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A Note from the Author

Using This Book

This book serves as a fairly terse introduction to the exciting field of coding theory. You can
supplement your reading of this book with any of the books in the bibliography. The more you read,
the more you will learn.

The author believes that reading actively is infinitely more productive than reading passively. Ac-
cordingly, as you read this book, you will notice reading questions interspersed throughout the text.
These questions are meant to be straight-forward checks of your reading comprehension. You should
work out each of these questions as you read. You can check your answers with the brief solutions
provided at the end of each chapter. Be sure to try the questions before looking at the answers!

Most sections incorporate examples using Gap to help students see the power of using software in
the study of error-control codes. You should work through the Gap examples to get comfortable
with this software.

More challenging homework problems are found at the end of each chapter. Brief solutions to certain
homework problems are found at the very end of the book.

This book is a living document. It is recommended that you do not print sections far in advance,
as the document is subject to continual improvement. In the electronic version, hyperlinks facilitate
the navigation through the book. Constructive suggestions for the improvement of this book are
always welcome.
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1 Introduction to Coding Theory

Imagine that you are using an infrared link to beam an mp3 file from your laptop to your PalmPilot.
It is possible to model the transmitted data as a string of 0s and 1s. When a 0 is sent, your PalmPi-
lot usually receives a 0. Occasionally, noise on the channel, perhaps in the form of atmospheric
disturbances or hardware malfunctions, causes the 0 to be received as a 1. We would like to develop
ways to combat these errors that can occur during data transmission.

Error-control codes are used to detect and correct errors that occur when data are transmitted across
some noisy channel or stored on some medium. When photographs are transmitted to Earth from
deep space, error-control codes are used to guard against the noise caused by lightning and other
atmospheric interruptions. Compact discs (CDs) use error-control codes so that a CD player can
read data from a CD even if it has been corrupted by noise in the form of imperfections on the CD.

Correcting errors is even more important when transmitting data that have been encrypted for
security. In a secure cryptographic system, changing one bit in the ciphertext propagates many
changes in the decrypted plaintext. Therefore, it is of utmost importance to detect and correct
errors that occur when transmitting enciphered data.

The study of error-control codes is called coding theory. This area of discrete applied mathematics
includes the study and discovery of various coding schemes that are used to increase the number of
errors that can be corrected during data transmission. Coding theory emerged following the publi-
cation of Claude Shannon’s seminal 1948 paper, “A mathematical theory of communication,” [6]. It
is one of the few fields that has a defined beginning; you can find a list of historical accomplishments
over the last 50 years at

http://www.ittc.ku.edu/ paden/reference/guides/ECC/history.html.

Error control coding is only part of the processing done to messages that are to be transmitted
across a channel or stored on some medium. Figure 2 shows a flow chart that illustrates how error
control coding fits in with the other stages of data processing.

The process begins with an information source, such as a data terminal or the human voice. The
source encoder transforms the source output into a sequence of symbols which we call a message m;
if the information source is continuous, the source encoding involves analog-to-digital conversion.
Throughout this book, we usually assume that the symbols used are from the binary set {0, 1}
and call these symbols bits. If security is desired, the message would next be encrypted using a
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cipher, the subject of the field of cryptography. The next step is the error-control coding, also called
channel coding, which involves introducing controlled redundancy into the message m. The output
is a string of discrete symbols (usually binary in this book) which we call a codeword c. Next, the
modulator transforms each discrete symbol in the codeword into a wavelength to be transmitted
across the channel. The transmission is subject to noise of various types, and then the processes are
reversed.

Historically, decreasing the error rates in data transmissions was achieved by increasing the power
of the transmission. However, this is an inefficient and costly use of power. Moreover, increasing the
power only works well on certain channels such as binary symmetric channels; other channels, such
as fading channels, present additional challenges. Hence, we will be studying more power- and cost-
efficient ways of reducing the error rates. In particular, we will be studying linear, cyclic, BCH, and
Reed-Solomon codes.

Through our study of error-control codes, we will model our data as strings of discrete symbols, often
binary symbols {0, 1}. When working with binary symbols, addition is done modulo 2. For example,
1+1 ≡ 0 (mod 2). We will study channels that are affected by additive white Gaussian noise, which
we can model as a string of discrete symbols that get added symbol-wise to the codeword. For
example, if we wish to send the codeword c = 11111, noise may corrupt the codeword so that the
r = 01101 is received. In this case, we would say that the error vector is e = 10010, since the
codeword was corrupted in the first and fourth positions. Notice that c + e = r, where the addition
is done component-wise and modulo 2. The steps of encoding and decoding that concern us are as
follows:

m → Encode → c → Noise → c + e = r → Decode → m̃

where m is the message, c is the codeword, e is the error vector due to noise, r is the received word
or vector, and m̃ is the decoded word or vector. The hope is that m̃ = m.

1.1 Introductory Examples

To get the ball rolling, we begin with some examples of error-control codes. Our first example
is an error-detecting, as opposed to error-correcting, code. A code that can only detect up to t
errors within a codeword can be used to determine whether t or fewer errors occurred during the
transmission of the codeword, but it cannot tell us exactly what error(s) occurred nor can it fix the
error(s). A code that can correct up to t errors can be used to actually correct up to t errors that
occur during the transmission of a codeword. This means that the code detects that errors occurred,
figures out what errors occurred in which positions, and then corrects the errors.

Example 1.1.1. (The ISBN Code) The International Standard Book Number (ISBN) Code is
used throughout the world by publishers to identify properties of each book. The first nine digits
(bounded between 0 and 9, inclusive) of each ISBN represent information about the book including
its language, publisher, and title. In order to guard against errors, the nine-digit “message” is
encoded as a ten-digit codeword. The appended tenth digit is a check digit chosen so that the whole
ten-digit string x1x2 · · ·x10 satisfies

10∑

i=1

ixi ≡ 0 (mod 11). (1)

If x10 should be equal to 10, an ‘X’ is used.

The ISBN code can detect any single error and any double-error created by the transposition of two
digits. A great course project would be to figure out why this code has this error-detecting capability
and compare this with other check-digit schemes used on airplane tickets, in bank numbers on checks,
in credit card numbers, in the Universal Product Code (UPC) found on groceries, etc.X
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Question 1. Are either of the following strings valid ISBNs: 0-13165332-6, 0-1392-4101-4?

In some states, drivers’ license numbers include check digits in order to detect errors or fraud. In
fact, many states generate license numbers through the use of complicated formulas that involve both
check digits and numbers based on information such as the driver’s name, date of birth, and sex.
Most states keep their formulas confidential, however Professor Joseph Gallian at the University of
Minnesota-Duluth figured out how several states generate their license numbers. Some of his results
and techniques are summarized in

www.maa.org/mathland/mathtrek 10 19 98.html.

Another website that has useful discussions about check digits is

http://www.cs.queensu.ca/home/bradbury/checkdigit/index.html.

Example 1.1.2. (The Repetition Code) This example is a simple error-correcting code. Suppose we
would like to send a 1 to signify “yes”, and a 0 to signify “no.” If we simply send one bit, then there
is a chance that noise will corrupt that bit and an unintended message will be received. A simple
alternative is to use a repetition code. Instead of sending a single bit, we send 11111 to represent 1
(or yes), and 00000 to represent 0 (or no). Since the codewords consist of 0s and 1s, this is called
a binary code. We say that the code’s alphabet is the set {0, 1}, with all arithmetic done modulo
2. Alternatively, we can say that this code alphabet is the finite field with two elements, GF (2).
Finite fields will be formally defined in Section 2.2. Under certain reasonable assumptions about the
channel in use, the receiver decodes a received 5-tuple using a “majority vote”: The received 5-tuple
is decoded as the bit that occurs most frequently. This way, if zero, one, or two errors occur, we
will still decode the received 5-tuple as the intended message. In other words, the receiver decodes a
received 5-tuple as the “closest” codeword. This is an example of nearest neighbor decoding, which
is discussed in more detail in Section 1.3. X

Question 2. How many errors can a binary repetition code of length 10 correct? How many errors
can it detect?

Notice that transmitting a message that has been encoded using this repetition code takes five
times longer than transmitting the uncoded message. However, we have increased the probability
of decoding the received string as the correct message. A complete discussion on this probability is
found in Section 1.3.

Guava has a built-in function for creating repetition codes. For example, the command

gap> C := RepetitionCode(5, GF(2));;

creates a binary repetition code of length 5 and stores it as C. The second argument GF(2) indicates
that each component of the codewords is in {0, 1} and the bitwise operations are performed modulo
2. For now, we will simply look at the generated codewords: The command AsSortedList will list
all codewords of a code. With C defined by our first command, we can now type:

gap> cw := AsSortedList(C);

which will output

[[0000000], [1111111]]

Question 3. Use Gap (Guava) to generate a repetition code of length 15 and list its codewords.
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Example 1.1.3. (The 2-D Parity Check Code) In the ISBN code, we saw that a check digit could
be appended to a message in order to detect common errors. It is possible to extend this idea
to correct single errors by first arranging a message into a matrix, or two-dimensional array. For
example, suppose we want to encode the 20-bit message 10011011001100101011. First, we arrange
this message into a 4× 5 matrix

M =




1 0 0 1 1
0 1 1 0 0
1 1 0 0 1
0 1 0 1 1


 .

Then, we look at the parity of each row, meaning that we check if there is an even or odd number
of 1’s in the row. In other words, we check if the sum of the entries in a row is even or odd. Then,
we calculate and append a parity check bit to the end of each row, where a parity check bit is a
bit chosen to ensure that the overall sum of the extended row is even. After appending a parity
check bit to each row, we have four rows of length 6. We then repeat the process by calculating and
appending parity check bits along along each of the original columns, which gives the following:

C =




1 0 0 1 1 1
0 1 1 0 0 0
1 1 0 0 1 1
0 1 0 1 1 1
0 1 1 0 1 ♠




.

The entry in the lower right hand corner marked by ♠ is then calculated as the parity check bit of
the new row (in other words, the ♠ entry is calculated as the parity of the parity bits that were
calculated along the original columns).

We therefore use the matrix

C ′ =




1 0 0 1 1 1
0 1 1 0 0 0
1 1 0 0 1 1
0 1 0 1 1 1
0 1 1 0 1 1




to send a stream of 30 bits across our noisy channel.

To see how this extended matrix can correct a single error, suppose that the receiver arranges the
received 30 bits into a 5× 6 matrix and obtains

R =




1 0 0 1 1 1
0 1 1 0 0 0
1 1 0 1 1 1
0 1 0 1 1 1
0 1 1 0 1 1




.

The receiver then checks the parity of each row and column: If all parities check to be even, then we
assume there are no errors. (Is this a fair assumption?) However, in this example, we see that the
parities of the third row and fourth column are odd. Therefore, we conclude that there is an error
in the (3, 4) position, correct the error, and proceed to read the message. X

Traditionally, the alphabets used in coding theory are finite fields with q elements, GF (q), formally
defined in Section 2.2. We say that a code is q-ary if its codewords are defined over the q-ary alphabet
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GF (q). The most commonly used alphabets are binary extension fields, GF (2m). This book focuses
on codes with the familiar alphabet GF (2), which are known as binary codes. The ISBN code is
11-ary since its symbols come from the set {0, 1, . . . , 10}, while our repetition code and 2-D Parity
Check Code are both binary.

1.2 Important Code Parameters

When developing codes, there must be a way to decide which codes are “good” codes. There are
three main parameters used to describe and evaluate codes. The first parameter is the code length,
n. In the repetition code of Example 1.1.2, the code length is 5, since the codewords 00000 and
11111 each contain 5 bits. In this book, we restrict our discussion to block codes, which are codes
whose codewords are all of the same length. Since error-control codes build redundancy into the
messages, the code length, n, is always greater than the original message length, k.

The next parameter that we consider is the total number of codewords, M . In Example 1.1.2, the
total number of codewords is 2.

The third parameter measures the distance between pairs of codewords in a code. In order to explain
clearly the notion of distance between codewords, we need a few definitions.

Definition 1.2.1. The Hamming weight w(c) of a codeword c is the number of nonzero components
in the codeword.

Example 1.2.2. w(00000) = 0, w(11111) = 5, w(1022001) = 4, w(1011001) = 4. X

The Guava function WeightCodeword(C) can be used to determine the weight of a given codeword:

gap> WeightCodeword(Codeword("1011001"));
4

Question 4. Use Gap to confirm the weights given in Example 1.2.2.

Definition 1.2.3. The Hamming distance between two codewords d(x,y) is the number of places
in which the codewords x and y differ. In other words, d(x,y) is the Hamming weight of the vector
x− y, representing the component-wise difference of the vectors x and y.

Example 1.2.4. d(0001, 1110) = 4, since the two codewords differ in all four positions. d(1202, 1211) =
2, since the two codewords differ in the last two positions.

The Guava function DistanceCodeword will return the Hamming distance of two codewords. For
example:

gap> a := Codeword("01111", GF(2));;

gap> b := Codeword("11000",GF(2));;

gap> DistanceCodeword(a,b); 4

Question 5. Calculate d(00111, 11001). How about d(00122, 12001)? Check your answers using
Gap.

Sometimes non-binary codes are evaluated using alternate distance metrics, but in this book, distance
will always refer to Hamming distance. To read about other distance functions used to evaluate
codes, see [7].

Definition 1.2.5. The minimum (Hamming) distance of a code C is the minimum distance between
any two codewords in the code: d(C) = min{d(x,y) | x 6= y, x,y ∈ C}.
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Example 1.2.6. The binary repetition code of length 5 has minimum distance 5 since the two
codewords differ in all 5 positions.

Question 6. What is the minimum distance between any two ISBN codewords?

Definition 1.2.7. The Hamming distance d is a metric on the space of all q-ary n-tuples which
means that d satisfies the following properties for any q-ary n-tuples x,y, z:

1. d(x,y) ≥ 0, with equality if and only if x = y.

2. d(x,y) = d(y,x)

3. d(x,y) ≤ d(x, z) + d(z,y)

The third property above is called the triangle inequality, which should look familiar from Euclidean
geometry. The proofs of these properties are left as problems at the end of this chapter.

The notation (n,M, d) is used to represent a code with code length n, a total of M codewords, and
minimum distance d. One of the major goals of coding theory is to develop codes that strike a
balance between having small n (for fast transmission of messages), large M (to enable transmission
of a wide variety of messages), and large d (to detect many errors).

Example 1.2.8. Let C = {0000, 1100, 0011, 1111}. Then C is a (4, 4, 2) binary code. X

It is possible to construct a code in Gap by listing all of its codewords. To do this, we can use the
function ElementsCode. For example:

gap> C := ElementsCode(["0000", "1100", "0011", "1111"], GF(2));;

constructs the code given in Example 1.2.8.

If we need help determining the key parameters for a code, we can use built-in functions such as:

gap> n := WordLength(C);
4

gap> M := Size(C);
4

gap> d := MinimumDistance(C);
2

The final important code parameter is a measure of efficiency:

Definition 1.2.9. The rate of a code is the ratio k
n of message symbols to coded symbols.

Example 1.2.10. The rate of the ISBN code is 9
10 since each 9-digit message is encoded as a 10-digit

message.

Example 1.2.11. The rate of the binary repetition code of length 5 is 1
5 since each 1-bit message

is encoded as a 5-bit message.

Example 1.2.12. The rate of the 2-D Parity Check code 20
30 or 2

3 since each 20-bit message is
encoded as a 30-bit message.

High rate codes are desirable since a higher rate code implies a more efficient use of redundancy
than a lower rate code. In other words, a higher rate code will transmit k message symbols more
quickly than a lower rate code can transmit the same k message symbols. However, when choosing a
code for a particular application, we must also consider the error-correcting capabilities of the code.
A rate 1 code has the optimal rate, but has no redundancy and therefore offers no error control.
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1.3 Correcting and Detecting Errors

Talking about the number of errors in a received codeword is equivalent to talking about the distance
between the received word and the transmitted word. Suppose a codeword c = c0c1 . . . cn−1 is sent
through a channel and the received vector is r = r0r1 . . . rn−1. The error vector is defined as
e = r − c = e0e1 . . . en−1. The job of the decoder is to decide which codeword was most likely
transmitted, or equivalently, decide which error vector most likely occurred. Many codes use a
nearest neighbor decoding scheme which chooses the codeword that minimizes the distance between
the received vector and possible transmitted vectors. For example, the “majority vote” scheme
described for our binary repetition code is an example of a nearest neighbor decoding scheme. A
nearest neighbor decoding scheme for a q-ary code maximizes the decoder’s likelihood of correcting
errors provided the following assumptions are made about the channel:

1. Each symbol transmitted has the same probability p (< 1/2) of being received in error (and
1− p of being received correctly)

2. If a symbol is received in error, that each of the q − 1 possible errors is equally likely.

Such a channel is called a q-ary symmetric channel, and we assume throughout this book that the
channels involved are symmetric. This implies that error vectors of lower weight will occur with
higher probability than error vectors of higher weight.

When analyzing codes, we often need to talk about probabilities of certain events occurring. For
example, we need to compare the probabilities of the occurrences of lower weight errors versus higher
weight errors, and we need to ascertain the probability that a codeword will be received in error.
Informally, the probability that an event occurs is a measure of the likelihood of the event occurring.
Probabilities are numbers between 0 and 1, inclusive, that reflect the chances of an event occurring.
A probability near 1 reflects that the event is very likely to occur, while a probability near 0 reflects
that the event is very unlikely to occur. When you flip a fair coin, there is a probability of 1/2 that
you will get tails and a probability of 1/2 that you will get heads.

But what about the probability of getting three heads in three flips of a fair coin? Since each of
these events is independent, meaning that each of the three flips does not depend on the other flips,
we can use the multiplicative property of probabilities: The probability of getting three heads in the
three coin tosses is 1

2 · 1
2 · 1

2 = 1
8 .

When dealing with a q-ary codeword of length n, we will often need to ask the following question:
What is the probability that e errors occur within a codeword of length n? Let’s start with some
small examples that work up to this answer.

Example 1.3.1. Given the assumptions of a q-ary symmetric channel with symbol error probability
p, consider the probability that no errors will occur when transmitting a q-ary codeword of length
n. Since each symbol has probability (1 − p) of being received correctly, the desired probability is
(1− p)n.

Example 1.3.2. Given the assumptions of a q-ary symmetric channel, consider the probability that
exactly one of the n symbols in a q-ary codeword of length n is received in error. The probability
that the first symbol is received in error and the remaining n − 1 symbols are received correctly is
p(1− p)n−1. Similarly, the probability that the second is received in error and the remaining n− 1
symbols are received correctly is p(1− p)n−1. We can deduce that the overall probability of exactly
one of the n symbols in a q-ary codeword of length n being received in error is np(1− p)n−1, since
there are n ways that this can happen (namely, one way for each place that the error can occur).

The next logical example should be to ask about the probability that exactly two of the n symbols
in a q-ary codeword of length n are received in error. However, we first need a little more experience
with counting.
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The number
(

n
m

)
, read “n choose m,” counts the number of ways that we can choose m objects from

a pool of n objects, and
(

n
m

)
= n!

(n−m)!m! . Note that n! is read “n factorial,” and n! = n·(n−1) · · · 2·1.
The numbers of the form

(
n
m

)
are called binomial coefficients because of the binomial theorem which

states that for any positive integer n,

(1 + x)n = 1 +
(

n

1

)
x +

(
n

2

)
x2 + · · ·+

(
n

n

)
xn.

Most calculators have a button that will compute binomial coefficients. Let’s do some examples to
get comfortable with this idea.

Example 1.3.3. How many ways can we choose the chairperson of a committee with four members
Alice, Bob, Cathy, and David? The answer should be

(
4
1

)
= 4!

3!1! = 4. This makes sense since there
are clearly 4 ways to choose the chairperson from the group of 4.

Example 1.3.4. How many ways can we choose two places from a codeword of length n? The
answer is

(
n
2

)
. If n = 3, this simplifies to

(
3
2

)
= 3. This makes sense since there are 3 ways to not

choose 1 symbol, or equivalently, 3 ways to choose 2 symbols.

Question 7. By listing all possibilities and by using binomial coefficients, determine how many
ways we can choose two places from a codeword of length 4.

We will now use our newfound knowledge on binomial coefficients to resume our earlier discussion.

Example 1.3.5. Given the assumptions of a q-ary symmetric channel, consider the probability
that exactly two of the n symbols in a q-ary codeword of length n are received in error. This means
that two of the symbols are received in error and n − 2 of the symbols are received correctly. The
probability that the first two symbols are received in error is p2(1 − p)n−2. However, there are(
n
2

)
ways to choose where the 2 errors occur. Therefore, the probability that exactly two of the n

symbols in a q-ary codeword of length n are received in error is
(
n
2

)
p2(1− p)n−2.

