφ −Sθ cosθ cosφ +Sφ

sinφ

sinθ

)
∂ T̂
∂x

+(
S sinθ sinφ −Sθ cosθ sinφ −Sφ

cosφ

sinθ

)
∂ T̂
∂y

+

(S cosθ +Sθ sinθ)
∂ T̂
∂ z

+

(
Sx cosθ cosφ +Sy cosθ sinφ −Sz sinθ

) ∂ T̂
∂θ

+

1
sinθ

(
Sy cosφ −Sx sinφ

) ∂ T̂
∂φ

= S2

(8)

where Sθ , Sφ , Sx, Sy and Sz are angular and spatial derivatives
of phase slowness. In the isotropic case, S does not depend on
θ or φ , and Sθ = Sφ = 0.

IMPLEMENTATION PRINCIPLES

Upwind finite differences and sweeping

Escape equations can be written as a general advection system:
a(x,θ ,φ) ·∇x,θ ,φ x̂ = b , (9)

where a(x,θ ,φ) is the vector field defining the characteristics
(rays) in phase space, x̂ is the escape quantity flowing from
the boundaries of the domain along the characteristics, and b
is the source term, which is nonzero for quantities changing
along the ray (e.g., traveltime). The equation itself describes
a steady-state solution, but the correct numerical scheme for it
must realize a numerical flow of information from appropriate
boundary conditions.

Our choice of a numerical technique for solving equation 9 is
dictated by the fact that the resulting solver will be eventually
used to compute Green’s functions for 3-D Kirchhoff migra-
tion. This implies that the algorithm should generate output
on a structured rectangular grid and scale to five dimensions.
These requirements impose application of a finite-difference
(F-D) discretization. The above advection system should be
discretized in each dimension according to the upwind princi-
ple, i.e., the F-D stencil for current point ought to be skewed to-
ward the opposite direction of the flow. The first- and second-
order stencils in one dimension are given, respectively, by the
following expressions (Hirsch, 2007):

∂ x̂
∂xk
≈

{
x̂i−x̂i−1

∆xk
, ak,i > 0

x̂i+1−x̂i
∆xk

, ak,i < 0
, (10)

∂ x̂
∂xk
≈

{
3 x̂i−4 x̂i−1+x̂i−2

2∆xk
, ak,i > 0

−x̂i+2+4 x̂i+1−3 x̂i
2∆xk

, ak,i < 0
, (11)

where xk is the k-th axis of the reduced-phase space volume,
∆xk is the grid sampling along the axis, x̂i is the escape value
at the i-th node of the same dimension, and ak,i is the k-th
component of vector a(x,θ ,φ) at the same location.

Figure 1: First-order finite-difference stencil in 3-D reduced
phase space cell; white point is being computed, whereas gray
points are parent points with known values.

After discretization, equation 9 turns into a system of linear
equations,

Ā x̂ = b , (12)

where Ā is a sparse matrix comprising upwind F-D stencil co-
efficients. This system can be solved iteratively in a number
of ways. The Gauss-Seidel method is used frequently, because
it allows construction of a new solution from the previous it-
eration “in place” without generating extra copies of the data.
For faster convergence, Gauss-Seidel iterations should incor-
porate alternating directions akin to those of the fast sweeping
method for the eikonal equation (Zhao, 2005). Changing di-
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Phase-space computation of traveltimes, Part I

rections allows the solver to propagate escape values from the
boundaries inside the domain in all possible directions.

Figure 2: Boundary conditions for escape equations in 3-D re-
duced phase space with an isotropic slowness model. Domain
is periodic in θ direction.

Figure 2 shows rectangular patches (shaded in gray) of points
with known escape values (ŷ = x, T̂ = 0) at the beginning of
the computation for an arbitrary isotropic model. It is easy to
see that, in the isotropic case, advection vector components ax
and az do not change signs for the constant θ ; therefore, only
alternating directions along the angular axis are needed. How-
ever, if the model is anisotropic, sweeping directions should be
changed along all axes. Furthermore, boundary conditions in
this case might be composed of nonrectangular patches.

Accuracy and a Eulerian-Lagrangian approach

Upwind discretization and Gauss-Seidel sweeping with alter-
nating directions provide a stable numerical scheme but do not
guarantee sufficient accuracy. In order to analyze errors in a
typical solution, we tested simple F-D implementations on the
Marmousi model (Versteeg (1993),Figure 3(a)) using fine spa-
tial sampling ∆x=∆z=4 m and angular sampling ∆θ=1◦.

