Math 304 Spring 2007

Glossary of Logical Terms'

The following glossary briefly describes some of the major technical logical
terms used in this course. The glossary should be read through at the begin-
ning and can then be consulted again as needed. The organization is logical
rather than alphabetical.

1) In the beginning. ..

Definitions: In mathematics, we need to be as precise as possible with
the terms that we use, since even one instance of imprecision can un-
couple an entire chain of reasoning. So mathematicians make an effort
to be very explicit and careful about the definitions of terms, partic-
ularly when working with something new, i.e., beyond the underlying
context. A definition is an introduction and explanation of terminology
or notation used in the subsequent mathematical text. Sometimes it
can repeat a common, widely held understanding, similar to what we
find in a dictionary definition. But, at other times, it is an explicit
device used by the author/mathematician/student as a shorthand tool
to refer to a particular new idea that they are working with. A defi-
nition is a matter of convention, to some extent arbitrary, expressing
a definite understanding between author and reader which allows the
mathematical conversation to proceed.

In presenting the terms that follow, we are giving definitions in the
sense just described.

True and false statements: Mathematicians are constantly dealing with
assertions (meaningful, declarative sentences) that correctly or incor-
rectly describe some underlying mathematical reality or context. Such
an assertion is called a true statement when it does give a correct
description and a false statement when it does not. In general, a
meaningful, declarative sentence that is either true or false is called
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simply a statement. (Some mathematicians and logicians use the
term “proposition” for this, but we will not.)

The two important aspects of this notion of a mathematical statement
are: (1) it is either true or false but not both, and (2) its truth (or its
falsity) is a feature of the statement itself and does not depend on our
ability to verify it.

The word “true” (and the word “false”) may also be used in a pro-
visional sense, as when we assume that a certain statement is true and
then reason based on this assumption. Paradoxically, such usage is
valid even if our original assumption is counterfactual. For example,
we may assume that a statement is true and then use reasoning to show
that this assumption was incorrect. Indeed, this constitutes a useful
technique of proof—proof by contradiction—that we’ll be discussing
further later.

Axiom: A foundational statement or basic stipulation or assumption,
taken to be true and used as a basis for further reasoning.

Postulate: A stipulation or assumption similar to an axiom but with a
slightly more provisional status.

2) Getting going. ..

Statements, axioms, etc., are static entities, but mathematics is dynamic.
New mathematical statements are constantly being produced. It is, therefore,
very important that there be clearly defined rules for deriving new statements
from old.

Rule of inference: A rule that allows us to proceed from a given state-
ment to a subsequent statement in such a way that whenever the given
statement is true, then the subsequent statement is also true. (See
modus ponens below.)

A caveat, however: if the given statement is false, then there is no
predicting the truth or falsity of the subsequent statement.

A sequence of applications of rules of inference is sometimes called a
valid chain of reasoning.

Proof: A proof is a method for establishing the truth of a mathematical

statement by arriving at it via a valid chain of reasoning from one or
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more mathematical statements that are known to be true. One of the
goals of this course is to learn various techniques for producing such
valid chains of reasoning. A statement is called provable if it is the
end result of a proof. Thus, every provable statement is true. Note,
however, that we are not asserting that every true statement is provable.

3) Where are we headed?

The goal of mathematics is to obtain a certain kind of specialized knowl-
edge, much of which is formulated in terms of true mathematical statements.
Some of these statements can be very elementary or obvious and others can
be highly complex or surprising. Certain terminology has been adopted to
signify the relative importance of such statements.

Theorem: A theorem is a true, significant mathematical statement whose
truth has been established by a proof. People may differ as to the sig-
nificance of this or that true mathematical statement, but most math-
ematicians agree that, to qualify as a theorem, such a statement must
have import or application beyond the immediate context in which it
appears.

Proposition: This term is often used for a “lesser” theorem, that is, for
a true mathematical statement of middle-level significance. The term
is also sometimes used instead of the word “statement,” as already
mentioned, but we won’t use it in this way in this course.

Lemma: This term refers to a true mathematical statement, established
via a proof, whose main importance is that it forms a steppingstone to
a proposition or a theorem. A lemma does not usually have significance
beyond this and is often of an elementary character.

Corollary: This is usually a theorem that is an immediate consequence
of another theorem. So, we say “Statement A is a corollary of Theorem
B.”

Conjecture: This term frequently appears in mathematical literature
to designate a statement whose truth appears to the author to be very
likely but which has not yet been established (by a proof).



Exercise 1. Which of the following are statements and which are not?
Explain your choices.

(

2)1+1=2.

(3) 1+1=3.

(4) Sam ate a sandwich.
(5) What time is it?
(6) Hands up!

(7) This sentence is false.

(8) The dog barked dream clouds of waxen votes.

Exercise 2. (A discussion problem.) Mathematics also proceeds by paradigms
that do not explicitly involve axioms, inferences, proofs, and theorems. For
example, much of mathematics is devoted to solving various kinds of equa-
tions. Consider, for example, the simple equation 2z + 3 = 7. Can you show
how solving this equation can be formulated as a theorem that can be proved?