Question 8. Recall that (assuming a binary symmetric channel), the binary repetition code of
length 5 can correct up to two errors. Explain why the probability of decoding a received word
correctly is

(1− p)5 + 5p(1− p)4 + 10p2(1− p)3. (2)

In general, a code that has minimum distance d can be used to either detect up to d − 1 errors or
correct up to b(d− 1)/2c errors. This is a consequence of the following theorem:

Theorem 1.3.6. 1. A code C can detect up to s errors in any codeword if d(C) ≥ s + 1.

2. A code C can correct up to t errors in any codeword if d(C) ≥ 2t + 1.

Proof. 1. Suppose d(C) ≥ s + 1. Suppose a codeword c is transmitted and that s or fewer errors
occur during the transmission. Then, the received word cannot be a different codeword, since
all codewords differ from c in at least s + 1 places. Hence, the errors are detected.

2. Suppose d(C) ≥ 2t + 1. Suppose a codeword x is transmitted and that the received word,
r, contains t or fewer errors. Then d(x, r) ≤ t. Let x′ be any codeword other than x. Then
d(x′, r) ≥ t+1, since otherwise d(x′, r) ≤ t which implies that d(x,x′) ≤ d(x, r)+d(x′, r) ≤ 2t
(by the triangle inequality), which is impossible since d(C) ≥ 2t + 1. So x is the nearest
codeword to r, and r is decoded correctly.

The remainder of this section will involve using error-correcting capabilities and code rate to compare
two different codes proposed for the transmission of photographs from deep-space.
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Example 1.3.7. (Transmission of photographs from deep-space) This example describes a method
for transmitting photographs. It is the method that was used in the Mariner 1969 Mission which
sent photographs of Mars back to Earth. In order to transmit a picture, the picture is first divided
into very small squares, known as pixels. Each pixel is assigned a number representing its degree
of blackness, say in a scale of 0 to 63. These numbers are expressed in the binary system, where
000000 represents white and 111111 represents black. Each binary 6-tuple is encoded using a (32,
64, 16) code, called a Reed-Muller code. Reed-Muller codes are often used in practice because they
are very easy to decode. X
Question 9. Although the details of the code are not given, use the code’s parameters to determine
how many errors the (32, 64, 16) Reed-Muller code correct.

When using the Reed-Muller code, the probability that a length 32 codeword is decoded incorrectly
is

32∑

i=8

(
32
i

)
pi(1− p)32−i. (3)

Question 10. Explain how the expression in (3) was obtained.

Suppose that instead of the Reed-Muller code, we use a repetition code of length 5 to transmit each
bit of each pixel’s color assignment. Then each 6-bit message string (representing a color assignment)
is encoded as a codeword of length 30, since each bit in the message string is repeated five times.

If we use a repetition code of length 5 to encode the 6-bit message strings, then the probability that
one of the resulting codewords of length 30 is received correctly is equal to the expression in (2)
raised to the 6th power:

[(1− p)5 + 5p(1− p)4 + 10p2(1− p)3]6 (4)

Question 11. Explain how the expression in (4) was obtained.

Question 12. Suppose that p = .01 and compare the probability of decoding incorrectly when
using the repetition code with the probability of decoding incorrectly when using the Reed-Muller
code.

Since each codeword of length 30 in the repetition code represents a 6-bit message, the rate of the
code is 1/5. Since each codeword of length 32 in the Reed-Muller code in Example 1.3.7 represents a
6-bit message, the rate of the code is 6/32. Higher rate codes are faster and use less power, however
sometimes lower rate codes are preferred because of superior error-correcting capability or other
practical considerations.

Question 13. Using code rate and probability of decoding incorrectly to compare the repetition
code and the Reed-Muller code, explain which code you think is an overall better code.

1.4 Sphere-Packing Bound

We know from Theorem 1.3.6 that if C has minimum distance d ≥ 2t+1, then C can correct at least
t errors. We also say that C can correct all error vectors of weight t. We now develop a geometric
interpretation of this result. Since each codeword in C is at least distance 2t + 1 from any other
codeword, we can picture each codeword c to be surrounded by a sphere of radius t such that the
spheres are disjoint (non-overlapping). Any received vector that lies within the sphere centered at
c will be decoded as c. This pictorially explains why received vectors that contain t or fewer errors
are decoded correctly: They still lie within the correct sphere. We can use this picture to bound the
total possible number of codewords in a code, as seen in the following theorem:

13



Theorem 1.4.1. (Sphere-packing bound) A t-error-correcting q-ary code of length n must satisfy

M

t∑

i=0

(
n

i

)
(q − 1)i ≤ qn (5)

where M is the total number of codewords.

In order to prove Theorem 1.4.1, we need the following lemma.

Lemma 1.4.2. A sphere of radius r, 0 ≤ r ≤ n, in the space of all q-ary n-tuples contains exactly

r∑

i=0

(
n

i

)
(q − 1)i =

(
n

0

)
+

(
n

1

)
(q − 1) +

(
n

2

)
(q − 1)2 + · · ·+

(
n

r

)
(q − 1)r

vectors.

Proof of Lemma 1.4.2. Let u be a fixed vector in the space of all q-ary n-tuples. Consider how many
vectors v have distance exactly m from u, where m ≤ n. The m positions in which v is to differ
from u can be chosen in

(
n
m

)
ways, and then in each of these m positions the entry of v can be

chosen in q − 1 ways to differ from the corresponding entry of u. Hence, the number of vectors at
distance exactly m from u is

(
n
m

)
(q − 1)m. A ball of radius r centered at u contains vectors whose

distance from u ranges from 0 to r. So, the total number of vectors in a ball of radius r, centered
at u, must be

(
n
0

)
+

(
n
1

)
(q − 1) +

(
n
2

)
(q − 1)2 + · · ·+ (

n
r

)
(q − 1)r.

Proof of Theorem 1.4.1. Suppose C is a t-error-correcting q-ary code of length n. Then, in order
that C can correct t errors, any two spheres of radius t centered on distinct codewords can have no
vectors in common. Hence, the total number of vectors in the M spheres of radius t centered on the
M codewords of C is given by M

∑t
i=0

(
n
i

)
(q − 1)i, by Lemma 1.4.2. This number of vectors must

be less than or equal to the total number of vectors in the space of all q-ary n-tuples, which is qn.
This proves the sphere-packing bound.

Definition 1.4.3. A code is perfect if it satisfies the sphere-packing bound of Theorem 1.4.1 with
equality.

Question 14. Show that the binary repetition code of length 5 is perfect.

It is possible to use Gap to test if a code is perfect; the function IsPerfectCode return true if a
code is perfect and false otherwise. For example, to answer the above question using Gap, we could
type

gap> C := RepetitionCode(5, GF(2));;

gap> IsPerfectCode(C);
true

When decoding using a perfect code, every possible q-ary received word of length n is at distance
less than or equal to t from a unique codeword. This implies that the nearest neighbor algorithm
yields an answer for every received word r, and it is the correct answer when the number of errors
is less than or equal to t. In Chapter 2, we will introduce a family of perfect codes called Hamming
codes.
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1.5 Answers to Chapter 1 Reading Questions

Answer 1. The first string is valid since the required summation comes out to 198, which is divisible
by 11. The second string is not valid since the summation results in 137, which is not divisible by
11.

Answer 2. A binary repetition code of length 10 can correct up to 4 errors since it is a “majority
vote”; at 5 errors, there is no way to determine whether 0 or 1 was intended; with 6 or more errors,
the received codeword would be “corrected” to the wrong message. However, it can detect 9 errors.

Answer 3. gap> C := RepetitionCode(15,GF(2));; gap> cw:= AsSortedList(C);

This will output

[[000000000000000],[111111111111111]]

Answer 4. gap> WeightCodeword(Codeword("00000")); 0

gap> WeightCodeword(Codeword("11111")); 5

gap> WeightCodeword(Codeword("1022001")); 4

gap> WeightCodeword(Codeword("1011001")); 4

Answer 5. d(00111, 11001) is 4. d(00122, 12001) is 5.

Answer 6. For any ISBN codeword, changing a single digit will cause the codeword to no longer
be valid since the summation will no longer be divisible by 11. You can, however, change two digits
and still follow the ISBN rules, as in 0-1316-5332-6 and 1-1316-5332-7. Therefore, the minimum
distance between any two ISBN codewords is 2.

Answer 7. By listing all possibilities:

1. first position and second position

2. first position and third position

3. first position and fourth position

4. second position and third position

5. second position and fourth position

6. third position and fourth position

This is a total of 6 ways to choose two place from a codeword of length 4. Similarly, using binomial
coefficients, we confirm there are

(
4
2

)
= 4!

2!2! = 6 ways to pick two places.

Answer 8. This formula gives the probability of getting 0, 1, or 2 errors in a binary repetition code
of length 5. (1− p)5 is the probability of getting no errors. 5p(1− p)4 is the probability of getting
one error. 10p2(1− p)3 is the probability of getting two errors.

Answer 9. The minimum distance of the code is 16, so this code can correct b(16− 1)/2c, or, 7
errors.

Answer 10. This expression gives the probability of getting 8 or more errors (since the code can
correct 7).

(
32
i

)
pi(1− p)32−i is the probability that there are i errors, where i ∈ 8, 9, ..., 32.

Answer 11. (1−p)5+5p(1−p)4+10p2(1−p)3 is the probability that a single codeword of length 5 is
decoded to the correct message bit. This expression is raised to the 6th power to find the probability
that all 6 message bits are decoded correctly.
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Answer 12. The probability of decoding incorrectly using the repetition code is 5.9 × 10−5. The
probability of decoding incorrectly using the Reed-Muller code is about 8.5× 10−10.

Answer 13. The rate of the Reed-Muller code is 6/32, and the rate of the binary repetition code
is 1/5.

Answer 14. The binary repetition code of length 5 satisfies the sphere-packing bound with equality
so it is perfect.You can check this using M = 2, n = 5, and q = 2.

1.6 Chapter 1 Problems

Problem 1.1. Complete the ISBN that starts as 0-7803-1025-.

Problem 1.2. Let C = {00, 01, 10, 11}. Why can’t C correct any errors?

Problem 1.3. Let C = {(000000), (101110), (001010), (110111), (100100), (011001),(111101), (010011)}
be a binary code of length 6.

1. What is the minimum distance of C?

2. How many errors will C detect?

3. How many errors will C correct?

Problem 1.4. Let A = Z5 and n = 3. Let C = {α1(100) + α2(011) | α1, α2 ∈ Z5} where all
arithmetic is done componentwise and modulo five. Write down the elements of C and determine
the minimum distance of C.

Problem 1.5. Find a way to encode the letters a, b, c, d, e, f, g, h using blocks of zeros and ones of
length six so that if two or fewer errors occur in a block, Bob will be able to detect that errors have
occurred (but not necessarily be able to correct them).

Problem 1.6. Prove that there is no way to encode the letters a, b, c, d, e, f, g, h using blocks of
zeros and ones of length five so that Bob will be able to correct a single error.

Problem 1.7. Let C be a code that contains 0, the codeword consisting of a string of all zeros.
Suppose that C contains a string u as a codeword. Now suppose that the string u also occurs as an
error. Prove that C will not always detect when the error u occurs.

Problem 1.8. Prove that the Hamming distance satisfies the following conditions for any x,y, z ∈
GF (2)n:

1. d(x,y) ≥ 0, with equality if and only if x = y

2. d(x,y) = d(y,x)

3. d(x,y) ≤ d(x, z) + d(z,y)

Problem 1.9. Is it possible to correct more than one error with the 2-D Parity Check Code shown
in Example 1.1.3? How many errors can this code detect?

Problem 1.10. Prove that any ternary (11, 36, 5) code is perfect.

Problem 1.11. Show that a q-ary (q + 1,M, 3) code satisfies M ≤ qq−1.

Problem 1.12. Prove that all binary repetition codes of odd length are perfect codes.

Problem 1.13. Prove that no binary repetition code of even length can be perfect.

Problem 1.14. Prove that for n = 2r − 1,
(
n
0

)
+

(
n
1

)
= 2r.

Problem 1.15. Prove that if C is a binary linear [n, k] code then the sum of the weights of all the
elements of C is less than or equal to n2k−1.
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2 Linear Codes

In this chapter, we study linear error-control codes, which are special codes with rich mathematical
structure. Linear codes are widely used in practice for a number of reasons. One reason is that they
are easy to construct. Another reason is that encoding linear codes is very quick and easy. Decoding
is also often facilitated by the linearity of a code. The theory of general linear codes requires the
use of abstract algebra and linear algebra, but we will begin with some simpler binary linear codes

2.1 Binary Linear Codes

Definition 2.1.1. A binary linear code C of length n is a set of binary n-tuples such that the
componentwise modulo 2 sum of any two codewords is contained in C.

Example 2.1.2. The binary repetition code of length 5 is a binary linear code. You can quickly
confirm that it satisfies the requirement that the sum of any two codewords is another codeword:
00000 + 00000 = 00000 ∈ C, 00000 + 11111 = 11111 ∈ C, and 11111 + 11111 = 00000 ∈ C.

Example 2.1.3. The set {0000, 0101, 1010, 1111} is a binary linear code, since the sum of any two
codewords lies in this set. Notice that this is a (4, 4, 2) code because the codewords have length 4,
there are 4 codewords, and the minimum distance between codewords is 2. X

Example 2.1.4. The set {0000000, 0001111, 0010110, 0011001, 0100101, 0101010, 0110011, 0111100,
1000011, 1001100, 1010101, 1011010, 1100110, 1101001, 1110000, 1111111} is a binary linear code
known as a Hamming code. Notice that this is a (7, 16, 3) code because the codewords have length
7, there are 16 codewords, and the minimum distance is 3. We will study Hamming codes in more
detail in Section 2.7. X

Question 1. How many errors can the above Hamming code correct?

Question 2. Is {000, 100, 001} a binary linear code? How about {100, 001, 101}?

You can use Gap to check if a given code is linear with the IsLinearCode function. For example,
to automate the previous question, we can type

gap> C := ElementsCode(["000","100", "001"], GF(2));

gap> IsLinearCode(C);

and it will output true if C is linear and false if C is non-linear.

Question 3. Redo Question 2 using Gap.

Question 4. Show that the codeword 0 consisting of all zeros is always contained in a binary linear
code.

Theorem 2.1.5, below, implies one of the main advantages of linear codes: It is easy to find their
minimum distance. This is essential for evaluating the error-correcting capabilities of the code.

Theorem 2.1.5. The minimum distance, d(C), of a linear code C is equal to w∗(C), the weight of
the lowest-weight nonzero codeword.

Proof. There exist codewords x and y in C such that d(C) = d(x,y). By the definition of Hamming
distance, we can rewrite this as d(C) = w(x−y). Note that x−y is a codeword in C by the linearity of
C. Therefore, since w∗(C) is the weight of the lowest weight codeword, we have w∗(C) ≤ w(x−y) =
d(C).
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On the other hand, there exists some codeword c ∈ C such that w∗(C) = w(c). By the definition
of the weight of a codeword, we can write w(c) = d(c,0). Since c and 0 are both codewords,
the distance between them must be greater than or equal to the minimum distance of the code:
d(c,0) ≥ d(C). Stringing together these (in)equalities, shows that w∗(C) ≥ d(C).

Since we have now shown that both d(C) ≥ w∗(C) and d(C) ≤ w∗(C), we conclude that d(C) =
w∗(C).

Theorem 2.1.5 greatly facilitates finding the minimum distance of a linear code. Instead of looking
at the distances between all possible pairs of codewords, we need only look at the weight of each
codeword. Notice that the proof does not restrict the linear codes to be binary.

Question 5. How many pairs of codewords would we need to consider if trying to find the minimum
distance of a nonlinear code with M codewords?

Sometimes we can start with a known binary linear code and append an overall parity check digit to
increase the minimum distance of a code. Suppose C is a linear (n,M, d) code. Then we can construct
a code C ′, called the extended code of C, by appending a parity check bit to each codeword x ∈ C
to obtain a codeword x′ ∈ C ′ as follows. For each x = x0x1 · · ·xn−1 ∈ C, let x′ = x0x1 · · ·xn−10 if
the Hamming weight of x is even, and let x′ = x0x1 · · ·xn−11 if the Hamming weight of x is odd.
This ensures that every codeword in the extended code has even Hamming weight.

Theorem 2.1.6. Let C be a binary linear code with minimum distance d = d(C). If d is odd, then
the minimum distance of the extended code C ′ is d+1, and if d is even, then the minimum distance
of C ′ is d.

Proof. In the problems at the end of this chapter, you will prove that the extended code C ′ of a
binary linear code is also a linear code. Hence by Theorem 2.1.5, d(C ′) is equal to the smallest
weight of nonzero codewords of C ′. Compare the weights of codewords x′ ∈ C ′ with the weights of
the corresponding codewords x ∈ C: w(x′) = w(x) if w(x) is even, and w(x′) = w(x) + 1 if w(x)
is odd. By Theorem 2.1.5, we can conclude that d(C ′) = d if d is even and d(C ′) = d + 1 if d is
odd.

2.2 Fields, Vector Spaces, and General Linear Codes

In order to develop the theory for general linear codes, we need some abstract and linear algebra.
This section may be your first introduction to abstract mathematics. Learning the definitions and
getting comfortable with the examples will be very important.

We begin with a discussion of the mathematical constructs known as fields. Although the following
definition may seem daunting, it will be helpful to keep a couple of simple examples in mind. The
binary alphabet, along with modulo 2 addition and multiplication, is the smallest example of a field.
A second familiar example is R, the real numbers along with ordinary addition and multiplication.

Definition 2.2.1. Let F be a nonempty set that is closed under two binary operations denoted +
and *. That is, the binary operations input any elements a and b in F and output other elements
c = a + b and d = a ∗ b in F . Then (F, +, ∗) is a field if:

1. There exists an additive identity labeled 0 in F such that a + 0 = 0 + a = a for any element
a ∈ F .

2. The addition is commutative: a + b = b + a, for all a, b ∈ F .

3. The addition is associative: (a + b) + c = a + (b + c), for all a, b, c ∈ F .
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4. There exists an additive inverse for each element: For each a ∈ F , there exists an element
denoted −a in F such that a + (−a) = 0.

5. There exists a multiplicative identity denoted 1 in F such that a∗1 = 1∗a = a for any element
a ∈ F .

6. The multiplication is commutative: a ∗ b = b ∗ a, for all a, b ∈ F .

7. The multiplication is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ F .

8. There exists a multiplicative inverse for each nonzero element: For each a 6= 0 in F , there
exists an element denoted a−1 in F such that a ∗ a−1 = a−1 ∗ a = 1.

9. The operations distribute: a ∗ (b + c) = a ∗ b + a ∗ c and (b + c) ∗ a = b ∗ a + c ∗ a, for all
a, b, c ∈ F .

It is assumed that 0 6= 1, so the smallest possible field has two elements (namely, the binary alphabet
that we have been using all along). We write this field as GF (2), which means that it is the Galois
field (a fancy name for finite fields) with 2 elements. Take a moment to convince yourself that the
binary alphabet GF (2) does indeed satisfy all of the field axioms.

Aspiring abstract algebra students will be interested to see that a field is a set whose elements form
a commutative group under addition (Criteria 1–4), whose nonzero elements form a commutative
group under multiplication (Criteria 5-8), and whose operations distribute (Criterion 9).

We will write ab as an abbreviation for a ∗ b.

In addition to the familiar examples of the real numbers and the binary numbers, it is helpful to
have a “non-example” in mind. (Z, +,×), the integers under ordinary addition and multiplication,
is not a field because most integers do not have multiplicative inverses: For example, there is no
integer x such that 2x = 1. The integers under ordinary addition do form an additive group, but
the nonzero integers under ordinary multiplication do not form a multiplicative group.

Example 2.2.2. Let’s determine if the set of integers Z6 = {0, 1, 2, . . . , 5} is a field under addition
and multiplication modulo 6. If the set is a field, there must be a multiplicative inverse for each
element of the set. For example, there must exist some k such that 4k ≡ 1 (mod 6). However, we
know since k is always an integer, 4k is always even. Thus, when working modulo 6, 4k never be
equivalent to 1. Thus, Z6 is not a field under addition and multiplication modulo 6. Another way
to see that this set is not a field is the existence of “zero divisors”; these are non-zero numbers that
multiply to zero. For example: 4 × 3 ≡ 0 (mod 6). This would result in a contradiction, since if
we multiply each side of this equation on the left by 4−1, we would obtain the nonsensical 3 ≡ 0
(mod 6).X

In contrast to the above example, Zp under addition and multiplication modulo p, where p is any
prime, is a field. The proof is left as a problem. In fact, it is the field properties of Z11 that give the
ISBN code from Example 1.1.1 its error-detecting capabilities.

