
HW 6 SOLUTIONS

MATH 122

§7.6: Improper Integrals
2. ∫ ∞

1

dx

x1.001
= lim

b→∞

∫ b

1

dx

x1.001

= lim
b→∞

[−1000x−.001]b1

= lim
b→∞

(−1000)(b−.001 − 1) = 1000.

4. ∫ 4

0

dx√
4− x

= lim
b→4−

∫ b

0

dx√
4− x

= lim
b→4−

∫ 4−b

4

− du√
u

= lim
b→4−

[−2u1/2]4−b
4

= lim
b→4−

[−2
√

4− b + 2
√

4] = 4.

8. ∫ 1

0

dr

r.999
= lim

b→0+

∫ 1

b

dr

r.999

= lim
b→0+

[1000r.001]1b

= lim
b→0+

1000[1− b.001] = 1000.

16. ∫ 2

0

s + 1√
4− s2

ds = lim
b→2−

∫ b

0

s + 1√
4− s2

ds

= lim
b→2−

(∫ 4−b2

4

−1/2√
u

du +

∫ b

0

ds

2
√

1− (s/2)2

)
= lim

b→2−
[−
√

u]4−b2

4 + [arcsin(s/2)]b0

= lim
b→2−

[−
√

4− b2 + 2 + arcsin(b/2)− 0] = 2 +
π

2
.
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32. ∫ 2

0

dx√
|x− 1|

= lim
c→1−

∫ c

0

dx√
1− x

+ lim
d→1+

∫ 2

d

dx√
x− 1

= lim
c→1−

[−2
√

1− x]c0 + lim
d→1+

[2
√

x− 1]2d

= lim
c→1−

[−2
√

1− c + 2] + lim
d→1+

[2− 2
√

d− 1] = 4.

64. Remember that we’re just proving convergence (or divergence); we don’t really
care what the value of the integral is. Since the function we’re integrating is even,∫∞
−∞

dx
ex+e−x =

∫∞
0

2dx
ex+e−x . Moreover, since ex + e−x ≥ ex we see that 1

ex+e−x ≤ 1
ex .

So, by the direct comparison test,
∫∞
−∞

dx
ex+e−x =

∫∞
0

2dx
ex+e−x ≤

∫∞
0

2dx
ex = 2.

Therefore, the integral in question converges.

§8.1: Sequences
32. The sequence is non-decreasing. Here’s a proof:

1 ≤ 2(2n + 5) for all n > 0, thus an ≤ an · 2(2n + 5) = an · 2(n+2)(2n+5)
n+2

=
(2n+3)!(2n+4)(2n+5)

(n+1)!(n+2)
= (2n+5)!

(n+2)!
= (2(n+1)+3)!

((n+1)+1)!
= an+1. Notice how I STARTED with

an obvious truth and concluded what I was trying to prove. This is the opposite
direction in which you would work out the proof on your scratchpaper, but it is
how you should write up your final draft of any proof.
The sequence is not bounded above. Here’s a proof using the technique called
“proof by contradiction”; we assume something and reach a contradiction, thus
proving that we made a false assumption:
Assume the sequence IS bounded above. If that is so, then there is a large positive

number M such that M ≥ (2n+3)!
(n+1)!

for all natural numbers n. Thus, M(n + 1)! ≥
(2n+3)! = (n+1)!(n+2) · · · (n+(n−1))(2n)(2n+1)(2n+2)(2n+3) for all n. This
leads us to conclude that M ≥ (n+2) · · · (n+(n−1))(2n)(2n+1)(2n+2)(2n+3)
for all n. However, this is ridiculous, since M would have to be bigger than any
n. No such “biggest number” exists, so we have a contradiction. Therefore, our
assumption (that the sequence is bounded above) is false.

34. The sequence is non-decreasing:
Since 1

n
> 1

n+1
, we have that− 2

n
< − 2

n+1
. This gives us that− 2

n
+ 2

n+1
is negative.

Also, 1
2n > 1

2n+1 , so 1
2n − 1

2n+1 is positive. So, clearly, − 2
n

+ 2
n+1

≤ 1
2n − 1

2n+1 . This

implies that − 2
n
− 1

2n ≤ − 2
n+1

− 1
2n+1 , so that an = 2− 2

n
− 1

2n ≤ 2− 2
n+1

− 1
2n+1 =

an+1.
The sequence is bounded above (by 2):
Since 0 > − 2

n
− 1

2n for all n > 0, we see that 2 > 2− 2
n
− 1

2n for all n.

36. This sequence diverges. To prove this, we’ll show that it is eventually bigger
than any (large) number:
Fix a large M > 0. Then, if N > M + 1, aN = N − 1

N
> (M + 1) − 1 = M .

That is, given any preassigned number M , the sequence is larger than M for all
n after M + 1. Thus, the sequence “runs off to infinity,” i.e., it diverges.



HW 6 SOLUTIONS 3

38. This sequence converges to 0. To prove this, recall that limn→∞(k)n = 0 when-
ever |k| < 1. Now, our sequence an = 2n−1

3n = (2
3
)n − (1

3
)n, and each of the terms

goes to 0, so their difference goes to 0.

44. The instructions for this exercise ask us to use the result in exercise 41, an analog
to Theorem 1. So, here goes.
The sequence is non-increasing:
22n+1 ≤ 22n+2 + 1 for all n > 0, so −22n+1 ≥ −22n+2 − 1. Thus, 2 − 22n+1 ≥
1− 22n+2, whence 2(1− 4n) ≥ (1− 4n+1), and an = 1−4n

2n ≥ 1−4n+1

2n+1 = an+1.
The sequence is not bounded below. To prove this, I’ll show that the sequence
eventually is less than any number:
Fix a large number M < 0. Since we know that 2n > n for any n > 0, if
N > −M + 1, aN = 1−4N

2N = (1
2
)N − 2N < 1 − 2−M+1 < 1 − (−M + 1) = M .

Thus, the sequence is eventually less than any preassigned number, so it is not
bounded below.

§8.2: More on Sequences

8. This sequence diverges: limn→∞
1−n3

70−4n2 = limn→∞
1/n2−n
70/n2−4

= ∞.

14. This sequence converges to 0. Note that | − 1
2
| < 1. Thus, limn→∞(−1

2
)n = 0,

by a formula in table 8.1. If the fact that this oscillates back and forth over zero
bothers you, note that each time it does that, it gets closer and closer to zero,
so the net effect is that it’s shrinking in.

20. This sequence converges to 0. Since 0 ≤ sin2(n) ≤ 1 for all n, 0 ≤ sin2(n)
2n ≤ 1

2n

for all n. Thus, since limn→∞
1
2n = 0, the squeeze theorem allows us to conclude

that limn→∞
sin2(n)

2n = 0.

44. This sequence converges to 1
e
. To see this, note that an = ( n

n+1
)n = (n+1

n
)−n =

((n+1
n

)n)−1. Then limn→∞ an = (limn→∞(n+1
n

)n)−1 = (e)−1, from table 8.1, again.

60. This sequence converges to −2.

lim
n→∞

an =
1√

n2 − 1−
√

n2 + n

= lim
n→∞

√
n2 − 1 +

√
n2 + n

(n2 − 1)− (n2 − n)

= lim
n→∞

√
n2 − 1 +

√
n2 + n

−1− n

= lim
n→∞

√
1− 1/n2 +

√
1 + 1/n

−1/n− 1

= −2.


