MATH 3320, HOMEWORK #7 — SOLUTIONS

DUE MONDAY, OCTOBER 15

1. (15 points) Use Euler’s criterion to determine if 2 and 3 are squares modulo 79.

Solution: We must find 239 (mod 7)9 and 3%° (mod 7)9 and determine whether they are 1 or
—1.

We evaluate these by repeated squaring (you should show work to at least around the level of
detail given below):

2l =2 22 =4, 24516, 28 =19, 216 = 45, 232 = 50

Now (21)( 2)(24)(2%2) = 1, so 2 is a square.

3 =3,32=9 3 =2 35 =4 316 =163 = 19

ow (21)(22)(2%)(2%?) = —1, so 3 is not a square.

2. (15 points) We know that if p is a prime, then there exists a primitive root modulo p. Use
this fact to give a direct proof that (_73) = 1 when p = 1 (mod 3). (Hint: There is an element
m € (Z/pZ)* of order 3. Show that (2m + 1)? = —3.)

Solution: We are given p =1 (mod 3). We first show that there exists an element m of order
3 modulo p.

Take a to be a primitive root mod p. Since p may be written in the form 3k + 1, we may set
m = a*. Now certainly (a*)? =1 (mod p). On the other hand if a*, when raised to a power less
than 3, were to become congruent to 1 mod p, it would follow that a to a power of less than 3k
would be congruent to 1, contradicting the fact that a is a primitive root. It follows that a* has
order exactly 3. Alternatively, we may simply note that 3|p — 1 and apply problem 1 from the last
homework.

Now we have that p divides m? — 1. Since m3 — 1 factors as (m — 1)(m? +m + 1), it follows that
p must divide either m —1 or m? +m+1. Since m # 1 (mod p), it follows that p/m? +m+ 1. Thus
m?+m+1 = 0. Now observe that we may write (2m+1)? = 4m?+4m+1 = 4(m?+m+1)-3 = -3
(mod p). It follows that —3 is a quadratic residue mod p.

3.

(a) (10 points) Fix a prime p =3 (mod 4) and an integer a that is a quadratic residue modulo
p. Prove that a(?*Y/4 is a solution to the congruence

2?=a (mod p).

Proof. If (a,p) = 1, then suppose
a=g? (mod p)

a®=V/2(p) = <Z> —1

(a(p+1)/4)2 =aPt2=q@P V2. 4=1.a=0a (mod p).
1

for some g. Then

Thus
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If (a,p) = p, then
2
(a(p+1)/4> =0=a (mod p).
]

Comment: Legendre symbol can take 1, —1 or 0. The last case, where (a,p) = p and
(%) = (), is likely to be missed.

(b) (10 points) Use part (a) to solve the equation x? = 37 (mod 127).
Solution: 127 is prime. Use Euler’s criterion,

37027-1/2 = 3763 — 1 (;mod 127)

So 37 is a quadratic residue modulo 127. Because 127 = 3 (mod 4), according to (a), the
solution to #? = 37 (mod 127) is

x =371/ = 3732 = 372" = 52 (mod 127)

Another solution is
127 —-52=75 (mod 127)

There are two solutions: 52 and 75.
Comment: You need to check the conditions p = 3 (mod 4) and ”a is a quadratic
residue”. There are two solutions of the quadratic modulo equation.

4. (20 points) Fix an odd prime p. Let n be the smallest positive integer that is not a square
modulo p. Prove that n is a prime.

Solution: Suppose not. Since n cannot be 1 (as this is obviously a square), n must be com-
posite. Thus it may be written in the form n = ab, where a,b < n. Now by the definition of n,

we have (%) = —1 but (%) = <%> = 1. The multiplicativity of the Legendre symbol, however,

implies that <%) (%) = <%) This gives a contradiction. We conclude that n must be prime.
5. (Extra Credit) Suppose that a teacher proposes to his n students at recess that they play the
following game. The n children are to sit in a circle, and are numbered 0, ..., n—1 clockwise. Their
teacher walks clockwise around the children and hands out gumballs from a seemingly inexhaustible
bag according to the following rule:

The teacher first select one child (“0”) and gives them a gumball. Then he skips a child (“17)
and gives a gumball to the next child (“2”). Then he skips 2 children (“3” and “4”) and gives a
gumball to the next one (“5”). Then he skips 3... etc.