Question 6. Find additive inverses and multiplicative inverses for the elements in Z7.

We are now ready to use fields to introduce another algebraic construct:

Definition 2.2.3. Let F be a field. A set V of elements called vectors is a vector space if for any
u,v,w ∈ V and for any c, d ∈ F :

1. u + v ∈ V .

2. cv ∈ V .
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3. u + v = v + u.

4. u + (v + w) = (u + v) + w

5. There exists an element denoted 0 ∈ V such that u + 0 = u.

6. For every element u ∈ V , there exists an element denoted −u such that u + (−u) = 0.

7. c(u + v) = cu = cv.

8. (c + d)u = cu + du

9. c(du) = (cd)u.

10. 1u = u.

We often say that F is the field of scalars. Some familiar vector spaces are R2 and R3. In these
cases, the vectors are the sets of all real vectors of length 2 or 3, and the fields of scalars are the real
numbers.

An important example in coding theory is the vector space of all binary n-tuples. Here, the vectors
are the binary n-tuples and the field is GF (2). We say that 0 and 1 are the scalars. We can denote
this set as GF (2)n, but when we are thinking of this as a vector space, we normally write V (n, 2),
which indicates that our vectors are of length n over the alphabet field of size 2.

We will use the following results on vector subspaces more often than the above formal definition of
a vector space:

Definition 2.2.4. Let V be a vector space. A subset U of V is called a subspace of V if U is itself
a vector space under the same operations as V .

Theorem 2.2.5. Let V be a vector space and F be a field. A subset U of V is a subspace if:

1. For any two vectors u,v ∈ U , u + v is also in U ;

2. For any c ∈ F , u ∈ U , cu is also in U .

You may recall that R2 and R3 are known as 2-dimensional and 3-dimensional spaces, respectively.
In order to make this concept more precise, we need to develop some mathematical theory.

Definition 2.2.6. Two vectors are linearly independent if they are not scalar multiples of each
other. Otherwise, the vectors are called linearly dependent.

Example 2.2.7. When working in the familiar vector space of R3, the vectors [100] and [030] are
linearly independent, since they are clearly not scalar multiples of each other. However, [211] and
[633] are linearly dependent, since the latter vector is 3 times the former vector. X

Definition 2.2.8. Vectors in a set are linearly independent if none of the vectors are linear com-
binations of other vectors in the set. More precisely, the vectors {v0,v1, . . . ,vn−1} are linearly
independent if the only linear combination c0v0 + c1v1 + · · · + cn−1vn−1 that gives 0 is the linear
combination where all scalars ci are equal to 0. Otherwise, the vectors are called linearly dependent.

Example 2.2.9. When working in the familiar vector space of R3, the vectors [100], [010], and [001]
are linearly independent, since none of these vectors are linear combinations of the others. More
precisely, if c0[100] + c1[010] + c2[001] = 0, then the only possible solution to this equation is when
c0 = c1 = c2 = 0. However, [100], [010], and [550] are linearly dependent since the latter vector is
a linear combination of the first two. More precisely, if c0[100] + c1[010] + c2[550] = 0, then we can
solve this equation with c0 = 5, c1 = 5, and c2 = −1. Since the coefficients of this linear combination
are not all zero, the vectors are linearly dependent. (Notice that the abbreviation [xyz] is used for
the vector [x, y, z] when no confusion should occur.) X
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Question 7. Are the following vectors independent in R3:

1. {[1, 1, 1], [0, 3, 4], [3, 9, 11]}?
2. {[1, 0, 1], [12, 3, 0], [13, 3, 0]}?

Definition 2.2.10. A basis is a (minimal cardinality) set of linearly independent vectors that span
the vector space.

It follows from this definition that any vector in the vector space is a linear combination of the
basis vectors. For example, the standard basis for R3 is {[100], [010], [001]}, and any vector in R3

can be written as a linear combination of these 3 vectors. To illustrate this, notice that the vector
[2,−3, π] can be written as 2[100]− 3[010] + π[001]. There are infinitely many bases for R3. To find
an alternate basis, we need to find 3 linearly independent vectors such that their linear combinations
produce all possible vectors in R3.

Question 8. Produce an alternate example for a basis for R3.

Similarly, the standard basis for R2 is {[10], [01]}. In the vector space V (4, 2), consisting of the 16
binary strings of length 4, the standard basis is {[1000], [0100], [0010], [0001]}, since any of the other
binary strings can be obtained as binary linear combinations of these vectors.

Definition 2.2.11. The dimension of a vector space V is number of vectors in any basis for V .

We now understand precisely why R2 and R3 are said to be 2-dimensional and 3-dimensional vector
spaces over the real numbers, respectively. Moreover, V (4, 2) is a 4-dimensional vector space over
the binary numbers.

An important concept for error-control coding is that of vector subspaces. Familiar subspaces from
geometry are planes and lines in 3-space: Planes are 2-dimensional vector subspaces of R3, and lines
are 1-dimensional vector subspaces of R3.

Definition 2.2.12. Let V be a vector space over a field F and let W be a subset of V . If W is a
vector space over F , then W is a vector subspace of V .

Theorem 2.2.13. If W is a subset of a vector space V over a field F , then W is a vector subspace
of V iff αu + βv ∈ W for all α, β ∈ F and all u,v ∈ W .

Proof. Suppose that W is a vector subspace of V , a vector space over the field F . Then, W is itself a
vector space over F . Therefore, by the definition of vector spaces, v + u ∈ W for any v,u ∈ W and
sv ∈ W for any s ∈ F . This directly implies that αu + βv ∈ W for all α, β ∈ F and all u,v ∈ W .

Now suppose that αu + βv ∈ W for all α, β ∈ F and all u,v ∈ W . Then, setting α = β = 1 ∈ F
gives the first requirement of a vector space and setting α = 1 ∈ F and β = 0 ∈ F gives the second
requirement of a vector space.

We can now begin to connect vector spaces to error-control codes. In Section 2.1, we discussed
the linear code C = {000, 100, 001, 101}. We will now show that this code is a vector subspace of
the vector space V (3, 2) of binary 3-tuples. Using Theorem 2.2.13, we must check if every linear
combination of vectors in C remains in C. This should sound familiar! In fact, this was the defining
condition for a linear code! We have just discovered one of the major links between coding theory
and linear algebra: Linear codes are vector subspaces of vector spaces.

Definition 2.2.14. A linear code of length n over GF (q) is a subspace of the vector space GF (q)n =
V (n, q).

Theorem 2.2.15 shows the consistency between the definitions for binary and general linear codes.
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Theorem 2.2.15. Let C be a linear code. The linear combination of any set of codewords in C is
a code word in C.

Proof. We must show that (1) u + v ∈ C for all u, v in C, and (2) αu ∈ C, for all u ∈ C and
α ∈ GF (q). Since C is a subspace of V (n, q), this follows from Theorem 2.2.13.

We can deepen this connection between linear codes and vector subspaces by looking at the dimension
of vector subspaces.

Example 2.2.16. Let’s continue working with our linear code C = {000, 100, 001, 101}. We can see
that this code is spanned by the linearly independent vectors [100] and [001], since all other vectors
in C can be obtained as binary linear combinations of these two vectors. In other words, these two
vectors form a basis for C, so the dimension of C is 2.

Definition 2.2.17. The dimension of a linear code C of length n is its dimension as a vector
subspace of GF (2)n = V (n, 2).

If C is a k-dimensional subspace of V (n, q), we say that C has dimension k and is an [n, k, d] or
[n, k] linear code. (Be careful not to confuse the notation [n, k, d] with our earlier notation (n,M, d),
where M represents the total number of codewords in the code.) The dimension of a code is very
important because it is directly related to M , the number of codewords in a code. In particular,
if the dimension of a binary code is k, then the number of codewords is 2k. In general, if the
dimension of a q-ary code is k, then the number of codewords is qk. This means that C can be used
to communicate any of qk distinct messages. We identify these messages with the qk elements of
V (k, q), the vector space of k-tuples over GF (q). This is consistent with the aforementioned notion
of encoding messages of length k to obtain codewords of length n, where n > k.

We can now also fully understand the output that Gap gives when defining a code. Recall the
command and output

gap> C := RepetitionCode(5, GF(2));

a cyclic [5,1,5]2 repetition code over GF(2)

We now see that [5,1,5]2 means that the binary repetition code of length 5 is a [5, 1, 5] linear
code. The dimension is 1 since the code is spanned by the one basis vector [11111]. The 2 after
this notation refers to the covering radius of the code. We will not be covering this concept in this
course.

2.3 Encoding Linear Codes: Generator Matrices

Linear codes are used in practice largely due to the simple encoding procedures facilitated by their
linearity. A k×n generator matrix G for an [n, k] linear code C provides a compact way to describe
all of the codewords in C and provides a way to encode messages. By performing the multiplication
mG, a generator matrix maps a length k message string m to a length n codeword string. The
encoding function m → mG maps the vector space V (k, q) onto a k-dimensional subspace (namely
the code C) of the vector space of V (n, q).

Before giving a formal definition of generator matrices, let’s start with some examples.

Example 2.3.1. We will use the familiar repetition code example to illustrate how we can use
matrices to encode linear codes. As you know, in the repetition code, 0 is encoded as 00000 and
1 is encoded as 11111. This process can be automated by using a generator matrix G to encode
each message: If G = [11111], then for a message m, the matrix multiplication mG outputs the

22



corresponding codeword. Namely [0]G = [00000] and [1]G = [11111]. So, this 1 × 5 matrix G is
working to map a message of length 1 to a codeword of length 5. Since we knew exactly how our
two messages encode to our two codewords, it was very easy to find this matrix. X
Example 2.3.2. We will now extend the work done in Example 2.2.16 on C = {000, 100, 001, 101}.
We have already shown that C is a 2-dimensional vector subspace of the vector space V (3, 2).
Therefore, C is a [3, 2] linear code and should have a 2 × 3 generator matrix. However, let’s use
our intuition to derive the size and content of the generator matrix. We want to find a generator
matrix G for C that will map messages (i.e. binary bit strings) onto the four codewords of C. But
how long are are the messages that we can encode? We can answer this question using three facts:
(1) we always encode messages of a fixed length k to codewords of a fixed length n; (2) a code must
be able to encode arbitrary messages of length k; and (3) the encoding procedure must be “one-to-
one,” or in other words, no two messages can be encoded as the same codeword. Using these three
facts, it is clear that the messages corresponding to the four codewords in C must be of length 2
since there are exactly 4 distinct binary messages of length 2: [00], [10], [01], and [11]. Hence, in
order for the matrix multiplication to make sense, G must have 2 rows. Since the codewords are of
length 3, properties of matrix multiplication tell us that G should have 3 columns. In particular, if

G =
[

1 0 0
0 0 1

]
, then [00]G = [000], [10]G = [100], [01]G = [001], and [11]G = [101]. Hence, this

code C can encode any length 2 binary message. The generator matrix determines which length 2
message is encoded as which length 3 codeword. X

We have now seen how a generator matrix can be used to map messages onto codewords. We have
also seen that an [n, k] linear code C is a k-dimensional vector subspace of V (n, q) and can hence be
specified by a basis of k codewords, or q-ary vectors. This leads us to the following formal definition
of a generator matrix:

Definition 2.3.3. A k × n matrix G whose rows form a basis for an [n, k] linear code C is called a
generator matrix of the code C.

Definition 2.3.3 shows that the dimension of a code C is equal to the number of rows in its generator
matrix, which is consistent with our above examples. In Example 2.3.1, we found a 1× 5 generator
for our [5,1] repetition code (length 5 and dimension 1, since it is spanned by the vector [11111]).
In Example 2.3.2, we indeed found a 2× 3 generator matrix for the [3, 2] linear code C.

Since Definition 2.3.3 stipulates that the rows of a generator matrix must form a basis for the code,
the rows of a generator matrix must be linearly independent. In fact, a matrix G is a generator
matrix for some linear code C if and only if the rows of G are linearly independent.

Example 2.3.4. The following matrix is not a generator matrix for any linear code:



1 1 0 0 0
1 0 1 1 0
0 1 0 1 1
0 1 1 1 0


 .

To see this, notice that the rows cannot form a basis for a linear code because the rows are linearly
dependent. There are several ways to discover this. For example, you can see that (bit-wise binary)
adding the first and second rows gives you the fourth row or reveal the dependency by obtaining a
row of zeros through row-reduction. Alternately, you can note that the messages [1100] and [0001]
are both encoded to the same codeword [01110]. Similarly, the messages [1101] and [0000] both
encode to [00000]. X

Without a generator matrix to describe the code and define the encoding of messages, it would be
necessary to make a list of all of the codewords and their corresponding messages. This is very
simple for the repetition code, however, this would become highly inconvenient as the number of
codewords (and therefore messages) increases.
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Question 9. Given the generator matrix G =




1 0 0 0
0 1 0 0
0 0 1 1


, what is the dimension of the

associated code? How long are the messages to be encoded by G? How long will the resulting
codewords be? Use G to encode the all-1s message of the appropriate length.

We can use Gap to facilitate the generation of linear codes from their matrices, and the subsequent
encoding of messages. The command GeneratorMatCode generates a code based on a generator
matrix. For example, suppose our generator matrix of a binary code is:

G =




1 0 0 0 1
0 1 0 1 0
0 0 1 1 1


 .

Then, the basis vectors of this code are [1 0 0 0 1], [0 1 0 1 0], and [0 0 1 1 1]. We can now
use Gap to construct our linear code from this generator matrix (or basis for the code):

gap> C := GeneratorMatCode([[1,0,0,0,1],[0,1,0,1,0],[0,0,1,1,1]],GF(2));;

To review the generator matrix for this code C, we can use a combination of the functions Display
and GeneratorMat. For example:

gap> Display(GeneratorMat(C));
1 . . . 1
. 1 . 1 .
. . 1 1 1

The dots in the output represent 0’s.

We can also use Gap to encode messages. For example, to encode [1, 1, 1] we use:

gap> m := Codeword("111", GF(2));
gap> m * C;
[ 1 1 1 0 0 ]

Notice we do not have to use GeneratorMat to reproduce the generator matrix to encode the message
m. We can encode the message directly by multiplying the message, m with the code, C.

Question 10. Confirm the above encoding by hand.

We have now seen how generator matrices can be used to encode messages. Generator matrices are
also used to discover codes, as illustrated in the following example:

Example 2.3.5. Suppose we need a [3,2] binary linear code C, that is, we need a 2-dimensional
vector subspace of V (3, 2), the vector space of binary 3-tuples. In order to define a 2-dimensional
vector subspace of V (3, 2), we need 2 linearly independent basis vectors. Arbitrarily, let’s choose
these vectors to be 011 and 110. Let C be spanned by these vectors. Then the generator matrix is

G =
[

1 1 0
0 1 1

]
.

Taking all the linear combinations of the rows in G, we generate the code C = {110, 011, 101, 000}.X
Question 11. Use matrix multiplication to convince yourself that taking all linear combinations of
the rows of the 2×3 matrix G above is equivalent to taking all products mG, where m runs through
all 4 binary 2-tuples. In particular, show that the product [11]G produces a vector which is the sum
of all rows in G.
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There was nothing special about the basis vectors [110] and [011] that we chose in the above example.
In fact, there would be advantages to choosing permutations of these vectors obtained by swapping
the first two entries in each vector. This would produce the generator matrix

G′ =
[

1 1 0
1 0 1

]
.

This is the systematic or standard form of G since it has the identity matrix on the right of G. When a
data block is encoded using a generator matrix in standard form, the data block is embedded without
modification in the last k coordinates of the resulting codeword. This facilitates decoding, especially
when the decoding is implemented with linear feedback shift registers. When data is encoded in this
fashion, it is called systematic encoding.

Question 12. Using G′ above, encode all possible length 2 messages to confirm that the messages
appear in the last 2 bits of each codeword.

We can go one step further into the theory of linear algebra to deepen the understanding of the
connections between codes and matrices.

Definition 2.3.6. The rowspace of an matrix is the set of all vectors that can be obtained by taking
linear combinations of the rows of the matrix.

Recall that taking all linear combinations of the rows of an r × c matrix G is equivalent to taking
products vG, where v is any 1 × r vector. It follows that the code C represented by a generator
matrix G is equivalent to the rowspace of G.

Example 2.3.7. The rowspace of the matrix

M =




1 0 0
0 1 0
0 0 1




is all of R3, since any real vector [xyz] in R3 can be formed as a real linear combination of the rows
of M . More precisely, any real vector [xyz] ∈ R3 can be written as [xyz]M , which represents a linear
combination of the rows of M .

Question 13. Find a 3× 3 matrix whose rowspace represents a plane in R3. Recall that a plane is
a 2-dimensional subspace of R3.

Question 14. Is the matrix you defined in the previous question a generator matrix for a linear
code?

We have just introduced several equivalent constructs: vector subspaces, linear codes, and row
spaces of matrices. As we delve further into the intriguing topics of coding theory, linear algebra,
and abstract algebra, we will see that the lines between pure mathematics and real-world applications
continues to blur.

2.4 Introduction to Parity Check Matrices

Definition 2.4.1. Let C be an [n, k] linear code. A parity check matrix for C is an (n − k) × n
matrix H such that c ∈ C if and only if cHT = 0.

Example 2.4.2. If C is the code {111, 000}, then a valid parity check matrix is

H =
[

1 0 1
0 1 1

]
.
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One way to verify this is to compute the product cHT for an arbitrary codeword c = [x, y, z]:

[xyz]




1 0
0 1
1 1


 = [x + z, y + z]

So, c = [xyz] is a valid codeword iff cHT = 0, ie. iff [y + z, x + z] = [0, 0]. Algebraic manipulations
over binary show that x = y = z. Thus the only valid codewords are indeed {000, 111}. Notice that
this is the binary repetition code of length 3. X

Question 15. Find a parity check matrix for the binary repetition code of length 5.

Example 2.4.3. The (10,9) binary parity check code (BPCC) is a code of length 10 and dimension 9
which encodes binary messages of length 9 into binary codewords of length 10 by appending an overall
parity check bit. For example, the message [001100100] is encoded as [0011001001] and the message
[100101100] is encoded as [1001011000]. The parity check matrix for this code is H = [1111111111]
since then the product cHT forms the sum (modulo 2) of the bits in the length 10 codeword c; this
product gives 0 precisely when the parity of the codeword is even, or in other words, precisely c is
a member of the BPCC. X

Question 16. Find a parity check matrix for the (5, 4) binary parity check code, which encodes
messages of length 4 to codewords of length 5 by appending a parity check bit.

The Guava function CheckMat generates a parity check matrix for any given linear code. For example,
we can generate a check matrix for a repetition code of length 5 as follows:

gap> C := RepetitionCode(5, GF(2));;

gap> H := CheckMat(C);;

gap>Display(H);
1 1 . . .
. 1 1 . .
. . 1 1 .
. . . 1 1

Question 17. Show that any codeword c in the binary repetition code of length 5 indeed satisfies
the equation cHT , where H is given by the Gap output above.

The connection drawn above between the codewords of a code C and the parity check matrix of a
code C can be strengthened by considering the nullspace of the parity check matrix.

Definition 2.4.4. The nullspace of a matrix H is the set of all vectors x such that HxT = 0.

In linear algebra, we study nullspaces of matrices, often in the context of finding the kernel of linear
mappings. However, there is a simple connection to linear codes. Given the parity check matrix H
for a code C, we have 0 = cHT for all c ∈ C, hence 0T = (cHT )T = HcT . Therefore, the codewords
of C comprise the nullspace of its parity check matrix H.

Question 18. Find the nullspace of

B =
[

1 1 0
1 0 1

]
.

Theorem 2.4.5. An (n−k)×n parity check matrix H for a code C in systematic or standard form
if H = (In−k | A). Then the corresponding generating matrix in systematic form is G = (−AT | Ik).
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Notes: (1) Authors vary in their definitions of the systematic form of generator and parity check
matrices; some put the identity matrix to the left for systematic generator matrices and to the
right for systematic parity check matrices; and (2) When working in binary, the negative sign in
G = (−AT | Ik) is moot.

