HW 8 SOLUTIONS

MATH 122

88.5: Comparison Tests

10. The cleanest (i.e., most mathematically rigorous) way to do this is to use the
LCT with )~ &:
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Thus, since Y + diverges, Y m diverges, by the LCT, part 3.
12. Here, we'll use the LCT with - 5:
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Thus, since Y =5 converges, ». h‘g—ﬁ)g converges, by the LCT, part 2.
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This one is easy, provided you did # 10 correctly. We’ll use the LCT with # 10
(if you don’t like the answer below, you can use the LCT with ) 1 instead):
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Thus, since » | W diverges, m diverges by the LCT, part 1.
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Yoot T has a, = S5r= = 3+ 55, and limy, oo @, = limy, oo 5 +37 = 3 # 0.

Thus, this series fails the nth term test and, therefore, diverges.

We'll use the LCT to compare this series with Y- =5 (since the higest power in
the numerator is n?, while the higest power in the denominator is n®):
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The (possibly) mysterious step in the above set of equations is the fact that
I divided the numerator and denominator by n3. Consequently, if the highest
powers of n are equal in the numerator and denominator, the limit as n — oo
is always just the ratio of the coefficients. If you don’t already know this, you
should memorize it! You shouldn’t ever have to use I’'Hopital’s rule on a rational
function. Back to the series, however, since Zn_lz converges, Z%
converges, by the LCT, part 1.

For this series, we’ll use the DCT. Certainly, 1 + 22 +32 4 --- +n% > n? so
m < n—12 However, Z# converges, so, by the DCT, zm
converges.

88.6: The Ratio Test and the nth Root Test

12.

We’ll use the nth root test for this one:
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Thus, since p = 0 < 1, the series converges, by the nth root test.
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18. For variety, I'll use the ratio test, although you can certainly use the nth root
test; on several of these types of series, the test you choose is just a matter of
taste (or whim):
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Thus, since p = e~! < 1, the ratio test proves that this series converges.

26. For this one, either test is again sufficient. I'll do the nth root test:

lim Va, = lim {

n—00 n—o00 n3 on

In this case p = % > 1, so the nth root test proves that the series diverges.

34. This one threw a lot of people off. If you try the ratio test, it’s inconclusive. So,
what’s a person to do? Well, you have to notice a couple of things:
(1) Since a; = 3, a, is always strictly positive (never zero).
(2) For n > €' n+1In(n) > n + 10, at which point %nl(g) > 1,80 Gpi1 > ay
Thus, after n > ¢°, a, > 0 and a,+, > a,. So, in particular, a, - 0. Therefore,

the series fails the good ol’ nth term test.

38. The ratio test works wonders on this one:
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The last equality is due to the fact that the highest powers of n are equal in
the numerator and the denominator, and 27 is the ratio of their coefficients.
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This, by the way, always holds (see the solution to # 28, above). Consequently,
p =27 > 1, so the ratio test tells us that this series diverges.

There are several ways to do this one, as I showed in section. I think the best
is to just get your hands dirty with things written as they are, using the ratio

test:
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So, p = % < 1, and the series converges.



