Surfaces review questions

In the following questions, when the surface involved is a quadric surface, identify the type of surface by looking at the horizontal and vertical traces, and sketch it.

Question 1.

Parametrize the following surfaces

- (a) $x^2 + 2y^2 + 3z^2 = 1$ for $y \le 0$,
- (b) $4x^2 4y^2 z^2 = 4$ for $0 \le x \le 2$,
- (c) the torus obtained by rotating the circle in the xz-plane given by $(x-a)^2 + z^2 = R^2$, for R < a, about the z-axis.

Hint: think about what your two parameters should represent geometrically.

Question 2.

Let S be the part of $z = x^2 + y^2$ that lies under the plane z = 4. Evaluate $\iint_S z \, dS$.

Question 3.

Let S be the same surface as in Question 2, and let $\mathbf{F} = \langle x, xz, xy \rangle$.

- (a) Calculate curl(**F**) and \iint_{S} curl(**F**) $\cdot d\mathbf{S}$, where we take the orientation on S given by upward pointing normal vectors.
- (b) Verify Stokes' Theorem holds.

Question 4.

Let S be the portion of the surface $z^2 = 3x^2 + 3y^2$ between the planes z = 1 and z = 3. Evaluate $\iint_{S} x^2 z^2 dS$.

Question 5.

Let S be the same surface as in Question 4, oriented with upward pointing normals. Use Stokes' Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = \operatorname{curl}(\mathbf{A})$, where $\mathbf{A} = \langle 0, xy, xyz \rangle$.