Question 19. Find systematic generator matrices for the codes defined by the parity check matrices
in Examples 2.4.2 and 2.4.3. Note that these parity check matrices are given in systematic form.

Any parity check matrix or generating matrix can be put in systematic form by performing row
operations on the matrix or column permutations. This substantially changes neither the nullspace
nor the rowspace of the matrix, which is important since C is the nullspace of H and the rowspace
of G. Depending on the operations used to convert the defining matrices, either the same code or
an equivalent code will be obtained.

Definition 2.4.6. Two q-ary linear codes are called equivalent if one can be obtained from the
other by a combination of operations of the following types:

1. Permutation of the positions of the codewords

2. Multiplication of the symbols appearing in a fixed position by a nonzero scalar (i.e. element
of GF (q)).

Example 2.4.7. The two codes C1 and C2 below are equivalent since the second is merely the
permutation of the first two positions in the first code.

C1 =





000
101
010
111





C2 =





000
011
100
111





Theorem 2.4.8. Two k×n matrices generate equivalent [n, k] linear codes over GF (q) if one matrix
can be obtained from the other by a sequence of operations of the following types:

1. Permutation of the rows

2. Multiplication of a row by a nonzero scalar

3. Addition of a scalar multiple of one row to another

4. Permutation of the columns

5. Multiplication of any column by a nonzero scalar.

Proof. The first three types of operations preserve the linear independence of the rows of a generator
matrix and simply replace one basis of the code by another basis of the same code. The last two
types of operations convert a generator matrix for one code into a generator matrix for an equivalent
code.

Gap can be used to put parity check matrices and generator matrices into systematic or standard
form. It is necessary to remember which standard form requires the identity matrix on the left. For
our convention, we will put the identity on the right in generator matrices and on the left for parity
check matrices.

For example, suppose I have this check parity matrix

H =




1 0 1 0
0 1 1 0
0 0 0 1


 .
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We can represent this check matrix in a systematic form by using the PutStandardForm command
which inputs two values, the matrix and a boolean variable, true or false. PutStandardForm(H, true)
will arrange the input matrix H so that the identity matrix is on the left. PutStandardForm(H, false)
will arrange the input matrix H so that the identity matrix is on the right.

gap> H := [[1,0,1,0], [0, 1, 1, 0], [0, 0, 0, 1]];

gap> Display(H);
[ [ 1, 0, 1, 0 ],

[ 0, 1, 1, 0 ],
[ 0, 0, 0, 1 ] ]

gap> PutStandardForm(H, true);;

gap> Display(H);
[ [ 1, 0, 0, 1 ],

[ 0, 1, 0, 1 ],
[ 0, 0, 1, 0 ] ]

Note that the (3,4) output indicates that the arranged matrix is 3×4, and then we use the Display
command to view the standard form of H.

2.5 Parity Check Matrices and Linear Decoding

This section discusses a nearest neighbor decoding scheme that uses parity check matrices and cosets
(which you first encountered when cryptanalyzing the Vigenere cipher) to decode a linear code.

The defining equation of a parity check matrix (c ∈ C ⇔ cHT = 0) is used in the first step of the
decoding of linear codes. Upon receiving a word r, the product rHT is computed. If the result is 0,
we assume that no errors have occurred and decode the received word as r.

Question 20. Is this a fair assumption?

We will now see how to decode if rHT 6= 0.

Definition 2.5.1. Suppose that C is an [n, k] linear code over GF (q) and that a is any vector in
V (n, q). Then the set a + C = {a + x | x ∈ C} is called a coset of C.

Theorem 2.5.2. Suppose C is an [n, k] linear code over GF (q). Then every vector of V (n, q)
is in some coset of C, every coset contains exactly qk vectors, and two cosets are either disjoint
(non-overlapping) or equal.

Example 2.5.3. Let C be the binary [4, 2] linear code with generator matrix G =
[

1 0 1 1
0 1 0 1

]
.

Then C = {0000, 1011, 0101, 1110}, and the cosets of C are

0000 + C = {0000, 1011, 0101, 1110}
1000 + C = {1000, 0011, 1101, 0110}
0100 + C = {0100, 1111, 0001, 1010}
0010 + C = {0010, 1001, 0111, 1100}.

Notice that coset 0001 + C is equal to coset 0100 + C, and we have only listed this coset once.X

Definition 2.5.4. The coset leader of a coset is chosen to be one of the vectors of minimum weight
in the coset.
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Example 2.5.5. In Example 2.5.3, either 0100 or 0001 could be chosen as the coset leader for the
corresponding coset.

The coset decoding algorithm for an [n, k] linear code works as follows. We partition GF (q)n into
cosets of C. There are qn/qk = qn−k cosets, each of which contains qk elements. For each coset, pick
a coset leader. There may be an arbitrary choice involved at this step. Then, if r is received, find
the coset that contains r. This coset is of the form e + C, and we guess that r− e was sent. Note
that coset leaders, defined to be of least weight, represent error vectors, and this decoding algorithm
assumes that lowest weight error vectors are the most probable.

In order to carry out the above decoding algorithm, we make a standard array by listing the cosets
of C in rows, where the first entry in each row is the coset leader. More specifically, the first row
of the standard array is 0 + C, with 0, the coset leader, listed first. We next pick a lowest-weight
vector of GF (q)n that is not in C and put it as a coset leader for the second row. The coset in the
second row is obtained by adding its leader to each of the words in the first row. This continues
until all cosets of C are entered as rows.

The standard array for Example 2.5.3 is:

0000 1011 0101 1110
1000 0011 1101 0110
0100 1111 0001 1010
0010 1001 0111 1100

We decode r as the codeword at the top of the column containing r. The error vectors that will
be corrected are precisely the coset leaders. By choosing a minimum weight vector in each coset as
coset leader we ensure that standard array decoding is a nearest neighbor decoding scheme.

Since the code in the above example has minimum distance equal to 2, we cannot even correct all
single errors. In fact, this code corrects all single errors that occur within the first 3 positions, but
it does not correct errors that occur in the fourth position.

Question 21. Explain why the above code, with the above decoding scheme, cannot correct errors
in the fourth position.

Question 22. Construct a standard array for the binary repetition code of length 4.

Syndrome decoding is a related decoding scheme for linear codes that uses the parity check matrix
H of a code. Suppose x is transmitted and r is received. Compute rHT , which we call the syndrome
of r and write S(r). We know from the definition of a parity check matrix that rHT = 0 if and
only if r ∈ C. So, if S(r) = rHT = 0, then we conclude that most likely no errors occurred. (It is
possible that sufficiently many errors occurred to change the transmitted codeword into a different
codeword, but we cannot detect or correct this.) If rHT 6= 0, then we know that at least one error
occurred, and so r = x + e, where x is a codeword and e is an error vector. Since xHT = 0, we
see that rHT = (x + e)HT = xHT + eHT = eHT . So the syndrome of the received word r is
equal to the syndrome of the error vector e that occurred during transmission. It is known that
S(u) = S(v) if and only if u and v are in the same coset of C. It follows that there is a one-to-one
correspondence between cosets and syndromes. This means that every word in a particular coset
(i.e. in a particular row of the standard array) has the same syndrome. Thus, we can extend the
standard array by listing the syndromes of each coset leader (and hence of each element in the coset)
in an extra column.

Example 2.5.6. When the standard array of Example 2.5.3 is expanded to allow for syndrome
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decoding, it looks as follows:

0000 1011 0101 1110 00
1000 0011 1101 0110 11
0100 1111 0001 1010 01
0010 1001 0111 1100 10

.X

The syndrome decoding algorithm works as follows. When a vector r is received, calculate the
syndrome S(r) = rHT . Locate the syndrome in the table, which requires looking through only one
column. Decode r as r− e where e is the coset leader in the row containing S(r). This is equivalent
to decoding r as the codeword at the top of the column containing r.

Using syndromes saves storage space and time. Instead of storing the entire standard array, we need
only store the error vectors and the syndromes of the error vectors for each error vector that we hope
to detect. Also, when n is large, locating a received vector within a standard array (as compared to
locating a syndrome within the syndrome column) can be difficult and time consuming.

Example 2.5.7. Suppose that we are decoding using the expanded standard array shown in Ex-
ample 2.5.6. Suppose 1111 is received, and compute S(1111) = 01. We find this syndrome in the
third row of the syndrome column. The coset leader for this row is 0100, and so we decode 1111 as
1111− 0100 = 1011. X

The following theorem will help connect the ideas of syndromes and extended arrays to parity check
matrices:

Theorem 2.5.8. For a binary code, the syndrome of a received codeword is a vector that is equal
to the sum of the columns of H that correspond to the positions where errors occurred.

Proof. Let r be a received codeword with syndrome S(r) = rHT . Since r = c+e, where c is a valid
codeword and e is an error vector, we have

S(r) = rHT

= (c + e)HT

= cHT + eHT

= 0 + eHT (6)
= eHT

Notice that (6) follows from the fact that H is the parity check matrix for C. Since eHT is a
combination of the columns in H that correspond to the positions where errors occurred, this proves
the result.

Decoding linear codes, calculating syndromes, and computing standard and extended arrays can be
done using Gap. If all we want to know is whether a codeword is in our code or not, we can use the
in operator. For example:

gap> c := Codeword("10111", GF(2));;

gap> C := RepetitionCode(5,GF(2));;

gap> c in C;
false
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We can also use the built-in function for calculating syndromes. We illustrate this with an example
of computing the syndrome of the codeword [11111] in the binary repetition code of length 5:

gap> C := RepetitionCode(5, GF(2));;

gap> c := Codeword("11111", GF(2));;

gap> s := Syndrome(C,c);
[ 0 0 0 0 ]

The function StandardArray is a function that will return the standard array of a linear code C.
For example, we can construct a standard array for a repetition code of length 4.

gap> StandardArray(RepetitionCode(4, GF(2)));
[ [ [ 0 0 0 0 ], [ 1 1 1 1 ] ], [ [ 0 0 0 1 ], [ 1 1 1 0 ] ],

[ [ 0 0 1 0 ], [ 1 1 0 1 ] ], [ [ 0 0 1 1 ], [ 1 1 0 0 ] ],
[ [ 0 1 0 0 ], [ 1 0 1 1 ] ], [ [ 0 1 0 1 ], [ 1 0 1 0 ] ],
[ [ 0 1 1 0 ], [ 1 0 0 1 ] ], [ [ 1 0 0 0 ], [ 0 1 1 1 ] ] ]

Be sure to look at this output carefully to notice the placement of brackets. If we were to write out
this standard array by hand, we would write eight rows with two entries each.

The function SyndromeTable is a function that will return an abbreviated version of our extended
standard array. The first column in the output of SyndromeTable consists of the error vectors
that correspond to the syndrome vectors in the second column. So, the output of SyndromeTable
contains only the first and last columns of our extended standard arrays. To make this clear, we
will now produce the syndrome table for the same above repetition code:

gap> SyndromeTable(RepetitionCode(4, GF(2)));
[ [ [ 0 0 0 0 ], [ 0 0 0 ] ], [ [ 0 0 0 1 ], [ 0 0 1 ] ],

[ [ 0 0 1 1 ], [ 0 1 0 ] ], [ [ 0 0 1 0 ], [ 0 1 1 ] ],
[ [ 1 0 0 0 ], [ 1 0 0 ] ], [ [ 0 1 1 0 ], [ 1 0 1 ] ],
[ [ 0 1 0 0 ], [ 1 1 0 ] ], [ [ 0 1 0 1 ], [ 1 1 1 ] ] ]

You will notice that the output of SyndromeTable is sorted according to the syndrome vectors. Al-
though this may be confusing when you compare the output of SyndromeTable(RepetitionCode(4, GF(2)));
to the output of StandardArray(RepetitionCode(4, GF(2)));, Gap does this to facilitate the
search of the syndrome vectors, which is of utmost importance in decoding linear codes.

2.6 Parity Check Matrices, Minimum Distance, and the Singleton Bound

In addition to contributing to the decoding scheme for linear codes, parity check matrices can be
used to determine the minimum distance of the code:

Theorem 2.6.1. Let C have parity check matrix H. The minimum distance of C is equal to the
minimum nonzero number of columns in H for which a nontrivial linear combination of the columns
sums to zero.

Proof. Since H is a parity check matrix for C, c ∈ C if and only if 0 = cHT . Let the column vectors
of H be {d0,d1, . . . ,dn−1}. The matrix equation 0 = cHT can be reexpressed as follows:
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0 = cHT

= (c0, c1, . . . , cn−1)[d0 d1 · · · dn−1]T

= c0d0 + c1d1 + · · ·+ cn−1dn−1

This shows that c is a weight d > 0 codeword if and only if there is a nontrivial linear combination of
d columns of H which equals zero. It now follows from Theorem 2.1.5 that the minimum distance of
C is equal to the minimum nonzero number of columns in H for which a nontrivial linear combination
of the columns sums to zero.

Question 23. Suppose that




1 0 1 0
0 1 1 0
0 0 0 1


 is a parity check matrix for a binary code C. What

is the minimum distance of C?

Theorem 2.6.1 can be used to bound the possible minimum distance for a code, as explained in the
following theorem.

Theorem 2.6.2. (Singleton bound) The minimum distance d for an [n, k] linear code satisfies
d ≤ n− k + 1.

Proof. An [n, k] linear code has a parity check matrix H containing (n − k) linearly independent
rows. Linear algebra results then imply that any such H also has exactly (n−k) linearly independent
columns. It follows that any collection of (n−k +1) columns of H must be linearly dependent. The
result now follows from Theorem 2.6.1.

Codes that achieve the Singleton bound with equality are called maximum distance separable (MDS).
For their given parameters n and k, they achieve the best possible minimum distance.

Question 24. Show that the binary repetition code of length 5 is MDS.

Gap can be used to check if a code is MDS. The following commands and output confirm that the
binary repetition code of length 5 is MDS:

gap> C := RepetitionCode(5, GF(2));;

gap> IsMDSCode(C);

true

In Chapter 4.3, we will study some more interesting MDS codes.

2.7 Hamming Codes

The fact that the syndrome of a received vector is equal to the sum of the columns of the parity check
matrix H where errors occurred gives us some insight about how to construct a parity check matrix
for a binary code that will undergo coset or syndrome decoding. First, the columns of H should all
be nonzero, since otherwise an error in the corresponding position would not affect the syndrome
and would not be detected by the syndrome decoder. Second, the columns of H should be distinct,
since if two columns were equal, then errors in those two positions would be indistinguishable.

We use these observations to build a family of codes known as the binary Hamming codes, Hr, r ≥ 2.
Any parity check matrix for the Hamming code Hr has r rows, which implies that each column of
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the matrix has length r. There are precisely 2r − 1 nonzero binary vectors of length r, and in order
to construct a parity check matrix of Hr, we use all of these 2r − 1 column vectors.

Definition 2.7.1. A binary Hamming code Hr of length n = 2r− 1, r ≥ 2, has parity check matrix
H whose columns consist of all nonzero binary vectors of length r, each used once. This gives an
[n = 2r − 1, k = 2r − 1− r, d = 3] linear code.

Question 25. How many errors can a Hamming code correct?

One parity check matrix for the binary [7, 4, 3] Hamming code H3, where columns are taken in the
natural order of increasing binary numbers is as follows:




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 .

We now rearrange the columns to get a parity check matrix H in standard form:



1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1




A generator matrix G in standard form is:



0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1




Question 26. Encode the messages 0000 and 1010 using G. Check that the resulting codewords
are valid by using H.

Guava has built-in functions for Hamming codes. The [7, 4, 3] binary Hamming code is defined by
the parameter r = 3, and is generated as follows:

gap> C := HammingCode(3, GF(2));

a linear [7,4,3]1 Hamming (3,2) code over GF(2)

To view the full list of codewords in the [7, 4, 3] binary Hamming code, we use the following command:

gap> cw := AsSortedList(C);
[[0000000], [0001111], [0010110], [0011001],
[0100101], [0101010], [0110011], [0111100],
[1000011], [1001100], [1010101], [1011010],
[1100110], [1101001], [1110000], [1111111]]

Notice that the output is sorted. The list returned is also immutable, meaning that elements of the
list cannot be changed. It will sometimes be useful to be able to access the elements in the outputted
list. For example, in what follows, we will add together two of the codewords in the list and check
that their sum is also a codeword (guaranteed by the linearity of the code):

gap> d := cw[2] + cw[3];
[ 0 0 1 1 0 0 1 ]

gap> d in cw;
true
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Question 27. Write down a parity check matrix for the binary Hamming code with r = 4 by using
the mathematical definition of Hamming codes. Check your answer with Gap.

It is easy to decode Hamming codes, which are used when we expect to have zero or one error per
codeword. If we receive the vector r, compute the syndrome S(r). If S(r) = 0, then assume that
r was the codeword sent. If S(r) 6= 0, then, assuming a single error, S(r) is equal to the column
of H that corresponds to the coordinate of r where the error occurred. Find the column of H that
matches S(r), and then correct the corresponding coordinate of r. This decoding scheme is further
simplified if the columns of H are arranged in order of increasing binary numbers.

Example 2.7.2. In Section 1.3, we studied extended codes, which are built from existing codes by
adding an overall parity check bit. This example shows a parity check matrix of the extended code
of the binary Hamming code H3:




0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 1 1 1 1 1




Notice that the last row of the extended parity check matrix gives an overall parity-check equation
on the codewords: x0 + x1 + · · ·+ xn = 0. Compare this parity check matrix with the parity check
for the corresponding Hamming code.X

2.8 Answers to Chapter 2 Reading Questions

Answer 1. This Hamming code can correct 1 error.

Answer 2. The first code is not linear because it does not contain 101, the sum of 100 and 001.
The second code is not because it does not contain 000 (which is the binary sum of any codeword
with itself).

Answer 3. gap> C := ElementsCode(["000", "100", "001"], GF(2));; gap>
IsLinearCode(C): false

gap> C := ElementsCode(["100", "001", "101"], GF(2));; gap>
IsLinearCode(C): false

Answer 4. Let C be a binary linear code. Let c be a codeword in C. Since C is linear, (c + c) = 0
must also be in C.

Answer 5. We would need to consider
(
M
2

)
pairs of codewords to find the minimum distance of a

code with M codewords.

Answer 6. The additive inverse of 0 is 0. The additive inverse of 1 is 6 and its multiplicative inverse
is 1. The additive inverse of 2 is 5, and its multiplicative inverse is 4. The additive inverse of 3 is 4,
and its multiplicative inverse is 5. The additive inverse of 4 is 3, adn its multiplicative inverse is 2.
The additive inverse of 5 is 2, and its multiplicative inverse is 3. The additive inverse of 6 is 1, and
its multiplicative inverse is 6.

Answer 7. {[1, 1, 1], [0, 3, 4], [3, 9, 11]} are linearly dependent since, for example, −3[1, 1, 1]+2[0, 3, 4]+
[3, 9, 11] = [0, 0, 0]. {[1, 0, 1], [12, 3, 0], [13, 3, 0]} are linearly independent.

Answer 8. {[2, 0, 0], [0, 4, 0], [0, 0, 5]} is an alternate basis.

Answer 9. The associated code has dimension 3 since there are three (linearly independent) rows
in G and thus three basis vectors. The messages that are to be encoded by G are of length 3. The
resulting codewords have length 4, which is the number of columns in G. The all-1s message will be
encoded as [1111].
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Answer 10. (111)G = (11100)

Answer 11. The four binary 2-tuples are {[00], [01], [10], [11]}. When performing matrix multipli-
cation, notice that the above four binary 2-tuples designate all the different ways that we can add
rows together. For example, we can see that [11]G is equivalent to adding all the rows of G, resulting
in [110] + [011] = [101].

Answer 12. [00]G′ = [000], [01]G′ = [101], [10]G′ = [110], [11]G′ = [011]

Answer 13.




1 0 0
0 1 0
1 0 0




Answer 14. No, this matrix is not a generator matrix for a linear code. Its rows are not linearly
independent so they do not form a basis for a linear code.

Answer 15. We know that H is an (n−k)×n matrix by definition, so the first step is to determine n
and k. We know that the dimension of any repetition code is 1 since it contains only two codewords:
a string of ones and a string of zeroes. We also know that n = 5 since the length was given in the
problem statement. So we must determine a 4× 5 matrix such that the product of 11111 or 00000
with HT yields the zero vector. 00000 will work with any matrix, so we can craft the matrix based
on what 11111 must multiply with to get the zero vector. This works when every column of HT has
an even number of ones, or, when every row of H has an even number of ones. One way of creating
this matrix is shown below.

