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SUMMARY

Computation of multi-arrival traveltimes for angle-domain
Kirchhoff migration is most simply performed by ray trac-
ing from subsurface points. However, the high computational
cost of this approach limits its feasibility in practice. Fortu-
nately this ray-tracing procedure can be replaced by the faster
computation of escape variables in phase space. In this pa-
per, we provide details of our implementation of an escape-
equation solver and address the challenges of the scalability
of this method in 3-D. We introduce the “narrow band” con-
cept, which enables solution of large-scale 3-D problems. The
resultant algorithm produces accurate traveltimes and provides
input for angle-domain imaging.

INTRODUCTION

Kirchhoff migration has been the workhorse for iterative imag-
ing and model building in the petroleum industry for the last
thirty years. Formulated in its classic form as a surface integral
(Schneider, 1978), it provides a straightforward way to gener-
ate target-oriented output and produce offset gathers. The stan-
dard Kirchhoff kernel uses single-valued traveltimes computed
from surface locations to subsurface image points. It has been
shown that, for complex geology and in the presence of travel-
time multipathing, such a migration does not provide accurate
enough images (Operto et al., 2000), and it is prone to kine-
matic and dynamic errors (Xu et al., 2001; Stolk and Symes,
2004).

A different approach to Kirchhoff migration is based on the
generalized Radon transform (Beylkin, 1985), which introduces
accurate weights related to reflectivity for true-amplitude mi-
gration (Miller et al., 1987). However, the original formulation
for integration in the surface coordinate system does not take
into account the possible development of multi-valued trav-
eltimes and requires computation of the Beylkin determinant
(Bleistein, 1987). Both obstacles can be removed if the in-
tegration is performed in subsurface angular coordinates over
source and receiver branches. This unravels multipathing and
establishes an imaging domain in which surface data are mapped
to subsurface points as a function of scattering and dip an-
gles (Xu et al., 2001; Brandsberg-Dahl et al., 2003; Sava and
Fomel, 2003; Bleistein et al., 2005). Output angle gathers pro-
vide an ideal image representation for AVA (amplitude versus
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angle) analysis and, in theory, can be free of the kinematic and
dynamic errors mentioned above.

Rays can be simply traced from image locations to the acquisi-
tion surface so as to compute multi-arrival traveltime tables for
angle migration. Such a bottom-up approach enables one-to-
one mapping between subsurface locations/subsurface slow-
ness vector and exit locations (surface point)/exit ray param-
eter (Koren et al., 2002; Koren and Ravve, 2011), thus avoid-
ing ambiguity between different ray branches when rays are
shot from the surface (Xu and Lambaré, 2004). In practice,
bottom-up ray tracing is usually done for sparse subsurface lo-
cations (Ettrich et al., 2008). Ray shooting on a dense grid
for higher traveltime resolution appears computationally ex-
pensive. Alternatively, initial-value ray tracing can be refor-
mulated in the form of escape equations (Fomel and Sethian,
2002; Bashkardin et al., 2012), which allow for a faster com-
putation of angle-migration traveltime tables on a phase-space
grid.

In this paper, we briefly recap the principles of the stable dis-
cretization of escape equations and explain our implementa-
tion of an accurate, scalable escape-equation solver. We intro-
duce the narrow-band concept, which enables application of
the solver to large-scale 3-D problems. We demonstrate that
our algorithm produces accurate traveltimes for a 3-D subsalt
environment and show how its output can be used directly by
angle-domain migration.

KIRCHHOFF MIGRATION IN ANGLE DOMAIN

The conventional Kirchhoff imaging operator is

I(x) =
∫∫

W (x,s,r)Dtu
[

s,r,T (s,x)+T (r,x)
]

dsdr , (1)

where x is the subsurface (image) location, u is the wavefield
recorded at the surface, Dt is the waveform correction operator,
s and r are the shot and receiver positions on the surface, T is
the traveltime from the surface to x, and W is the amplitude
weight. If multipathing occurs in the subsurface, then the two-
point traveltime T may have more than one value. However,
if the integral is rewritten in a subsurface coordinate system as
(Xu et al., 2001)

I(x) =
∫∫

Ŵ (x,ps,pr)Dtu
[

ŷ(x,ps), ŷ(x,pr),

T̂ (x,ps)+ T̂ (x,pr)

]
dps dpr , (2)

where p is the phase slowness vector for a ray originating from
x and T̂ is the escape traveltime for it at the escape position ŷ
on the surface, then, unlike the surface-to-subsurface travel-
time T in equation 1, its counterpart T̂ is uniquely parame-
terized by the subsurface vector p and is strictly single-valued
(neglecting ray splitting at interfaces).
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Phase-space computation of traveltimes, Part II

Ray tracing from all subsurface locations in all directions in the
whole domain eventually generates a set of escape volumes, ŷ
and T̂ , required by migration. These volumes can instead be
computed with less computational cost with the help of escape
equations (Fomel and Sethian, 2002).