Figures 3(b), 3(c) and 3(d) show escape quantities T̂ , ẑ, and
x̂ computed using ray tracing for all locations and angles at
the z=2 km slice in reduced phase space. Each location at
these plots is color coded according to the exit location and
time for the ray that originated from it. All escape solutions
clearly exhibit areas of smoothly changing values and regions
of rapidly changing values – the latter is a well-known effect in
initial-value ray tracing, when a small change in initial condi-
tions causes a large change in the solution. Application of F-D
stencils in such places produces dissipation and/or dispersion,
depending on their order. Figures 3(e) and 3(f) demonstrate ex-
tracted slices for the same depth from a phase-space solution
for x̂ with first- and second-order F-D solvers, respectively.
Both solvers are clearly incapable of preserving details of the
solution in difficult places. The second-order F-D produces
less dissipation, but the error remains noticeable. Moreover,
numerical dissipation in high-gradient regions propagates into
smoother subareas and makes the whole solution unreliable for
later imaging because arrivals either get destroyed (do not exit
on the surface) or exit in incorrect places.

Another source of numerical errors is related to the footprint
of the domain corners, which shows up regardless of the com-
plexity of the slowness model. Because of the rectangular
shape of the domain, escape solutions are not differentiable
along lines emanating from the domain corners. Both F-D
stencils produce noticeable errors when applied to these re-

gions.

A usual remedy for the first problem in the Eulerian frame-
work would be adaptive mesh refinement (Plewa et al., 2005)
and/or application of an F-D stencil of a higher order. How-
ever, these methods may be computationally impractical in 5-
D phase space. In addition, the effectiveness of higher-order,
accurate discretizations is limited by the second problem, which
is related to the nonsmoothness of boundary conditions for es-
cape variables.

A different strategy that allows the inhibition of numerical dis-
sipation in advection problems is to use accurate Lagrangian
solutions at grid points where desired accuracy can not be ac-
quired with F-D stencils. Such hybrid, Eulerian-Lagrangian
schemes often enable remarkable improvement in accuracy with-
out costly grid refinement (Ferziger and Perić, 2002). Before
applying the F-D stencil to a group of upwind points, we check
if the Euclidean distances between their escape locations are
smaller than some predefined threshold. If this value is ex-
ceeded, the ray tracing is computed for the current location in
the grid. Newly obtained escape values are then locked in for
future sweeping iterations.

Our tests indicate that, even in the most complicated models,
only a small fraction of points will be computed with ray trac-
ing so as to achieve accuracy similar to that of the fully traced
escape solution (see Figure 3(d)). The vast majority of points
can still be computed with upwind finite differences.

Compared to the full Lagrangian (ray tracing) solution of the
same resolution, the cost is reduced from O

(
Nx Na N1/D

x

)
to

O(Nx Na NGS), where Nx is the number of subsurface loca-
tions, Na is the number of angular directions, N1/D

x is the cost
of ray tracing (D is the dimensionality of the spatial domain
x), NGS is the number of Gauss-Seidel iterations.

CONCLUSIONS

We have derived escape equations in reduced phase space for
general 2-D and 3-D anisotropic media and formulated gen-
eral principles for implementation of a stable and accurate al-
gorithm for computing multi-arrival traveltimes on a phase-
space grid. The proposed approach employs a hybrid Eulerian-
Lagrangian strategy and requires us to perform ray tracing only
for a small fraction of points inside the phase space volume.

Part II of this paper (Bashkardin et al., 2012) addresses the
challenges of scalability of the proposed method in 3-D, intro-
duces the concept of a narrow band that enables application of
our escape solver to large-scale problems, and demonstrates its
use for Kirchhoff imaging in the angle domain.
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Phase-space computation of traveltimes, Part I

(a) (b)

(c) (d)

(e) (f)

Figure 3: Escape traveltime (b), escape depth (c), escape position (d) computed with ray tracing at z=2 km for Marmuousi model
(a); slices for same depth extracted from finite-difference solutions with first-order stencil (e) and second-order stencil (f).

(a) (b)

Figure 4: Escape volumes for Marmousi model: depth (a), position (b).
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