H =




1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1




Answer 16. Since every codeword has an even number of ones, any codeword multiplied by the
all-ones vector will yield zero, as in Example 2.4.3.

H =
[

1 1 1 1 1
]

Answer 17. (00000)HT = (0000)
(11111)HT = (0000)

Answer 18. We know that the nullspace consists of every vector x such that HxT = 0. So we have

[
1 1 0
1 0 1

] 


x1

x2

x3


 =

[
0
0

]
.

Then,
x1 + x2 = 0

x1 + x3 = 0.

By algebra, x1 = x2 = x3, so the nullspace of B is 000, 111.

Answer 19. G =
[

1 1 1
]

G =




1 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 1



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Answer 20. Yes, this is a fair assumption. It is true unless so many errors have occurred that we
started with one valid codeword and ended up with a different valid codeword. In that case, there
would be no way to detect that anything went wrong and the received vector would be decoded
incorrectly.

Answer 21. There are a total of 16 binary length 4 vectors, and this code contains 4 of these
vectors. So our standard array can only have 4 rows. Thus, only three weight 1 vectors can be
coset leaders. In this case, (0001) is not a coset leader, so a single error in this position will not be
decoded correctly.

Answer 22.
0000 1111
1000 0111
0100 1011
0010 1101
0001 1110
1100 0011
1010 0101
1001 0110

By examining the coset leaders, we can see that this corrects all single-errors but only three types
of double-errors.

Answer 23. No single column is zero, so the minimum distance is not 1. No two columns have a
linear combination that sums to 0, so the minimum distance is not 2. However, the third column is
a linear combination of the first two, so the minimum distance of C is 3.

Answer 24. Since the binary repetition code of length 5 satisfies the Singleton bound with equality,
it is MDS. Check this using d = 5, n = 5, and k = 1.

Answer 25. A Hamming code can correct one error since it has a distance of 3.

Answer 26. (0000)G = (0000000)
(1010)G = (1011010)
(0000000)HT = (000)
(1011010)HT = (000)

Answer 27. We can form this matrix by writing down as columns all of the length 4 binary vectors
except for the zero vector. We put the identity on the left side in order for the parity check matrix

to be in standard form.




1 0 0 0 0 0 1 1 1 0 0 1 1 1 1
0 1 0 0 0 1 1 0 0 1 1 1 1 0 1
0 0 1 0 1 1 0 0 1 0 1 1 0 1 1
0 0 0 1 1 0 0 1 0 1 1 0 1 1 1




2.9 Chapter 2 Problems

Problem 2.1. Are the following sets of vectors linearly independent?

1. [101111], [000001], [110111] ∈ Z6
2.

2. [000], [101] ∈ Z3
2.

3. [10000], [01001], [00111] ∈ Z5
2.

4. [0212], [0010], [2212] ∈ Z4
3.

Problem 2.2. Let G =




1 0 1 1 0
0 1 0 1 1
1 1 0 1 0


 . Determine whether or not the following words are in

the rowspace of G:
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1. [11111]

2. [11101]

3. [00111]

Problem 2.3. Let C = {[000000], [101110], [001010], [110111], [100100], [011001], [111101], [010011]} ⊆
Z6

2. Find a generator matrix for C and a parity check matrix for C.

Problem 2.4. List the cosets of the linear code having the following generator matrix:




1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1




Problem 2.5. Construct a standard array for a binary code having the following generator matrix:[
1 0 1 1 0
0 1 0 1 1

]
. Decode the received vectors 11111 and 01011. Give examples of (a) two errors

occurring in a codeword and being corrected and (b) two errors occurring in a codeword and not
being corrected.

Problem 2.6. Construct a syndrome look-up table for the perfect binary [7, 4, 3] code which has

generator matrix




1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1


. Use the table to decode the following received vectors:

0000011, 1111111, 1100110, and 1010101. Repeat this exercise using Gap.

Problem 2.7. Let C ⊆ Z6
2 be the linear [6, 3] code with generator matrix. G =




1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 1 1




1. List the elements of C.

2. Find the minimum distance of C.

3. How many errors will C correct?

4. Find a check matrix for C.

Problem 2.8. Let C be a q-ary linear code with parity check matrix H. Let u,v ∈ GF (q)n. Prove
directly that uHT = vHT if and only if u and v lie in the same coset of C.

Problem 2.9. Define an encoding map E: Z4
2 → Z6

2 by E((x1, x2, x3, x4)) = (x1, x2, x2, x3, x4, x4).
Show that the encoding map E represents the encoding of a linear code. In other words, show that
the codewords produced under this map satisfy the requirements of a linear code.

Problem 2.10. Define an encoding map E: Z6
2 → Z6

2 by E((x1, x2, x3, x4, x5, x6)) = (x3, x4, x1, x5, x2, x6).
Show that the encoding map E represents the encoding of a linear code. In other words, show that
the codewords produced under this map satisfy the requirements of a linear code.

Problem 2.11. Let C be a linear [n, k] code over Zp, where p is a prime number. How many
elements does C contain? Explain your answer.

Problem 2.12. Let C be a ternary linear code with generator matrix
[

1 0 1 1
0 1 1 2

]
. List the

codewords of C. What is the minimum distance of C? Is C a perfect code?

Problem 2.13. Extended Codes:
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1. Show that if C is a binary linear code, then the extended code obtained by adding an overall
parity check to C is also linear.

2. Suppose that C is a binary code with parity check matrix H. Write down the parity check
matrix for the extended code of C. (Your new parity check matrix will involve the matrix H.)

3. Generalize the idea of extending binary codes with an overall parity check matrix to define
extended codes of q-ary codes. What condition should the weight of each codeword in the
extended code satisfy?

Problem 2.14. Prove that either all of the codewords in a binary linear code have even weight or
exactly half have even weight.

Problem 2.15. Let U(n) ⊆ Zn be the set of elements of Zn, that are relatively prime to n. Show
that U(n) is a group under multiplication modulo n.

Problem 2.16. Prove that the identity element in a group is unique

Problem 2.17. Prove that if G is a group and a ∈ G, then a−1 is unique.

Problem 2.18. Show that a binary code can correct all single errors if and only if any parity check
matrix for the code has distinct nonzero columns.

Problem 2.19. Prove that any Hamming code has minimum distance equal to 3.

Problem 2.20. Prove that binary Hamming codes are perfect.

Problem 2.21. Let C be an [n, k] binary linear code with generator matrix G. If G does not have
a column of zeroes, show that the sum of the weights of all the codewords is n · 2k−1. [Hint: How
many codewords are there with a 1 in coordinate i for fixed i?] Generalize this to linear codes over
the field GF (q).

Problem 2.22. Let A = {0, 1}.

1. Does there exist a code C ⊆ A8 where C has exactly four codewords and such that C corrects
2 errors? If so, find such a C. If not, prove it

2. Does there exist a code C ⊆ A8 where C has exactly five codewords and such that C corrects
2 errors? If so, find such a C. If not, prove it.

Problem 2.23. Alice and Bob have used the Bennett-Brassard protocol to generate two strings of
bits which ideally are identical but which in fact contain some discrepancies. They have determined
that it is very unlikely that a block of seven bits will contain more than one error; so they have
decided to use the [7,4] binary Hamming code to correct their errors.

1. Bob’s first block of seven bits is 1110110. Alice sends him the syndrome 111. What does Bob’s
first block become after error correction?

2. Bob’s second block is 0000111. Alice sends him the syndrome 111. What does Bob’s second
block become after error correction?

Problem 2.24. Prove that any linear ternary code (i.e. its alphabet has three symbols, 0, 1, 2
under modulo 3) with a check matrix H can correct all single errors if and only if no two columns
of H have sum or difference 0.

3 Cyclic Codes, Rings, and Ideals

This chapter studies more advanced topics from both abstract algebra and coding theory.
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3.1 Introduction to Cyclic Codes

Definition 3.1.1. An [n, k, d] linear code C is cyclic if whenever (c0, c1, . . . , cn−1) is a codeword in
C, then (cn−1, c0, . . . , cn−2) is also a codeword in C.

Example 3.1.2. The binary code C = {000, 110, 011, 101} is a cyclic code. X

Cyclic codes can be implemented efficiently via simple hardware devices called shift registers. This
is of great interest in applications involving fiber optics, where high-speed data rates are possible.

When working with cyclic codes, it is convenient to convert codeword vectors c = (c0, c1, . . . , cn−1)
of length n into code polynomials c(x) = c0 + c1x + · · ·+ cn−1x

n−1 of degree less than n. Note that
the left-most bit in a codeword is associated with the constant term in the code polynomial.

Gap can be used to convert a codeword to a codeword polynomial. For example:

gap> c := Codeword("0111000", GF(2));;

gap> PolyCodeword(c);

x_1^3+x_1^2+x_1

Question 1. What is the corresponding code polynomial for the codeword (1, 0, 1, 1)?

Question 2. For a codeword of length 5, what is the maximum degree of the associated code
polynomial?

From now on, we will use the terms “codeword” and “code polynomial” interchangeably. This abuse
reflects the fact that you should be thinking about codewords and code polynomials as representing
the same thing.

The power of using code polynomials will be apparent when we develop some additional structure.
We will parallel the development of Zp, the integers modulo p, from the regular integers Z. Recall
that with the integers modulo p, we constantly wrap around according to the modulus p. In other
words, the largest number we can use is p − 1, since as soon as we hit p or larger, we are reduced
modulo p. We think of p as being equivalent to 0, so all multiples of p are “ignored.”

Now consider the code polynomials {0, 1 + x, x + x2, 1 + x2} corresponding to the code C =
{000, 110, 011, 101}. Notice that the highest power appearing among the code polynomials is x2,
since a higher power term would indicate a codeword with length greater than 3. Similarly to work-
ing with integers modulo a specific prime integer p, we can work with polynomials modulo a specific
polynomial, for example p(x) = x3 − 1. In this situation, we think of x3 − 1 being equivalent to 0,
or in other words, x3 is equivalent to 1. Let’s see what this means with an example.

Example 3.1.3. Consider the code polynomial c(x) = 1+x2 corresponding to the codeword c = 101
from C = {000, 110, 011, 101}. Let’s multiply c(x) by x to obtain c(x)x = c′(x) = x + x3. However,
if we are working modulo p(x) = x3 − 1, then x3 is equivalent to 1. So, c′(x) is equivalent to x + 1
modulo p(x). Notice that rearranging this new polynomial with terms from lowest to highest powers
gives 1 + x, which is the code polynomial for the code word 110 ∈ C. Notice furthermore that 110
is the right cyclic shift of 101. Coincidence? Let’s try this again. This time, start with the code
polynomial d(x) = x + x2 corresponding to the codeword 011 in C. Multiplying d(x) by x gives
d′(x) = x2 + x3. Taking this result modulo x3− 1 gives x2 + 1, which (upon rearranging terms from
lowest to highest powers) corresponds to the codeword 101 ∈ C and is the right cyclic shift of 011.
Interesting!X

Example 3.1.3 suggests a true fact about cyclic codes. In a cyclic code C of length n, the product
xc(x) modulo xn − 1 produces another code polynomial in C, namely the right cyclic shift of

39



c(x). More precisely, when working with code polynomials of degree less than n corresponding
to codewords of length n, by working modulo xn − 1, we can achieve a right cyclic shift of a
codeword by multiplying the associated code polynomial by x: Consider the code polynomial c(x) =
c0+c1x+· · ·+cn−1x

n−1. Multiplying c(x) by x modulo xn−1 gives c′(x) = c0x+c1x
2+· · ·+cn−1x

n ≡
c0x + c1x

2 + · · ·+ cn−1 modulo xn − 1. The codeword associated with c′(x) is (cn−1, c0, . . . , cn−2),
which is clearly the right cyclic shift of the codeword associated with c(x).

Question 3. Show that multiplying c(x) = 1+x2 by x2 corresponds to doubly-shifting the associated
codeword.

We now use the language of code polynomials to characterize cyclic codes:

Theorem 3.1.4. A linear code of length n over GF (q) is cyclic if and only if C satisfies the following
two conditions:

1. If a(x) and b(x) are code polynomials in C, then a(x)− b(x) ∈ C

2. If a(x) is a code polynomial in C and r(x) is any polynomial of degree less than n, then
r(x)a(x) ∈ C

Proof. Suppose C is a cyclic code of length n over GF (q). Then C is linear, so Condition (1) holds.
Now suppose that a(x) ∈ C and r(x) = r0 + r1x + . . . rn−1x

n−1, where ri ∈ GF (q). As discussed
above, multiplication of a code polynomial by x corresponds to a cyclic shift of the corresponding
codeword. Since C is a cyclic code, it contains the cyclic shifts of all codewords, so xa(x) ∈ C.
Similarly, xic(x), for 0 < i < n, is the ith cyclic shift of c(x), so xic(x) ∈ C. Now, by the linearity
of C, r(x)a(x) = r0a(x) + r1xa(x) + · · · + rn−1x

n−1a(x) is also in C since each summand is in C.
Therefore, Condition (2) also holds. Hence, if C is a cyclic code, then Conditions (1) and (2) hold.

On the other hand, suppose that Conditions (1) and (2) hold. If we take r(x) to be a scalar in
GF (q), the conditions imply that C is a linear code. Then, if we take r(x) = x, Condition (2)
implies that C is a cyclic code. Hence, if Conditions (1) and (2) hold, then C is a cyclic code.

We can use Gap to check if a given code C is cyclic using the IsCyclicCode(C); command.

3.2 Rings and Ideals

Above, in working with cyclic codes of length n, we used code polynomials of degree less than n
and polynomial multiplications modulo xn − 1. This set of elements (code polynomials of degree
less than n) and this operation (polynomial multiplication modulo xn − 1) forms what is known as
a ring. Rings are mathematical structures that are slightly less restrictive than fields. The only
difference between fields and the type of rings that we will consider in this course is that our rings
do not require the existence of multiplicative inverses. The other 8 criteria from the Definition 2.2.1
of fields apply.

For completeness, we give the formal definition of a ring:

Definition 3.2.1. Let R be a nonempty set that is closed under two binary operations denoted +
and *. Then (R, +, ∗) is a ring if:

1. There exists an additive identity denoted 0 in R such that a + 0 = 0 + a = a for any element
a ∈ R.

2. The addition is commutative: a + b = b + a, for all a, b ∈ R.

3. The addition is associative: (a + b) + c = a + (b + c), for all a, b, c ∈ R.
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4. There exists an additive inverse for each element: For each a ∈ R, there exists an element
denoted −a in R such that a + (−a) = 0.

5. The multiplication is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b, c ∈ R.

6. The operations distribute: a ∗ (b + c) = a ∗ b + a ∗ c and (b + c) ∗ a = b ∗ a + c ∗ a, for all
a, b, c ∈ R.

If a ring R has the additional property that the multiplication is commutative, then R is called a
commutative ring. If R has the additional property of including a multiplicative identity, then R is
called a ring with unity. The rings of interest to us are commutative rings with unity. In the event
that a commutative ring R with unity includes multiplicative inverses for all of its nonzero elements,
then R is a field.

Example 3.2.2. The integers Z under ordinary addition and multiplication form a commutative
ring with unity, but you will recall that they do not form a field.X

Example 3.2.3. The set Zn of integers modulo n under addition and multiplication is a commu-
tative ring with unity, but you will recall that Zn is only a field in the case that n is a prime.X

Example 3.2.4. The set 2Z of even integers under ordinary addition and multiplication is a com-
mutative ring without unity.X

Example 3.2.5. The set GF (2)[x] of all polynomials in the variable x with coefficients from the
binary field GF (2) under ordinary polynomial addition and multiplication is a commutative ring
with unity polynomial e(x) = 1.X

Example 3.2.6. The set GF (2)[x]/(xn − 1), which can be informally defined as the set of all
polynomials of degree less than n ≥ 1 in the variable x with coefficients from the binary field GF (2)
under polynomial addition and multiplication modulo xn − 1, is a commutative ring with unity
polynomial e(x) = 1.X

Example 3.2.6 is the most important ring in coding theory, and we have already worked with the
elements of this ring in the context of code polynomials. We will soon understand the mathematics
behind the notation GF (2)[x]/(xn−1), as we delve deeper into the connections between cyclic codes
and and the theory of rings and ideals.

Definition 3.2.7. A nonempty subset A of a ring R is an ideal of R if a− b ∈ A whenever a, b ∈ A
and ra, ar ∈ A whenever a ∈ A and r ∈ R. When R is commutative, ar = ra, hence we need only
check that ra ∈ A.

We say that an ideal A has closure since a + b ∈ A whenever a, b ∈ A. We say that an ideal A
absorbs elements from R, since ra, ar ∈ A whenever a ∈ A and r ∈ R.

Example 3.2.8. For any ring R, {0} and R are ideals of R. This is trivial to check. X

Example 3.2.9. For any positive integer n, the set nZ = {0,±n,±2n . . .} is an ideal of the ring of
integers Z. To see this, first notice that for any a, b ∈ nZ, we have a = a′n and b = b′n for some
integers a′ and b′. Then, a− b = a′n− b′n = n(a′− b′), which is clearly in nZ. Next, notice that for
any r ∈ Z, we have ar = a′nr = n(a′r), which is also clearly in nZ. By the definition of ideal (and
since Z is commutative), we have shown that nZ is an ideal in Z.X

Definition 3.2.10. Let R be a commutative ring with unity and let g ∈ R. The set 〈g〉 = {rg|r ∈ R}
is an ideal of R called the principal ideal generated by g. The element g is called the generator of
the principal ideal.

So, A is a principal ideal of a commutative ring R with unity if there exists g ∈ A such that every
element a ∈ A can be written as rg for some r ∈ R.

41



Example 3.2.11. The ideal nZ of the integers from Example 3.2.9 is clearly a principle ideal with
generator n.

Example 3.2.12. Let 〈3〉 = {3r|r ∈ Z36}. We will prove that 〈3〉 is an ideal of the ring Z36. To
do this, we must show that (1) a − b ∈ 〈3〉 for all a, b ∈ 〈3〉, and (2) ar ∈ 〈3〉 whenever a ∈ 〈3〉
and r ∈ Z36. (Since Z36 is commutative, we need not separately address ra ∈ Z36.) To prove (1),
consider two arbitrary elements a, b ∈ 〈3〉. These elements are of the form a = 3a′ and b = 3b′,
for some a′, b′ ∈ Z36, by the definition of 〈3〉. Then a − b = 3a′ − 3b′ = 3(a′ − b′), where a′ − b′ is
some other element in Z36, since a′, b′ ∈ Z36 and therefore −b′ ∈ Z36. So, again by the definition
of 〈3〉, a − b ∈ Z36. To prove (2), consider two arbitrary elements a ∈ 〈3〉 and r ∈ Z36. Then
ar = (3a′)r = 3(a′r), where a′r ∈ Z36 since a′, r ∈ Z36. So, again by the definition of 〈3〉, ar ∈ Z36

whenever a ∈ 〈3〉 and r ∈ Z36. Therefore, 〈3〉 is an ideal of the ring Z36.

Question 4. Show that 〈x + 1〉 is an ideal in GF (2)[x], the ring of polynomials with binary coeffi-
cients. To do this, you must show that (1) a(x)− b(x) ∈ 〈x + 1〉 for all a(x), b(x) ∈ 〈x + 1〉, and (2)
a(x)r(x) ∈ 〈x + 1〉 whenever a(x) ∈ 〈x + 1〉 and r(x) ∈ GF (2)[x].

In fact, for any q-ary polynomial p(x), 〈p(x)〉 is an ideal in GF (q)[x].

Theorem 3.2.13. Let R be a ring and A be an ideal of R. Then the set of cosets R/A = {r+A|r ∈
R} is a ring under the operations (s + A) + (t + A) = s + t + A and (s + A)(t + A) = st + A. The
operations s + t and st are done according to the operation of the ring R.

Example 3.2.14. We have shown that 2Z is an ideal of the ring Z, so we can consider the ring of
cosets Z/2Z = Z/〈2〉. Elements of this ring are cosets of the form r + 2Z where r ∈ Z. For example,
elements include 0+2Z, 1+2Z, 23+2Z, and −45+2Z. However, we will see that there are only two
distinct cosets in the ring. First, consider the coset 23+2Z. This represents the set {23+2n|n ∈ Z}.
Since 23 = 1 + 2(11), we can write this set as {1 + 2(11) + 2n|n ∈ Z} = {1 + 2(11 + n)|n ∈ Z}
= {1 + 2m|m ∈ Z}. This latter representation clearly represents the coset 1 + 2Z. In fact, any coset
of the form r + 2Z where r is an odd integer is equivalent to the coset 1 + 2Z. Similarly, any coset
of the form r + 2Z where r is an even integer is equivalent to the coset 0 + 2Z.