In Part I (Bashkardin et al., 2012), We derived the escape equa-
tions for general anisotropic media and constructed their corre-
sponding reduced-phase-space representations. Instead of cal-
culating each ray trajectory individually, these equations com-
pute a flow of an escape variable inside phase space by using
a local numerical stencil. Computationally, this Eulerian ap-
proach is more efficient than Lagrangian tracing of separate
rays.

IMPLEMENTATION OF ESCAPE-EQUATION SOLVER

Escape equations and discretization

For angle-domain imaging in 3-D, a minimum set of four es-
cape volumes should be computed: escape coordinates x̂, ŷ, ẑ,
and escape traveltime T̂ . Computation of each escape volume
uses its own set of boundary conditions and its own right-hand
side. The coefficients in the escape equations depend only on
the background slowness; hence the same numerical scheme is
used for all escape volumes. Other escape quantities, such as
the escape phase vector p̂, if required by a particular migration
implementation, can be computed with appropriate boundary
conditions and appropriate right-hand sides.

Figure 1: 5-D reduced phase space and boundary conditions
for escape equations (θ - inclination, φ - azimuth angle)

In Part I (Bashkardin et al., 2012), we introduced upwind fi-
nite differences of the first and second order for a stable dis-
cretization of the escape equations. The order of the F-D sten-
cil depends on the local gradient of the escape solution. After
discretization, the escape equations turn into a sparse linear
system, which we solve using Gauss-Seidel updates and alter-
nating sweeping directions.

The upper part of Figure 2 displays boundary condition patches
for a 2-D slowness model in 3-D reduced phase space. For a 3-
D model, dimensionality of the reduced phase space increases
to five (Figure 1); in other words, every location in 2-D angu-

lar grid contains a full 3-D x-y-z volume. Each of the volumes
contains boundary condition points defined on its surface.

Figure 2: Boundary conditions for escape equations (shaded
in grey) in 3-D reduced phase space (top); close-up of phase-
space grid (bottom): gray points have known values, white
points are to be computed, Point-1 and Point-2 belong to a
different phase direction than do Point-3 and Point-4.

Spatial sampling of the phase-space grid should be close to
the sampling of the slowness model. However, for a slow-
ness model with considerable gradients this is not usually suf-
ficient and leads to errors in the solution if only finite differ-
ences are used. As explained in Part I, we choose to avoid grid
refinement in such cases and fix escape values in particularly
difficult places using explicit ray tracing. For such a hybrid
scheme, angular spacing of 1◦ appears to offer the optimal res-
olution for imaging.

Scalability and the narrow band

The approach described above enables the computations of a
full escape solution for a 2-D general media. However, it keeps
the full solution vector in computer memory, which turns out
to be unfeasible for 3-D models and the corresponding 5-D
reduced phase space. For a typical model and discretization
(Nx=Ny ≈ 1000-1500 grid points, ∆x=∆y=25 m, Nz ≈ 500-
1200 points, ∆z=12.5 m,∆θ = ∆φ = 1◦) and four escape vari-
ables, a full solution vector would require between 500 and
3500 Tb of memory. We can alleviate this problem if we solve
escape equations for smaller subdivisions of angular directions
independently.

In 2-D, we can divide θ into two parts: upgoing θ =(−90◦;+90◦)
and downgoing θ = (−180◦;−90◦), (+90◦;+180◦). This di-
vision, however, means that the θ direction is not periodic any-
more. Therefore, for each new part of the phase-space grid, we
have to introduce extra boundary conditions in θ , which we
can compute using ray tracing. Given the above discretization,
this computation is a minor overhead for the algorithm.