(a) (5 points) What are the values of n for which eventually (maybe after many rounds) each
child ends up with at least one gumball? Furthermore, for such an n, how many gumballs
need to be passed out? (Hint: Turn into a problem modulo n. What is ;" , k for various
values of m?)

Further Hint: The gumballs end up at 0 and numbers of the form
S(m) = % (mod n). You need to determine for what values of n the equation
S(m) = a (mod n) has a solution for every a. Use the Chinese remainder theorem, and
your knowledge about solving quadratic equations. After that, do an example, and analyze
S(ml) = S(mg)

Solution: The mth gumball will be given to the child congruent to S(m) = (mﬁéﬁ
(mod n). To ensure every child gets gumballs, S(m) = « (mod n) should have solution for
every a. Suppose n = pi'----- py" where p; for i = 1,--- , k are distinct prime numbers and
e; > 0. Then

S(m)=a (modp;), i=1,---k
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have solution for every a.. Because S(m) is quadratic, when p; is odd, there exists o making
the equation having no solution. Therefore, n can only be a power of 2.
When n = 2°, we can prove everyone can get gumballs by showing
(m+2)(m—1)
2
has solution for every «, which is equivalent to

m?+m—2—2a=0 (mod 2¢"1)

has solution for every a. Let f(m) =m?+m —2—2a. Then f/(m) =2m+1=1 (mod 2).
According to Hensel’s lemma, the modular equation always has solutions.

=oa (mod 2°)

Last, we prove 2n — 1 gumballs need to be passed out. Let & = —1 (mod 2), consider
2 -1
(m + )2(m ) =—1 (mod 2°).
Then

mm+1)=m+2)(m—1)+2=0 (mod 2°™)
Since m and m + 1 are relatively prime, one of them must be a multiple of 2¢*1:
m=0 (mod 2™ orm=-1=2"'-1 (mod 2°™)

So for child number n — 1, the first gumball he/she gets is the 2¢T! — 1 = 2n — 1th gumball.
(b) (5 points) Suppose you already know about this game (you're a transfer student and they
played it at your old school), know that a total of n students will be playing, and know that
your teacher will always start by giving the person closest to the door a gumball. What
position (of {0,1,...,n—1}) should you pick, if you want to get the most gumballs? Does it
depend on how many gumballs are passed out? (e.g. if the teacher stops after n gumballs,
or after {; gumballs, or stops after everybody gets one, or hands out gumballs forever?)
Further Hint: Here n is arbitrary. Use the Chinese Remainder Theorem.
Solution: For student numbered as «, consider the number of solutions of

(m+2)(m—1)
2
m?+m—2-2a=0 (mod 2n)

a  (mod n)

Suppose m1, my are both solutions, we have
(m1 —mg)(my +m2+1)=0 (mod 2n)

Suppose C(m) is the child get the mth gumball. We claim C(m) has period n if n is odd,
and period 2n if n is even. That is because if m; = mg + n, njm; — mq, and if n is odd,
then mj +ma 4+ 1 = 2mg +n + 1 is even, so 2n|(m; — ma)(m1 + ma + 1). If n is even, then
my1 +mg + 1 is odd, thus 2 f m; + ma + 1.

When n = p is an odd prime number, (1,p—2), (2,p—3), ..., (p—1)/2—1,(p—1)/2+1)
are pairs of (my, mg) where C(my) = C(mz). And children corresponding to those C(m)
can get 2 gumballs in one period. The child with number C((p —1)/2) = pZT_g (mod p) will
get 1 gumball in a period.

When n = p¢ for some odd prime p, let f(m) = m2+m—2—2C(myq) for some 0 < my < n.
For those mg where f’(mg) # 0 (mod p), there are 2 solutions to m? +m —2—2C(mg) =0
(mod n). For those mg where f'(mg) = 2m + 1 = 0 (mod p), suppose p¥|f(mg) and
pFt1 f f(mg). By Hensel’s lemma, there are 2pF~! solutions if C(mg) # C((n — 1)/2), and
there are p*~! solutions otherwise.

When n = 2¢ the period of C(m) is 2n. Child C(m) will also receive the gumball
2n —m —1if m < 2n — 1. The (n — 1)th child will receive (2n — 1)th and (2n)th gumballs.
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When n = 2°0p* - pZ’“ , consider « = (mod p5*) respectively and use Chinese Remainder
Theorem to calculate the number of gumballs.