Now, consider adding two specific elements in this ring of cosets: 23 + 2Z and −45 + 2Z. Adding
together these elements gives −22 + 2Z, which represents the set {−22 + 2n|n ∈ Z} = {0 + 2(−11 +
n)|n ∈ Z}= {0 + 2m|m ∈ Z}, which is the coset 0 + 2Z. So, (23 + 2Z) + (−45 + 2Z) = 0 + 2Z.
Notice then that adding elements of the ring of cosets Z/2Z is essentially the same thing as adding
elements of Z modulo 2 (since 23 + (−45) ≡ 0 (mod 2)).

The above discussion suggests the true fact that Z/2Z is regarded as “isomorphic to,” or essentially
the same mathematical structure as, Z2.

Question 5. Compute (24 + 2Z)(4 + 2Z) inside the ring of cosets Z/2Z.

Example 3.2.15. We showed above that 〈3〉 = {3r|r ∈ Z36} is an ideal of the ring Z36. We can
therefore consider the ring of cosets Z36/〈3〉 = {r + 〈3〉|r ∈ Z36}. The elements in this ring of
cosets have the form r + 〈3〉, where r ∈ Z36. For example, two specific elements are 12 + 〈3〉 and
28 + 〈3〉. Adding these elements together gives 4 + 〈3〉, since 12 + 28 ≡ 4 (mod 36). However,
let’s look more closely at 4 + 〈3〉. This element represents the set {4 + 3n|n ∈ Z36}, which can be
rewritten as {1 + 3 + 3n|n ∈ Z36} = {1 + 3m|m ∈ Z36}. This represents the coset 1 + 〈3〉. So,
(12 + 〈3〉) + (28 + 〈3〉) = 1 + 〈3〉. Notice then that adding elements in the ring Z36/〈3〉 is essentially
the same thing as adding elements of Z36 under addition modulo 3. In fact, the only three distinct
cosets in Z36/〈3〉 are 0 + 〈3〉, 1 + 〈3〉, and 2 + 〈3〉, and this ring is isomorphic to Z3.

Question 6. Compute (10 + 〈3〉)(5 + 〈3〉) inside the ring of cosets Z36/〈3〉.
Example 3.2.16. Consider the ring of cosets GF (2)[x]/(x3 − 1). The elements of this ring have
the form r(x) + 〈x3 − 1〉, where r(x) ∈ GF (2)[x]. Two specific elements are 1 + x2 + 〈x3 − 1〉 and
x + 〈x3 − 1〉. Multiplying these elements gives (1 + x2 + 〈x3 − 1〉)(x + 〈x3 − 1) = x + x3 + 〈x3 − 1〉,
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which represents the set {x + x3 + (x3 − 1)g(x)|g(x) ∈ GF (2)[x]}. We can rewrite this as the set
{x + 1 + (x3− 1) + (x3− 1)g(x)|g(x) ∈ GF (2)[x]} = {x + 1 + (x3− 1)g′(x)|g′(x) ∈ GF (2)[x]}, which
represents the coset 1 + x + 〈x3 − 1〉. Comparing this with Example 3.1.3, we see that multiplying
two elements in the ring of cosets GF (2)[x]/(x3 − 1) is essentially equivalent to multiplying two
polynomials modulo x3 − 1.

Question 7. Use multiplication in the ring of cosets GF (2)[x]/(x3 − 1) to compute the product
(x + x2 + 〈x3 − 1〉)(x + 〈x3 − 1〉), and then compare your result to the discussion in Example 3.1.3.

Example 3.2.17. We will now look at the more general ring of cosets defined by GF (q)[x]/(xn − 1) =
{f(x) + 〈xn − 1〉|f(x) ∈ GF (q)[x]}. Elements of this ring of cosets have the form f(x) + 〈xn − 1〉,
where f(x) ∈ GF (q)[x]. Since f(x) ∈ GF (q)[x], the Division Algorithm implies that we may write
f(x) in the form q(x)(xn − 1) + r(x), where q(x) is the quotient and r(x) is the remainder ob-
tained when dividing f(x) by xn − 1. We can therefore write elements of GF (q)[x]/(xn − 1) as
q(x)(xn − 1) + r(x) + 〈xn − 1〉, where q(x), r(x) ∈ GF (q)[x]. However, since 〈xn − 1〉 is an ideal
in GF (q)[x], q(x)(xn − 1) is an element of 〈xn − 1〉, by the absorption property of ideals. This
allows a simplification to obtain GF (q)[x]/(xn − 1) = {r(x) + 〈xn − 1〉|r(x) ∈ GF (q)[x]}. By the
Division Algorithm, r(x) has degree less than n, and we can finally write GF (q)[x]/(xn − 1) =
{c0 + c1x + . . . + cn−1x

n−1 + 〈xn − 1〉|ci ∈ GF (q)}. We can now understand that elements in
the ring of cosets GF (q)[x]/(xn − 1) have the form c0 + c1x + . . . + cn−1x

n−1 + 〈xn − 1〉, where
ci ∈ GF (q). The absorption property of ideals implies that adding and multiplying elements of
GF (q)[x]/(xn − 1) is equivalent to adding and multiplying polynomials of degree less than n using
modulo xn − 1 polynomial arithmetic.

Example 3.2.17 is fundamental to the study of cyclic codes. We showed in Example 3.2.17 that
technically, the elements of the ring of cosets GF (q)[x]/(xn−1) have the form r(x)+ 〈xn−1〉, where
r(x) is a polynomial of degree less than n. However, we will abuse notation and say that elements
of GF (q)[x]/(xn − 1) are simply polynomials r(x) of degree less than n and understand that we are
working modulo xn − 1.

3.3 Ideals and Cyclic Codes

The following theorem motivates our study of ideals:

Theorem 3.3.1. Cyclic codes of length n over GF (q) correspond precisely to the ideals in the ring
GF (q)[x]/(xn − 1).

Proof. Suppose C is a cyclic code of length n over GF (q). Then, the corresponding set of code
polynomials I(C) is contained in GF (q)[x]/(xn − 1) since the polynomials are of degree less than
n over GF (q). By Definition 3.2.7, to show that I(C) forms an ideal in GF (q)[x]/(xn − 1), we
must show that (1) c(x) − d(x) ∈ I(C) for any code polynomials c(x) and d(x) in I(C); and (2)
r(x)c(x) ∈ I(C) for any polynomial r(x) ∈ GF (q)[x]/(xn − 1) and c(x) ∈ I(C). By Theorem 3.1.4,
every cyclic code C does indeed satisfy these two conditions.

On the other hand, suppose that I is an ideal in GF (q)[x]/(xn−1). Then its elements are polynomials
of degree less than n, and by Definition 3.2.7, its elements satisfy (1) a(x) − b(x) ∈ I whenever
a(x), b(x) ∈ I; and (2) r(x)a(x) ∈ I whenever r(x) ∈ GF (q)[x]/(xn − 1) and a(x) ∈ I. Theorem
3.1.4 then shows that these conditions imply that the set of polynomials I represents the code
polynomials of a cyclic code.

Therefore, cyclic codes of length n over GF (q) are precisely the ideals in the ring GF (q)[x]/(xn −
1).

Example 3.3.2. In Example 3.2.16, we considered the rings of cosets GF (2)[x]/(x3 − 1). A trivial
example of an ideal in this ring is the entire ring itself. The elements in this ideal can be viewed

43



as all binary polynomials of degree less than 3: 0, 1, x, x2, x + 1, x2 + 1, x2 + x, x2 + x + 1, }. These
polynomials correspond respectively to the binary codewords {000, 001, 010, 100, 011, 101, 110, 111},
which clearly form a trivial example of a binary cyclic code.

In order to study nontrivial cyclic codes, we will have to study nontrivial ideals of the ring GF (q)[x]/(xn−
1). The next theorem will help us find these:

Theorem 3.3.3. Let C be an [n, k] cyclic code corresponding to an ideal I(C) in GF (q)[x]/(xn − 1).
The following statements are true:

1. There exists a unique monic polynomial g(x) ∈ I(C) of minimal degree r < n. (A monic
polynomial has a coefficient of 1 on its highest power term.) This polynomial is called the
generator polynomial of C.

2. I(C) is a principal ideal with generator g(x), so that every code polynomial c(x) can be
expressed uniquely as c(x) = m(x)g(x), where g(x) is the generator polynomial and m(x) is a
polynomial of degree less than (n− r) in GF (q)[x].

3. The generator polynomial g(x) divides xn − 1 in GF (q)[x].

Proof. 1. Since there is at least one non-empty ideal I(C) of Rn = GF (q)[x]/(xn − 1) (why?),
and since the degree of polynomials is bounded below by 0, there is certainly at least one
polynomial of minimum degree in I(C). Since the scalar multiplication of any polynomial in
an ideal I(C) remains in I(C), we can find a monic polynomial of minimum degree in I(C);
call it g(x) of degree r < n.

Suppose that h(x) is another monic polynomial of minimum degree d in I(C). Since I(C) is an
ideal, h(x)− g(x) ∈ I(C). Since these polynomials have the same degree and are monic, their
difference must be of lower degree. However, this contradicts the minimality of r. Therefore,
there cannot be two monic polynomials of minimum degree in I(C).

2. We must show that every element in I(C) can be written as a multiple of g(x), where g(x) is
the unique monic polynomial of minimum degree in I(C). Consider f(x) an arbitrary element
of I(C), so that f(x) is represented by a polynomial of degree less than n. By the Division
Algorithm in GF (q)[x] (and since f(x) must have degree larger than the degree of g(x)), we
can write f(x) = q(x)g(x) + r(x), where q(x), r(x) ∈ GF (q)[x] and deg r(x) < deg g(x). Since
f(x) has degree less than n, clearly q(x) and r(x) (and g(x)) must also have degree less than
n. Then, by Theorem 3.1.4, since I(C) corresponds to a cyclic code and since g(x) is a code
polynomial, q(x)g(x) ∈ I(C). Since f(x) is also in I(C), by the linearity of the code (or by the
closure property of ideals), f(x)−q(x)g(x) = r(x) is also in I(C). However, deg r(x) < deg g(x)
contradicts the minimality of the degree of g(x) in I(C). Therefore, r(x) must be equivalent
to 0, implying that f(x) is indeed a multiple of g(x).

3. Suppose that the unique monic polynomial of minimum degree in I(C) does not divide xn−1 in
GF (q)[x]. By the Division Algorithm in GF (q)[x], we can write xn−1 = q(x)g(x)+r(x), where
q(x), r(x) ∈ GF (q)[x] and deg r(x) < deg g(x). Since rearranging gives r(x) = xn−1−q(x)g(x)
in GF (q)[x], we see that in GF (q)[x]/xn − 1, r(x) is congruent to−q(x)g(x). Since g(x) ∈ I(C)
and −q(x) ∈ GF (q)[x], we have −q(x)g(x) ∈ I(C), by the absorption property of ideals.
Therefore, r(x) must also be in I(C). However, by the Division Algorithm, deg r(x) < deg g(x),
which contradicts the minimality of the degree of g(x) in I(C). Therefore, r(x) must be 0,
implying that g(x) indeed divides xn − 1.

Theorem 3.3.3 allows us to think of ideals and cyclic codes as equivalent and allows us to talk about
the unique generator polynomial for a cyclic code. Although each cyclic code contains a unique monic
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generating polynomial of minimal degree, it may also contain other polynomials that generate the
code. These other polynomials are either not monic, not of minimal degree, or not divisors of the
appropriate xn − 1.

Example 3.3.4. Suppose we would like to generate a binary cyclic code C of length 4. According
to Theorem 3.3.1, this code must correspond to an ideal I(C) in the ring GF (2)[x]/(x4 − 1). Then,
according to Theorem 3.3.3, the ideal I(C) must be generated by a divisor of x4 − 1 in GF (2)[x].
Using Gap or paper and pencil, we find that g(x) = 1 + x is a divisor of x4 − 1 in GF (2)[x]. Then,
the ideal generated by g(x) consists of the elements {0, 1+x, 1+x2, x+x2, 1+x3, x+x3, x2 +x3, 1+
x + x2 + x3}. (Check this!). These elements correspond respectively to the binary code polynomials
{0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}. Inspection shows that these code polynomials indeed
form a binary cyclic code of length 4.

Question 8. Show that the ideal 1+x3 in GF (2)[x]/(x4−1) generates the same binary cyclic code
of length 4 as generated by 1 + x above. Explain why this does not contradict Theorem 3.3.3.

Since the ideals corresponding to cyclic codes are generated by divisors of xn−1, there are precisely
as many q-ary cyclic codes of length n as there are divisors of xn − 1 in GF (q)[x]/(xn − 1). More
formally:

Theorem 3.3.5. There is a one-to-one correspondence between monic divisors of xn − 1 of degree
r in GF (q)[x] and q-ary cyclic codes of length n and dimension n− r.

Proof. By Theorems 3.3.1 and 3.3.3, any q-ary [n, k] cyclic code C is an ideal in GF (q)[x]/(xn − 1)
with a unique monic generating polynomial g(x) that divides xn−1. Hence, to any q-ary [n, k] cyclic
code, we can associate a unique monic divisor of xn − 1.

On the other hand, suppose g(x) is a monic divisor of xn − 1 in GF (q)[x]. Consider the code
C = 〈g(x)〉. Clearly, the code polynomial g(x) generates C. Suppose for contradiction that h(x) is
actually the generator polynomial for C, so that h(x) is a monic polynomial of minimum degree r in
C. Since h(x) ∈ C = 〈g(x)〉, h(x) must be a polynomial multiple of g(x) inside GF (q)[x]/(xn − 1),
in other words, h(x) = m(x)g(x) inside GF (q)[x]/xn − 1. So, h(x) = m(x)g(x) + s(x)(xn − 1)
inside GF (q)[x]. But, since g(x) is a divisor of xn − 1, we can write g(x)t(x) = xn − 1, for some
t(x) ∈ GF (q)[x]. So, h(x) = g(x)m(x)+s(x)t(x)g(x). This implies h(x) = g(x)(m(x)+s(x)t(x)), or
simplified, that h(x) = g(x)a(x), where a(x) ∈ GF (q)[x]. This leaves two cases: Either the degree
of g(x) is less than the degree of h(x), or these polynomials are scalar multiples of each other. In
the first case, we arrive at a contradiction, since h(x) was assumed to be of minimum degree in C.
In the second case, since both polynomials were assumed to be monic, they must be equal. In either
case, we can conclude that g(x) is in fact the unique monic generator polynomial of minimum degree
for C.

Theorem 3.3.5 facilitates listing all of the cyclic codes of a given length, n. If we can factor xn − 1
over the appropriate alphabet, then the resulting factors (and combinations thereof) are equivalent
to the generator polynomials for all cyclic codes of length n. To find an [n, k] cyclic code, we need
a factor of xn − 1 of degree n− k.

Unfortunately, as n becomes larger than 3, factoring xn − 1 over arbitrary alphabets (or even just
over GF (2)), becomes increasingly more difficult. Fortunately, in this course, the factorizations of
xn − 1 will be provided or can be obtained using software.

Gap can factor xn − 1 with over different fields. For example, we can factor x10− 1 over GF(2).

gap> x := Indeterminate(GF(2), "x");;

gap> Display(Factors(x^7-1));
[ x+Z(2)^0, x^3+x+Z(2)^0, x^3+x^2+Z(2)^0 ]
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Gap displays the factors as powers of Z(n), which represents an element of order n− 1 inside Zn. If
n is prime, we can use the function Int to figure out what Z(n) is equal to. For example,

gap> Int(Z(2));
1

shows that the above factors are x + 1, x3 + x + 1, and x3 + x2 + 1.

Question 9. Use Gap to factor x7 − 1 over GF (2).

Question 10. Suppose that g(x) = 1 + x + x2 + x4 is the generator matrix for a length 7 binary
cyclic code. What is the dimension of this code? Use Gap to confirm that g(x) indeed divides x7−1.

Example 3.3.6. In order to find all of the binary cyclic codes of length 3, we must factor x3 − 1
into irreducible polynomials over GF (2). In other words, we must factor x3 − 1 into polynomials
that can no longer be factored. It can be shown using Gap (or higher-level mathematics) that
the irreducible factors of x3 − 1 are (x + 1) and (x2 + x + 1). Therefore, there are four possible
generator polynomials: g0(x) = 1, g1(x) = x + 1, g2(x) = x2 + x + 1, and g3(x) = x3 + 1. To
obtain the length 3 code generated by the degree 1 polynomial g1(x) = x + 1, we must multiply
g1(x) by every message polynomial corresponding to messages of length 2. We see 0 · g1(x) = 0,
1 · g1(x) = x + 1, x · g1(x) = x2 + x, and (x + 1) · g1(x) = x2 + 1. Therefore, g1(x) = x + 1 generates
the code {0, 1 + x, x + x2, 1 + x2} = {000, 110, 011, 101}. Similarly, g0(x) = 1 generates the code
which is equal to all of GF (2)/(x3 − 1) or all binary 3-tuples; g2(x) = x2 + x + 1 generates the code
{0, 1 + x + x2} = {000, 111}; and g3(x) = x3 + 1 generates the code {0} = {000}. X

You can verify that the code C = {0, 1 + x, x + x2, 1 + x2} generated by g1(x) = x + 1 in the above
example is also generated by x2 + 1. However, g1(x) is the unique monic generator polynomial of
minimal degree.

Example 3.3.7. Use Gap to find all possible generator polynomials for binary cyclic codes of length
5.

We can use Gap to generate cyclic codes given a generator polynomial. To declare a codeword
polynomial, or in particular a generator polynomial, we must first declare the field in which the
coefficients lie. For example, suppose we want a binary code of length 7 generated by generator
polynomial 1 + x + x2:

gap> x := Indeterminate(GF(2), "x");;

gap> gx := 1+x+x^2;;

gap> C := GeneratorPolCode(gx, 7, GF(2));

a cyclic [7,7,1]0 code defined by generator polynomial over GF(2)

Notice that since this code has minimum distance 1, it can correct 0 errors.

Question 11. Describe the set of codewords in the above code - how many codewords are there?

3.4 Generator and Parity Check Polynomials

In Example 3.3.6, we saw that the code C = {0, 1 + x, x + x2, 1 + x2} is generated by g1(x) = x + 1.
We can now expand upon this result and rewrite C as {0, g1(x), xg1(x), g1(x)+xg1(x)}. This shows
that g1(x) = 1 + x and xg1(x) = x + x2 form a basis for C; in other words, all codewords in C
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are linear combinations of g1(x) and xg1(x). This implies that the corresponding vectors (110) and
(011) can be used to form a generating matrix for C (recall Section 2.3). In particular, a generating
matrix for C has the form: [

1 1 0
0 1 1

]

where the first row is the vector corresponding to the generator polynomial g1(x), and the second
row is the vector corresponding to its cyclic shift xg1(x). We next show that we can always use the
generator polynomial to define the generator matrix of a cyclic code in this way.

Theorem 3.4.1. Suppose C is a cyclic code with generator polynomial g(x) = g0 +g1x+ · · ·+grx
r

of degree r. Then the dimension of C is n−r, and a generator matrix for C is the following (n−r)×n
matrix:

G =




g0 g1 · · · gr 0 0 · · · 0
0 g0 g1 · · · gr 0 · · · 0

0 0 g0 g1 · · · gr
. . .

...
...

...
. . . . . . . . . · · · . . . 0

0 0 · · · 0 g0 g1 . . . gr




Proof. First, note that g0 is nonzero: Otherwise, (0, g1, . . . , gr−1) ∈ C which implies that (g1, . . .,
gr−1, 0) ∈ C which implies that g1 + g2x + · · · + gr−1x

r−1 ∈ C, which contradicts the minimality
of the degree r of the generating polynomial. Now, we see that the n − r rows of the matrix G
are linearly independent because of the echelon of nonzero g0s with 0s below. These n − r rows
represent the code polynomials g(x), xg(x), x2g(x), . . ., xn−r−1g(x). In order to show that G is a
generator matrix for C we must show that every code polynomial in C can be expressed as a linear
combination of g(x), xg(x), x2g(x), . . ., xn−r−1g(x). Part 2 of Theorem 3.3.3 shows that if c(x) is
a code polynomial in C, then c(x) = m(x)g(x) for some polynomial m(x) of degree less than n− r
in GF (q)[x]. Hence,

c(x) = m(x)g(x)
= (m0 + m1x + · · ·+ mn−r−1x

n−r−1)g(x)
= m0g(x) + m1xg(x) + · · ·+ mn−r−1x

n−r−1g(x)

which shows that any code polynomial c(x) in C can be written as a linear combination of the code
polynomials represented by the n − r independent rows of G. We conclude that G is a generator
matrix for C and the dimension of C is n− r.