Moreover, we can observe that the solution in each of the sub-
divisions can be computed gradually along the z direction in a
thin layer – the narrow band. This band stretches along the x
direction and contains unknown points for the current z level
and points with known values from h previous z levels (h is
the order of the F-D stencil in use). At the beginning of the
process, these known values (parent points) are provided by
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Phase-space computation of traveltimes, Part II

boundary conditions on the x-θ plane. For the current z lo-
cation of the band, the same iterative scheme with alternating
directions is used to obtain values for unknown points. The
narrow band then moves down to the next level, the uppermost
layer of parent points in the band is removed, and the newly
computed points become a layer of parents for unknown points
at the new level.

In (Nz - 1) steps, a complete solution to the downgoing divion
of the phase-space grid is obtained. The same process is re-
peated for the upgoing part in the opposite direction along z.
The full solution for all phase directions is a combination of
outputs of the two narrow-band progressions.

Similarly, in 3-D, the narrow band is divided into two parts,
downgoing and upgoing, with borders provided by ray tracing.
The size of the band in 3-D is

w = Nx Ny
Nθ

2
Nφ (h+1) .

Instead of storing the whole escape-solution vector in com-
puter memory, this technique permits keeping only a small di-
vision and building a solution in steps. For the aforementioned
phase-space size range of 500 to 3500 Tb, the corresponding
narrow band occupies 1.5 to 3.5 Tb.

We parallelize this narrow-band solver by dividing the angular
θ − φ domain into smaller subdomains, which we distribute
across the nodes of a computer cluster. These subdomains ex-
change boundary information after each sweeping iteration.

Figure 3: Escape traveltimes and positions marked on recorded
wavefield at x=6.75 km for SEG/EAGE salt model and a
source at (x,y,z) = (7,6,3) km.

RESULTS

Arrivals matching tests

We test the accuracy of the escape-equation solver in 3-D by
matching arrivals of a simulated wavefield against the com-
puted escape values for the same points in the subsurface. Fig-
ure 3 shows the wavefield recorded on the surface of the SEG/
EAGE salt model for a source under the salt body. Extracted
escape positions in the vicinity of this line and the same sub-
surface point are plotted in red and present a good match and
coverage for the wavefront positions.

Angle-domain migration

We perform integration in equation 2 over the corresponding
angular directions θ and φ and build opening- and dip-angle
gathers. For 2-D migration, the opening angle is γ = (θs −θr),
and the dip angle is ν = (θs +θr)/2. Because exit locations do
not coincide with actual source and receiver positions, we look
instead at pairs of neighbor phase directions so as to identify
a local accumulation area on the surface for the two branches
(Figure 4). Solution of the escape equations provides all the
information necessary for this processl; ẑ(x,θ) is used to find
the arrivals exiting on the surface, x̂(x,θ) is used to build
source/receiver branches, and T̂ (x,θ) pinpoints the time for
each branch. Geometrical spreading required by the amplitude
weight and KMAH index are determined from the escape solu-
tions as well. Accumulated data points are properly weighted
by hitcounts (Audebert et al., 2003).

Figure 4: Construction of source and receiver branches from
escape quantities for 2-D migration in angle domain.

Figure 6 shows the migration result of the Hess VTI model data
with the above migration approach and escape solutions com-
puted by our escape-equation solver. The low-amplitude reser-
voir target (right of the salt body, z=3-4 km) is correctly posi-
tioned and visible in the image and the gathers (Figure 7(b)).

Figure 5 presents the angle-domain image in the angle domain
for the Sigsbee2b data. Migration with the escape solutions
produces a continuous salt boundary and reveals most of the
bottom target horizon in the subsalt area.

Conclusions

We have presented the implementation of an escape-equation
solver with narrow-band support. It embodies an efficient hy-
brid Eulerian-Lagrangian algorithm and allows the calculation
of escape solutions with accuracy that are sufficient for imag-
ing in highly heterogeneous anisotropic media. We have demon-
strated that output generated by this implementation can be
used directly with angle-domain Kirchhoff migration. Because
all of the geometrical information is embedded in escape solu-
tions, they can be used for other tasks, such as angle-domain
velocity estimation.
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Phase-space computation of traveltimes, Part II

Figure 5: Angle-domain migration of Sigsbee2b model using phase-space traveltimes.

Figure 6: Angle-domain migration of Hess VTI model using phase-space traveltimes.

(a) (b) (c)

Figure 7: Opening angle gathers at 7 km (a), 11.5 km (b) and 17 km (c) for the Hess VTI image.
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