4) Some of the pieces

Statements, whether they occur in mathematics or not, can often be bro-
ken into simpler subsidiary statements that are linked by certain logical
connectives. The original statement is then sometimes called a compound
statement. The following list describes these briefly; more details will be
presented later.

Throughout the following, we let P and () stand for any given statements.

Negation: [t is false that P or, more briefly, notP. This asserts the
contrary of what P asserts and is called the negation of (the subsidiary
statement) P. (Negation is called a logical connective even though it
applies to only one statement.)

For good English usage, we may have to modify the resulting state-
ment. For example, if P is the statement “I can’t hear you,” then “It
is false that I can’t hear you” is grammatically correct but awkward,
and “not I can’t hear you” is not grammatically correct. So we may
modify these to something like “I can hear you.” Similar common-sense

modifications may be used for the other connectives.
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Conjunction: P and (). This asserts both P and () and is called the
congunction of (the subsidiary statements) P and Q.

For example, the conjunction of the two statements, “The moon was
full last night” and “The Knicks beat the Bullets,” is the assertion,
“The moon was full last night and the Knicks beat the Bullets.”

More generally, when a statement asserts every one of a set of sub-
sidiary statements, we say that the statement is the conjunction of the
subsidiary statements.

Disjunction: P or (. This asserts that at least one of the two (sub-
sidiary) statements P or @) is true and is called the disjunction of the
statement P and the statement Q).

Notice that this notion of disjunction includes the case in which both
P and () are true and is sometimes called inclusive disjunction. In
another form of disjunction, called exclusive disjunction, either one of
P and @) is asserted but not both. For the most part, we do not use this
form of disjunction, but when we do, we’ll explicitly call it exclusive
disjunction.

As an example of disjunction, we use the statements just discussed
above: the statement “The moon was full last night or The Knicks
beat the Bullets,” is the disjunction of the statement “The moon was
full last night” and the statement “the Knicks beat the Bullets.”

More generally, when a statement asserts that at least one of a set
of subsidiary statements is true, then we say that the statement is the
disjunction of the subsidiary statements.

Implication: P implies (). This asserts that () is true whenever P is
true. However, it asserts nothing about the truth or falsity of ) in the
case that P is false.

Implication can have a variety of different English forms. In addition
to “P implies (),” it is often expressed as “if P then ().” We’ll mention
other forms later.

Using the (admittedly silly) example given earlier, we can consider
the implication “If the moon was full last night, then the Knicks beat
the Bullets.”

For the next five items, we shall be referring to
the implication P tmplies Q.

Hypothesis: P is called the hypothesis of the implication.
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Conclusion: @ is called the conclusion of the implication.

Converse: () implies P is called the converse of the implication.

Inverse: not P implies not() is called the inverse of the implication.

Contrapositive: not() implies notP is called the contrapositive of the
implication.

Tautology: Compound statements may be formed by repeatedly ap-
plying one or more of the foregoing connectives to various subsidiary
statements. Sometimes, the very logical structure of the compound
statement forces it to be true no matter what the truth status of the
subsidiary statements. In this case, we call it a tautology. For example,
the disjunction of the two statements “The moon was full last night”
and “It is false that the moon was full last night” is a true statement
whether or not the moon was full last night.

Contradiction: This is defined to be a compound statement which is
the opposite of a tautology: it is always false no matter what the truth
status of the subsidiary statements. Another way of saying this is that
a contradiction is the negation of a tautology, and a tautology is a
negation of a contradiction.

The simultaneous assertion of any statement and its negation, i.e,
for any statement P, the statement P and notP, is an example of a
contradiction, as follows immediately from our concept of truth. P and
not P is perhaps the form of contradiction most widely used. Indeed,
the literal meaning of the verb “to contradict” is to assert the contrary
of (what has been asserted), which is precisely what P and notP does.

5) More terminology from the propositional calculus...

Truth-value: A numerical value, usually 1 or 0 assigned to a statement
to indicate whether it is true or false. The truth-value of a compound
statement can be algebraically expressed in terms of the truth-values
of its subsidiary statements provided one uses ‘mod two’ arithmetic.

Truth-table: Because the truth-value of a compound statement S de-
pends only on the truth-values of its subsidiary statements Sy, So, ..., .S,
we can construct a table that lists all 2" possible truth-values for Sy, .5, . ..
and, next to each, lists the truth-value of S. This is called the truth-
table of S.
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Logical construction: A procedure that starts with some given state-
ments and applies a finite number of logical connectives to them to
obtain a compound statement.

Logical expression: A logical operation may be displayed symbolically
by using logical connectives and parentheses, subject to various forma-
tion rules. This display is a logical expression.

Atomic statement, atom: A statement represented as an ingredient in
a logical expression that is not viewed as being reducible into further
subsidiary statements.

Logical equivalence: Two logical expressions are said to be logically
equivalent if they have the same atoms and if any assignment of truth-
values to these atoms produces the same truth-value for each expres-
sion. This can be checked by comparing truth-tables.

Modus ponens: The most basic rule of inference: If statements A and
A = B are both true, then we may infer that B is true.