Example 3.4.2. In order to construct a binary cyclic code C of length n = 7, we need to find a
generator polynomial that is a factor of x7 − 1 in GF (2)[x]. Choose g(x) = (1 + x + x3)(1 + x) =
1 + x2 + x3 + x4. Since g(x) has degree r = 4, it follows that C has dimension k = n − r = 3. So
our generator matrix G will be a 3× 7 matrix:




1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


 .X

We now have an easy way to write down a generator matrix for a cyclic code. As with linear codes,
we can encode a cyclic code by performing a matrix multiplication. However, Part (2) of Theorem
3.3.3 suggests a different encoding scheme for cyclic codes. We can use the generating polynomial
g(x) to encode a message a = (a0, . . . , ak−1) = a(x) by performing the polynomial multiplication
a(x)g(x). This simple polynomial multiplication can be used instead of storing and using an entire
generator matrix for the cyclic code.
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Question 12. Let g(x) = 1+x2 +x3 be the generator polynomial for a binary cyclic code of length
7. Encode the message (1, 0, 0, 1) using the generator polynomial.

You may have noticed that the above way of obtaining a generator matrix of a cyclic code gives
a matrix that is not in standard form. Therefore, we cannot automatically write down the parity
check matrix, as we can when we have a generator matrix in standard form. However, we next define
parity check polynomials that can be used to easily construct parity check matrices.

Definition 3.4.3. The parity check polynomial h(x) for an [n, k] cyclic code C is the polynomial
such that g(x)h(x) = xn − 1, where g(x) is the degree r generator polynomial for C. Furthermore,
h(x) is monic of degree k = n− r.

Since c(x) is a code polynomial if and only if it is a multiple of g(x), it follows that c(x) is a code
polynomial if and only if c(x)h(x) ≡ 0 modulo (xn − 1).

Question 13. Prove the above statement.

Given the generator matrix of a code, the function CheckPol returns the corresponding check poly-
nomial. For example:

gap> H := CheckPol(GeneratorMatCode([[1,1,0], [0,1,1]], GF(2)));

x^2+x+Z(2)^0

You can also play around with Gap to confirm that given a code, CheckPol can also find the check
polynomial.

Theorem 3.4.4. Suppose C is an [n, k] cyclic code with parity check polynomial h(x) = h0 +h1x+
· · ·+ hkxk. Then, a parity check matrix for C is the following (n− k)× n matrix:

H =




hk hk−1 · · · h0 0 0 · · · 0
0 hk hk−1 · · · h0 0 · · · 0

0 0 hk hk−1 · · · h0
. . .

...
...

...
. . . . . . . . . · · · . . . 0

0 0 · · · 0 hk hk−1 · · · h0




The proof of this theorem uses the concept of dual codes, which are introduced in the special topics
portion of this book.

Proof. You proved above that if c(x) ∈ C, then c(x)h(x) ≡ 0 modulo (xn− 1). The coefficient of xj

in the product c(x)h(x) is
∑n−1

i=0 cihj−i, where the subscripts are taken modulo n. So, if c(x) ∈ C,
we have

n−1∑

i=0

cihj−i = 0, for 0 ≤ j ≤ n− 1. (7)

The n equations represented in (7) are parity check equations satisfied by the code. The last n− k
of these equations imply that if c ∈ C, then cHT = 0.

On the other hand, suppose that cHT = 0. Then the rows of H are vectors in C⊥. Since h(x) is
monic, H contains an echelon of 1s with 0s underneath; hence, the n − k rows of H are linearly
independent. Since dimC = k, we have dim C⊥ = n− k, so the n− k independent rows of H form
a basis for C⊥. It follows that c · h = 0 for all h ∈ C⊥. So c ∈ (C⊥)⊥ = C.

Using Definition 2.4.1 of a parity check matrix, we have shown that H is a parity check matrix for
C.
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Example 3.4.5. The [7, 3] code C constructed in Example 3.4.2 has parity check polynomial h(x) =
(x7 − 1)/g(x) = 1 + x2 + x3. The following [(n − k) × n] = [4 × 7] matrix is a parity check matrix
for C: 



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


 .X

Question 14. What condition (equation) should the generator matrix from Example 3.4.2 and
parity check matrix from Example 3.4.5 together satisfy? Check that these matrices do satisfy that
equation.

We defined Hamming codes Hr in Section 2.7 by constructing their parity check matrices. We now
show that these codes are equivalent to cyclic codes.

Theorem 3.4.6. The binary Hamming code Hr is equivalent to a cyclic code.

The proof of this theorem assumes knowledge of field theory and is provided for those students who
have already taken a course in field theory.

Proof. Let p(x) be an irreducible polynomial of degree r in GF (2)[x]. Then, the ring GF (2)[x]/p(x)
of polynomials modulo p(x) is actually a field of order 2r. Since every finite field has a primitive
element (recall the Primitive Root Theorem), there exists an element α ∈ GF (2)[x]/p(x) such that
GF (2)[x]/p(x) = {0, 1, α, α2, . . . , α2r−2}. Consider the matrix H = [1, α, · · · , α2r−2]. Since each
entry of H is an element of the field GF (2)[x]/p(x) of order 2r, we can express each entry αi, 0 ≤
i ≤ 2r−1 as a binary column vector (ai,0, ai,1, . . . , ai,r−1)T where αi = ai,0 +ai,1x+ · · ·+ai,r−1x

r−1.
This allows us to think of H as an r × (2r − 1) binary matrix.

Let C be the linear code having H as its parity check matrix. Since the columns of H are exactly
the 2r − 1 nonzero binary vectors of length r, C is a length n = 2r − 1 binary Hamming code Hr.

We now show that C is cyclic. Since H is the parity check matrix for C, we have c ∈ C if and only
if cHT = 0, i.e.,

C = {(c0, c1, . . . , cn−1) ∈ V (n, 2) | c0 + c1α + · · ·+ cn−1α
n−1 = 0}

= {c(x) ∈ GF (2)[x]/(xn − 1) | c(α) = 0 in GF (2)[x]/p(x)}.

If c(x) ∈ C and r(x) ∈ GF (2)[x]/(xn − 1), then r(x)c(x) ∈ C because r(α)c(α) = r(α) · 0 = 0. It
now follows from Theorem 3.1.4 that this Hamming code is cyclic.

3.5 Answers to Chapter 3 Reading Questions

Answer 1. The corresponding code polynomial is c(x) = 1 + x2 + x3.

Answer 2. For a codeword of length 5, the maximum degree of the associated code polynomial is
4.

Answer 3. (1 + x2)(x2) = x2 + x4 ≡ x2 + x The codeword corresponding to this polynomial looks
like 011, which is two right shifts of 101, the code polynomial we started with.

3.6 Chapter 3 Problems

Problem 3.1. Suppose you are working with an arbitrary cyclic code C. Let m = (m0,m1,m2) be
a message that you want to encode using the generator polynomial g(x) = g0 + g1x. (Note that we
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know g0 is nonzero and g1 is 1 since generator polynomials are monic, but do the problem out with
the general notation.)

1. Encode the message using polynomial multiplication.

2. What are (n, k) for this code?

3. Use g(x) to produce a non-systematic generator matrix G for C.

4. Now encode the same message m using the non-systematic generator matrix G.

5. Manipulate your answers to (a) and (d) to see that they are equal.

Problem 3.2. Let C be the binary cyclic code of length 9 with generator polynomial g(x) = 1+x3.

1. Find the parity check polynomial h(x) for C.

2. Use h(x) to confirm that 010100110 is a codeword in C.

3. Use h(x) to find a (non-systematic) parity check matrix H for C.

4. Use H to again confirm that 010100110 is a codeword in C.

5. What message was encoded to 010100110?

6. What are (n, k) for the code C?

Problem 3.3. Find a basis for the smallest binary linear cyclic code of length 7 containing the
codeword 1101000.

Problem 3.4. Show that the subring of rational numbers is not an ideal in the Reals.

Problem 3.5. Let R be a commutative ring with unity and let a ∈ R. Prove that the set 〈a〉 =
{ra|r ∈ R} is an ideal of R.

Problem 3.6. Suppose that I is an ideal of R and that 1 ∈ I. Prove that I = R

Problem 3.7. Show that every ideal in Z is a principal ideal.

Problem 3.8. Consider the polynomial ring GF (2)[x]/(xn − 1). Let f(x), g(x) be two fixed poly-
nomials in GF (2)[x]/(xn − 1). Consider the subset generated by these two fixed polynomials:
〈f(x), g(x)〉 = {a(x)f(x) + b(x)g(x) | a(x), b(x) ∈ GF (2)[x]/(xn − 1)}. Using the definition of an
ideal, prove that this subset is an ideal of GF (2)[x]/(xn − 1).

Problem 3.9. Gap: List all of the distinct ideals in GF (2)[x]/〈(x7 − 1)〉 by listing their generators.

Problem 3.10. Gap: List by dimension all of the binary cyclic codes of length 31. Do the same
for length 63 and 19.

4 Classes of Powerful Cyclic Codes

This Chapter uses more advanced abstract algebra to develop some of the most powerful error-control
codes: BCH and Reed-Solomon (RS) codes. Binary BCH codes were introduced by R. C. Bose and
D. K. Ray-Chaudhuri (1960) and independently by A. Hocquenghem (1959). Gorenstein and Zierler
later extended the concepts of BCH codes to arbitrary finite fields (1961). Reed-Solomon (RS)
codes were first introduced by Irving Reed and Gustave Solomon in a five-page paper, “Polynomial
Codes over Certain Finite Fields,” in 1960 [5], and they were given their present name by W. Wesley
Peterson in 1961 [4].

Reed-Solomon codes are the most used codes today, due to their use in compact disc digital audio
systems. They are also well known for their role in providing pictures of Saturn and Neptune during
space missions such as the Voyager. In fact, RS codes are incorporated in the NASA Standard.
These and several other applications of RS codes are described in [9].
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4.1 Special Cases of BCH and RS Codes

In this section, we provide an introduction to the powerful classes of BCH and RS codes by focusing
on restricted cases. The following sections develop the mathematical theory needed for the general
theory of BCH and RS codes.

Definition 4.1.1. The multiplicative order of a non-zero field element α is defined as the smallest
positive integer r such that αr ≡ 1.

Example 4.1.2. In the field Z7, the element 3 has order 6, since 36 ≡ 1, but 3x is not equivalent
to 1 for any x < 6. (Confirm this by computing powers of 3 modulo 7)X

Question 1. Find the order of 2 inside Z7.

We can also use Gap to find the order of a field element. For example, to find the multiplicative
order of 3 inside Z7, we type:

gap> OrderMod(3, 7); 6

OrderMod(<n>, <m>) returns the multiplicative order of the integer n modulo m when n and m are
relatively prime. Otherwise, the order is not defined and the command outputs 0.

Question 2. Use Gap to find the order of 2 inside Z7.

Theorem 4.1.3. (The Modified BCH Bound) In order to build a p-ary cyclic code C of length
p− 1, where p is prime, begin by finding an element α of order p− 1 in Zp. Next, define a generator
polynomial g(x) for C as (x − αb)(x − αb+1) · · · (x − αb+δ−2) for some integers b ≥ 0 and δ ≥ 1.
Hence, g(x) contains δ−1 consecutive powers of α as zeros or roots. Then, the cyclic code C defined
by this generator polynomial g(x) has minimum distance dmin ≥ δ.

The original BCH Bound, used to define general BCH codes, does not restrict the alphabet to be a
prime field and does not restrict the length of the code to be one less than the size of the alphabet.
Reed-Solomon (RS) codes are qm-ary BCH codes of length qm − 1. Our Modified BCH Bound will
allow us to construct RS codes in the special case where the alphabet is a prime field.

Example 4.1.4. Let’s find a generator polynomial for a 7-ary Reed-Solomon code of length 6 and
minimum distance at least 4. First, we need to find an element α ∈ Z7 with order 6. Example 4.1.2
shows that 3 satisfies our requirement. Since we need a minimum distance of 4, we need to build
our generator polynomial so that it has three consecutive powers of 3 as its roots. We choose to
define g(x) = (x − 3)(x − 6)(x − 2) (since 32 ≡ 6 and 33 ≡ 2). Multiplying out g(x) over Z gives
g(x) = x3 + 3x2 + x + 6. This polynomial is used to generate a (6, 4, 4) Reed-Solomon code over Z7.
Since the degree of g(x) is 3 and the codelength is 6, the dimension is 6− 3 = 3. X

When using our Modified BCH Bound, we will always be in search of elements of order p− 1 inside
Zp, where p is prime. In mathematics, these elements are known as primitive roots, and the Gap
command PrimitiveRootMod(p) finds these primitive roots for us. For example,

gap> PrimitiveRootMod(7);
3

Although there are often many primitive roots for a given prime, this Gap command will return the
smallest such primitive root.

We can also use Gap to automate the construction of the generator matrix for a RS code. To
illustrate, we will redo Example 4.1.4 using Gap:
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gap> x := Indeterminate(GF(7), "x");;

gap> gx := (x-3^1)*(x-3^2)*(x-3^3);;

gap> C := GeneratorPolCode(gx, 6, GF(7));
a cyclic [6,3,1..4]2..3 code defined by generator polynomial over GF(7)

The first command defines the variable x. The second command defines the generator polynomial
gx using three consecutive powers of 3. The third command tells Gap to generate a cyclic code of
length 6 over GF (7) using generator polynomial gx. The output confirms that we have generated a
cyclic length 6 code of dimension 3. The minimum distance is between 1 and 4, but can determine
the exact minimum distance via the following input:

gap> MinimumDistance(C);
4

Guava also has a built-in function for generating Reed-Solomon Codes. ReedSolomonCode(<n>, <d>)
produces a length n RS code over GF (n + 1) with minimum distance d.

Question 3. Generate and compare the generator matrices for the above code C and the Gap-
generated RS code of the same parameters.

It is quite simple to increase the minimum distance of a RS code. In order to increase the minimum
distance of the RS code in Example 4.1.4 from 4 to 5, we need to include 2 more factors in the
generator matrix.

Question 4. Write down a generator polynomial for a 7-ary RS code of length 6 and minimum
distance 5.

Since the RS code in Example 4.1.4 has dimension k = n − r = 6 − 3 = 3,, this 7-ary code has
37 = 2187 codewords.

Question 5. How many codewords does the RS code constructed in Question 4 have?

The preceding examples, comments, and questions highlight the trade-off that exists between mini-
mum distance and total number of codewords. It should also be intuitively clear that by including
fewer codewords, it is possible to increase the minimum distance between the codewords. Striking
the right balance on this scale is of utmost importance in practical implementations.

Theorem 4.1.5. Reed-Solomon codes are maximum-distance separable (MDS); hence the param-
eters of an [n, k, d] RS code satisfy the equation d = n− k + 1.

Proof. By the Singleton bound given in Theorem 2.6.2, we know that d ≤ (n− k +1). Since C is an
[n, k] code, its generator polynomial has (n− k) roots. Since RS codes of designed distance δ have
generator polynomials with (δ− 1) roots, we conclude that (n− k) = (δ− 1). So, δ = n− k + 1, and
by the BCH bound, we have d ≥ δ = n− k + 1. Now, we can combine both inequalities to see that
d = n− k + 1.

Theorem 4.1.5 shows that RS codes satisfy the Singleton bound of Theorem 2.6.2 with equality. This
means that given their length and dimension, RS codes are optimal in their distance properties. One
notable property of MDS codes is that if a code is MDS, then so is its dual code, as defined in Section
5.1.

We can use the Gap IsMDSCode command to confirm that RS codes are MDS.
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One of the advantages of BCH and RS codes is the ability to build codes with huge numbers of
codewords. The (Modified) BCH Bound provides a very simple way to construct codes with optimal
distance properties and many codewords. Importantly, there exist efficient decoding algorithms for
these codes, making them very desirable in practice.

4.2 Minimal Polynomials

In order to study general BCH and RS codes, we need to learn how to find minimal polynomials of
elements in a field. We begin with several definitions.

Definition 4.2.1. Let α be an element in GF (qm). The minimal polynomial of α with respect to
the subfield GF (q) is the monic polynomial p(x) ∈ GF (q)[x] of minimal degree such that p(α) = 0.

The above definition depends on the phrase “with respect to the subfield GF (q),” and it is mean-
ingless without specifying a subfield.

The monic minimal polynomial of an element with respect to a subfield GF (q) is unique: Suppose
f(x) and g(x) are distinct monic minimal polynomials of α ∈ GF (qm) with respect to GF (q). Since
f(x) 6= g(x), there exists a nonzero polynomial r(x) such that f(x) = g(x) + r(x), r(α) = 0, and
deg r(x) < deg f(x). This contradicts the minimality of degree of the minimal polynomial.

Question 6. Prove that the minimal polynomial of an element is always irreducible.

Example 4.2.2. If β ∈ GF (q), then its minimal polynomial with respect to GF (q) is (x− β).X

Minimal polynomials for elements of infinite fields are defined in an analogous manner. In order to
motivate our systematic way of determining minimal polynomials of elements in finite fields, we give
some examples of the analogous concepts using the familiar fields of complex and real numbers.

Example 4.2.3. The minimal polynomial of i ∈ C with respect to the subfield R is x2 + 1. X
Example 4.2.4. Let β = a + bi ∈ C where b 6= 0. The minimal polynomial of β with respect to R
is

(x− β)(x− β) = x2 − (β + β)x + ββ

= x2 − 2ax + (a2 + b2)

Of course, all coefficients of the minimal polynomial are in R. A non-computational reason for why
(x − β)(x − β) has coefficients in R is as follows: Complex conjugation is a ring homomorphism
ϕ : C→ C defined by ϕ : β 7→ β. This induces a ring homomorphism between C[x] and itself. Since
(x − β)(x − β) is fixed by the ring homomorphism, it must have coefficients in R. We can rewrite
the minimal polynomial of β as (x− β)(x− ϕ(β)). X

When working over finite fields, we would like to use some homomorphism in a way that is analogous
to our use of conjugation in the case involving C and its subfield R. Suppose that we are dealing
with α ∈ GF (qm) and the subfield GF (q). The analog of complex conjugation is the homomorphism
φ : GF (qm) → GF (qm) defined by φ : α 7→ αq. This map fixes precisely the subfield GF (q). We
might guess that the minimal polynomial of an element α ∈ GF (qm) with respect to GF (q) takes
the form (x − α)(x − φ(α)). However, this needs a slight modification. For complex conjugation,
notice that ϕ(ϕ(β)) = β, so it would be redundant to include the factor (x− ϕ2(β)) in the minimal
polynomial for β ∈ C. However, in the finite field case, φ2(α) = αq2

, which is generally not equal to
α. In general, the minimal polynomial of α ∈ GF (qm) with respect to GF (q) has the form

(x− α)(x− φ(α))(x− φ2(α)) · · · = (x− α)(x− αq)(x− αq2
) · · ·

The polynomials terminate after the factor (x − αqv−1
) where v is the smallest integer such that

φv(α) = α. We make all of these ideas more formal below.
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Definition 4.2.5. Let α be an element in GF (qm). The conjugates of α with respect to the subfield
GF (q) are the elements α, αq, αq2

, . . ..

Again, the above definition depends on the phrase “with respect to the subfield GF (q),” and it is
meaningless without specifying a subfield.

Example 4.2.6. If α ∈ GF (q), then its only conjugate with respect to GF (q) is itself. X

Definition 4.2.7. The conjugacy class of α ∈ GF (qm) with respect to the subfield GF (q) is the set
consisting of the distinct conjugates of α with respect to GF (q). Note that α is always contained in
its conjugacy class.

Theorem 4.2.8. The conjugacy class of α ∈ GF (qm) with respect to the subfield GF (q) contains
v elements, where v divides m and v is the smallest integer such that αqv

= α.

Proof. See [8].

Example 4.2.9. Let α be an element of order 3 in GF (16). The conjugates of α with respect to
GF (2) are α, α2, α22

= α3+1 = α, etc. Hence, the conjugacy class with respect to GF (2) of α is
{α, α2}.X
Question 7. Convince yourself that the conjugacy class with respect to GF (4) of α, an element of
order 63 in GF (64), is {α, α4, α16}.
Theorem 4.2.10. Let α be an element in GF (qm). Let p(x) be the minimal polynomial of α with
respect to GF (q). The roots of p(x) are exactly the conjugates of α with respect to GF (q).

Proof. See [8].

Example 4.2.11. It is possible to construct GF (8) by identifying GF (2)[x]/(x3 + x + 1) with
GF (2)[α], where α3 + α + 1 = 0. Below, we arrange the eight elements of this field into conjugacy
classes, using their exponential representations, and list their associated minimal polynomials. The
minimum polynomial for the element αi is denoted pi(x), and the minimum polynomial for the
element 0 is denoted p∗(x).

Conjugacy Class : Associated Minimal Polynomial

{0} : p∗(x) = (x− 0) = x

{α0 = 1} : p0(x) = (x− 1) = x + 1
{α, α2, α4} : p1(x) = p2(x) = p4(x)

= (x− α)(x− α2)(x− α4) = x3 + x + 1
{α3, α6, α5} : p3(x) = p6(x) = p5(x)

= (x− α3)(x− α6)(x− α5) = x3 + x2 + 1

Note that simplification above is done using the relation α3 = α + 1 and the fact that addition and
subtraction are equivalent in fields of characteristic 2. X

Following the method of the above example, it is now easy to find the minimal polynomial of any
field element α with respect to a certain subfield. We simply find the appropriate conjugates of α
and then immediately form the minimal polynomial by multiplying together factors (x− β), where
β runs through all conjugates of α (including α itself).
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4.3 BCH and Reed-Solomon codes

BCH codes are cyclic codes whose generator polynomial satisfies a certain condition that guarantees
a certain minimum distance:

Definition 4.3.1. Fix an integer n. Let GF (qm) be the smallest extension field of GF (q) that
contains an element of order n. Let β be an element of GF (qm) of order n. A cyclic code of length n
over GF (q) is called a BCH code of designed distance δ if its generator polynomial g(x) ∈ GF (q)[x]
is the least common multiple of the minimal polynomials of βl, βl+1, . . . , βl+δ−2, where l ≥ 0 and
δ ≥ 1.

In other words, the generator polynomial of a BCH code with designed distance δ has as roots δ− 1
consecutive powers of β. When forming a BCH code C, we usually take l = 1 in the above definition.
In this case, we say that C is a narrow-sense BCH code. If n = qm − 1 for some positive integer m,
then β is a primitive element of GF (qm), and we say that C is a primitive BCH code.

It is natural to wonder about the minimum distance of a BCH code. Our next theorem will bound
the minimum distance in terms of the designed distance, but first, we need some background on
Vandermonde matrices.

Definition 4.3.2. An n× n Vandermonde matrix V is defined as follows:

V =




1 α1 α2
1 α3

1 · · · αn−1
1

1 α2 α2
2 α3

2 · · · αn−1
2

...
...

...
...

...
...

1 αn α2
n α3

n · · · αn−1
n


 ,

where the αi are elements from any finite or infinite field. The transpose of this matrix is also called
Vandermonde.

If the αi are distinct, then the determinant of V is nonzero. In particular, the determinant is equal
to

∏n−1
j=1

∏n
i=j+1(αi − αj).

To prove that the determinant of V is nonzero, consider all polynomials p(t) of degree n− 1. Given
any n values b1, . . . , bn, there exists a polynomial of degree n−1 interpolating these values: p(ti) = bi

for i ≤ i ≤ n. We can express this as the following matrix equation:



1 t1 t21 · · · tn−1
1

1 t2 t22 · · · tn−1
2

...
...

...
...

...
1 tn t2n · · · tn−1

n







x1

x2

...
xn


 =




b1

b2

...
bn




The coefficient matrix A is clearly Vandermonde. Since the only polynomial of degree n− 1 with n
roots is the zero polynomial, the equation Ax = 0 has only the solution x = 0. This implies that A
is nonsingular. It follows that Vandermonde matrices have nonzero determinant.

Alternately, one can derive the expression for the determinant by showing that the determinant of
V is equal to the determinant of




(α2 − α1) (α2 − α1)α2 (α2 − α1)α2
2 · · · (α2 − α1)αn−2

2

(α3 − α1) (α3 − α1)α3 (α3 − α1)α2
3 · · · (α3 − α1)αn−2

3
...

...
...

...
...

(αn − α1) (αn − α1)αn (αn − α1)α2
n · · · (αn − α1)αn−2

n


 .

The result follows by induction. (Finish it off!)

We will use the fact that Vandermonde matrices are nonsingular in the proof of the following theorem.
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Theorem 4.3.3. (BCH bound) Let C be a BCH code of designed distance δ, with all notation as
defined in Definition 4.3.1. Then the minimum distance of C is at least δ.

Proof. For any c(x) ∈ C, we have

c(βl) = c(βl+1) = · · · = c(βl+δ−2) = 0,

since c(x) is a multiple of g(x). In matrix notation, this says that

HcT =




1 βl β2l · · · β(n−1)l

1 βl+1 β2(l+1) · · · β(n−1)(l+1)

...
...

...
...

...
1 βl+δ−2 β2(l+δ−2) · · · β(n−1)(l+δ−2)







c0

c1

...
cn−1


 = 0

Suppose that some c ∈ C has weight w ≤ d − 1. Then ci 6= 0 if and only if i ∈ {a1, a2, . . . , aw} for
some indices {a1, . . . , aw} ⊆ {0, 1, . . . n− 1}. Then, HcT = 0 implies that in particular,




βa1l · · · βawl

βa1(l+1) · · · βaw(l+1)

...
...

...
βa1(l+δ−2) · · · βaw(l+δ−2)







ca1

ca2

...
caw


 = 0

Since w ≤ d− 1, we can extract a w × w matrix from above and get the following equation:




βa1l · · · βawl

βa1(l+1) · · · βaw(l+1)

...
...

...
βa1(l+w−1) · · · βaw(l+w−1)







ca1

ca2

...
caw


 = 0

Since ca1 , . . . , caw are nonzero, the determinant of the matrix on the left is zero. This is β(a1+···+aw)b

times the determinant of the following matrix:

H ′ =




1 · · · 1
βa1 · · · βaw

...
...

...
βa1(w−1) · · · βaw(w−1)




Since H ′ is a Vandermonde matrix, it has a nonzero determinant, and we have a contradiction. We
conclude that the weight of each nonzero codeword c ∈ C is at least δ. Hence, by the linearity of C
and Theorem 2.1.5, it follows that the minimum distance of C is at least δ.

In order to construct a t-error correcting BCH code of length n over GF (q), follow the procedure
described below.

1. Find an element β of order n in a field GF (qm), where m is minimal.

2. Select (δ − 1) = 2t consecutive powers of β, starting with βl for some non-negative integer l.

3. Let g(x) be the least common multiple of the minimal polynomials for the selected powers of
β with respect to GF (q). (Each of the minimal polynomials should appear only once in the
product).
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Example 4.3.4. In this example, we build two binary BCH codes of length 31. Since 31 = 25 − 1,
we can find a primitive element of order 31 in GF (32), and our BCH codes will be primitive. In
particular, take β to be a root of the irreducible polynomial x5 + x2 + 1.

One can generate the following chart of conjugacy classes of elements in GF (32) and their associated
minimal polynomials.

Conjugacy Class : Associated Minimal Polynomial

{0} : p∗(x) = (x− 0) = x

{α0 = 1} : p0(x) = (x− 1) = x + 1
{α, α2, α4, α8, α16} : p1(x)

= (x− α)(x− α2)(x− α4)(x− α8)(x− α16)
= x5 + x2 + 1

{α3, α6, α12, α24, α17} : p3(x)
= (x− α3)(x− α6)(x− α12)(x− α24)(x− α17)
= x5 + x4 + x3 + x2 + 1

{α5, α10, α20, α9, α18} : p5(x)
= (x− α5)(x− α10)(x− α20)(x− α9)(x− α18)
= x5 + x4 + x2 + x + 1

{α7, α14, α28, α25, α19} : p7(x)
= (x− α7)(x− α14)(x− α28)(x− α25)(x− α19)
= x5 + x4 + x2 + x + 1

{α11, α22, α13, α26, α21} : p11(x)
= (x− α11)(x− α22)(x− α13)(x− α26)(x− α21)
= x5 + x4 + x3 + x + 1

{α15, α30, α29, α27, α23} : p15(x)
= (x− α15)(x− α30)(x− α29)(x− α27)(x− α23)
= x5 + x3 + 1

To construct a binary cyclic code, its generator matrix g(x) is formed by one or more of the above
minimal polynomials. If we want to form a t-error correcting BCH code, then g(x) must have as
zeros 2t consecutive powers of β.

Let’s first construct a 1-error-correcting narrow-sense primitive BCH code. This implies that l = 1,
δ = 3, and g(x) must have β and β2 as zeros. Since p1(x) is the minimal polynomial for both β and
β2, we have simply that g(x) = p1(x) = x5 + x2 + 1. Since deg g(x) = 5, the dimension of our BCH
code is 31 − 5 = 26. Therefore, we have defined a [31, 26] binary 1-error-correcting narrow-sense
primitive BCH code.

Now let’s construct a 2-error-correcting narrow-sense primitive BCH code. This implies that l = 1,
δ = 5, and g(x) must have β, β2, β3, and β4 as zeros. Since p1(x) = p2(x) = p4(x), the least
common multiple of p1(x), p2(x), p3(x), and p4(x) is equal to the least common multiple of p1(x)
and p3(x). One can show that the least common multiple of p1(x) and p3(x) is equal to their product,
x10 +x9 +x8 +x6 +x5 +x3 +1. Since deg g(x) = 10, we have constructed a [31, 21] 2-error-correcting
narrow-sense primitive BCH code. X

For a given level of error-correcting capability, we try to minimize the redundancy of a code in order
to maximize the rate of the code. In constructing BCH codes, this translates to trying to minimize
the number of extraneous roots in the minimal polynomial. We know from our study of minimal

57



polynomials and conjugacy classes that the extraneous zeros are the conjugates of the desired zeros.
We can often choose l carefully so as to avoid including too many extraneous roots.

One way to define RS codes is as a special case of nonbinary BCH codes:

Definition 4.3.5. A Reed-Solomon code is a q-ary BCH code of length q − 1 (q 6= 2).

Consider the construction of a t-error-correcting Reed-Solomon code of length q−1. The first step is
to note that the required element β of order q−1 can be found in GF (q). Hence, the conjugacy class
of β with respect to GF (q) consists of the unique element β. It follows that all 2t consecutive powers
of β are also in GF (q), and their conjugacy classes with respect to GF (q) are also singletons. It
follows from Theorem 4.2.10 that the minimal polynomial for any power βs is of the form (x− βs).
Hence, a t-error-correcting RS code has a generator polynomial of degree 2t with no extraneous
roots. In particular, a RS code of length q − 1 and designed distance δ has generator polynomial
g(x) = (x−βl)(x−βl+1) · · · (x−βl+δ−2) for some l ≥ 0. If we need to construct a t-error-correcting
RS code of length n = q − 1 over GF (q), we define its generator polynomial as

g(x) =
2t−1∏

j=0

(x− βl+j).

We often take l = 1 and form a narrow-sense RS code.

Example 4.3.6. Let’s construct a 2-error-correcting RS code over GF (8). This implies that the
length is 7. Let β be a root of the irreducible polynomial x3 + x + 1, so that β has order 7. The
generator polynomial g(x) will have as zeros four consecutive powers of β. No matter how we choose
the four consecutive powers of β, there will be no extraneous roots in the generator polynomial.
We may as well construct a narrow-sense RS code: g(x) = (x − β)(x − β2)(x − β3)(x − β4) =
x4 + β3x3 + x2 + βx + β3. Since deg g(x) = 4, we have constructed a [7, 3] 2-error-correcting
narrow-sense RS code over GF (8). X

Theorem 4.3.7. ([8]) An [n, k] Reed-Solomon code C has minimum distance d = n− k + 1.

4.4 Chapter 4 Problems

Problem 4.1. Go through all of the necessary steps to build a generator polynomial for a 3-error
correcting 11-ary Reed-Solomon code of length 10.

Problem 4.2. Let n = 4, k = 2, F = Z5, ~v = (1111), ~α = (1234), and C = GRSn,k(~α,~v).

a) List the elements of C.

b) Find a generator matrix for C.

c) Find dmin(C).

d) How many errors will C correct?

Problem 4.3. Recall that if a ∈ Zp is nonzero, then there is a b ∈ Zp such that ab = 1. We
will denote b by a−1. Let F = Zp and C = GRSn,k(~α,~v) where, as usual, ~α = (α1, α2, . . . , αn).
Assume that αi 6= 0 for all i = 1, 2, . . . n. Define ~β = (α−1

1 , α−1
2 , . . . , α−1

n ). Find a vector ~w such
that C = GRSn,k(~β, ~w).

Problem 4.4. Fix b and prove the following: A BCH code of length n and design distance δ1

contains as linear subspaces all length n BCH codes with design distance δ2 ≥ δ1.

Problem 4.5. Write down a generator polynomial g(x) for a 16-ary [15, 11] Reed–Solomon code.

Problem 4.6. Prove the following: The minimum distance of the extended code of a RS code,
formed by adding a parity check digit to the end of each codeword in the RS code, is increased by 1.
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5 Special Topics

5.1 Dual Codes

The notion of dual codes is one of the most interesting topics in coding theory, however, it is also
often confusing at first read. This section provides a brief introduction. You may want to re-read
Section 2.4 before reading this section.

We will need the following definitions from linear algebra.

Definition 5.1.1. The inner product u · v of vectors u = (u0, . . . , un−1) and v = (v0, . . . , vn−1) in
V (n, q) is the scalar defined by u · v = u0v0 + u1v1 + · · ·+ un−1vn−1.

Question 1. In V (4, 3), what is the inner product of (2, 0, 1, 1) and (1, 2, 1, 0)? Hint: Make sure
that your answer is a scalar in the correct field.

Definition 5.1.2. Two vectors u and v are orthogonal if u · v = 0.

Definition 5.1.3. Given a subspace S of some vector space V (n, q), the space of all vectors orthog-
onal to S is called the orthogonal complement of S, and is denoted S⊥.

For example, you may recall that the nullspace of a matrix is the orthogonal complement of the
rowspace of that matrix.

The following definition shows how the above concepts from linear algebra are used in coding theory.

Definition 5.1.4. Given a linear [n, k] code C, the dual code of C, denoted C⊥, is the set of vectors
of V (n, q) which are orthogonal to every codeword in C, i.e.

C⊥ = {v ∈ V (n, q) | v · u = 0, ∀ u ∈ C}

Hence, the concepts of dual codes and orthogonal complements in V (n, q) are the same. However,
the reader should be careful not to think of a dual code as an orthogonal complement in the sense of
vector spaces over the real numbers R: In the case of finite fields, C and C⊥ can have intersections
larger than {0}. In fact, codes where C = C⊥ are called self-dual and are well-studied. If C is an
[n, k] linear code, then C⊥ is an [n, n − k] linear code. Furthermore, if C has generator matrix G,
then C⊥ has an (n − k) × n generator matrix H that satisfies GHT = 0. The generator matrix H
for C⊥ is also called a parity check matrix for C, as explained by the following theorem.

Theorem 5.1.5. Let C be a linear code, and let H be a generator matrix for C⊥, the dual code
of C. Then a vector c is a codeword in C if and only if cHT = 0, or equivalently, if and only if
HcT = 0.

Proof. Let c ∈ C. Then c · h = 0 for all h ∈ C⊥ by the definition of dual codes. It follows that
cHT = 0, since the rows of H form a basis for C⊥.

Alternately, let c be a vector such that cHT = 0. Then c · h = 0 for all h in the dual code C⊥. So
c ∈ (C⊥)⊥. You will prove at the end of this Chapter that (C⊥)⊥ = C, hence c ∈ C.

Theorem 5.1.5 motivates the following definition:

Theorem 5.1.5 shows that C is equal to the nullspace of the parity check matrix H.

We have seen that there are several relationships among the generator matrix G of a linear code C,
the parity check matrix H of a linear code C, and the dual code C⊥. We recap:

1. H is the generator matrix of C⊥, i.e. C⊥ is the rowspace of H.

2. C is in the nullspace of H

3. The rows of G are orthogonal with the rows of H.
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5.2 Group of a Code

Note: Much of this section was written by Ken Brown, Cornell University.

Recall that a permutation of a set A is a function from A to itself that is both one-to-one and onto.
We will focus on the case where A = {0, 1, . . . , n−1}. Here, permutations are rearrangements of the
numbers.

Example 5.2.1. Let A = {0, 1, . . . , 5} and let π be the map from A to A that sends the ordered
numbers 0, 1, 2, 3, 4, 5 to the ordered numbers 4, 5, 3, 1, 0, 2. (That is, π(0) = 4, π(1) = 5, and so
on.) Then π is a permutation of the set A. X

We often use cycle notation to describe a permutation. For the permutation in Example 5.2.1, the
cycle notation is π = (1 5 2 3)(0 4). The rightmost cycle means that 0 is sent to 4, and 4 is sent to 0.
The leftmost cycle means that 1 is sent to 5, 5 is sent to 2, 2 is sent to 3, and 3 is sent to 1. As this
example shows, within each cycle, we read left to right. However, since the juxtaposition of cycles
denotes composition, we read the rightmost cycle first, and then work leftward. (Some books vary
in the convention of which order to read cycles or functions in a composition. We will always read
right to left.) For this particular permutation, the order of the cycles does not matter. However,
the following example shows that the order of the cycles can make a difference.

Example 5.2.2. Consider the permutation γ on {1, 2, 3} represented by cycle notation (1 2 3)(3 1).
To determine γ(2), we begin with the rightmost cycle and notice that 2 is not involved in this cycle.
Moving leftwards, the next cycle shows that 2 is sent to 3. Since there are no more cycles, we
conclude that γ(2) = 3.

Now consider the permutation γ′ represented by cycle notation (3 1)(1 2 3). To determine γ′(2), we
begin with the rightmost cycle and notice that 2 gets sent to 3. Moving leftwards, we see that 3 gets
sent to 1. Since there are no more cycles, we conclude that γ′(2) = 1. This shows that in general,
cycles do not commute. X

As you might guess, there are certain conditions under which cycles do commute. This is formalized
in the next theorem.

Theorem 5.2.3. Disjoint cycles commute: If the pair of cycles a = (a1 . . . am) and b = (b1 . . . bn)
have no entries in common, then ab = ba.

Proof. See [1].

Because disjoint cycles commute, we like to express permutations in terms of disjoint cycles. For
example, we can rewrite the permutation γ = (1 2 3)(3 1) from Example 5.2.2 as (1)(3 2). The cycle
(1) means γ(1) = 1, or in other words, 1 is fixed by the permutation γ. It is customary to omit from
the cycle notation the elements that are fixed by the permutation. For the example of γ, we omit
the (1) and simply write γ = (3 2). Another example of a permutation that fixes some elements is
the permutation ρ on A = {0, 1, . . . , 5} that sends the ordered numbers 0, 1, 2, 3, 4, 5 to the ordered
numbers 0, 1, 2, 5, 3, 4. In cycle notation, we write ρ = (3 5 4).

Question 2. Express the following permutations as products of disjoint cycles:

1. (1 2 3)(3 4)(5 0 2 1)

2. (3 2)(5 0 2)(2 3 5)

3. (0 5)(0 1 2 3 4 5)

Definition 5.2.4. A permutation group of a set A is a set of permutations of A that forms a group
under function composition.
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Above, we use cycle notation and the juxtaposition of cycles to denote the composition of cycles that
together describe a particular permutation. When composing cycles from different permutations, we
use the exact same procedure. For example, with A, π, and ρ as above, the composition φ◦ρ = φρ is
written as (1 5 2 3)(0 4)(3 5 4). Since ρ is on the right in the function composition, its cycle is written
on the right in the cycle composition. We simplify this product of cycles by writing φρ as a product
of disjoint cycles: (4 150)(23). The function composition ρ◦φ = ρφ is written as (354)(1523)(04),
which simplifies into the following disjoint cycles: (0 3 1 4)(2 5).

Above, we gave examples of permutations on six objects. In general, we denote by Sn the group of
all permutations of n objects.

Question 3. Prove that there are n! elements in Sn.

By now, you should feel comfortable working with cycle notation and cycle composition (function
composition). We are ready to show how permutations and permutation groups are connected with
coding theory.

We start by showing how permutations of Sn can act on vectors (or codewords) of length n. Let
x = (x0, x1, . . . , xn−1) and let τ be a permutation on Sn. We can define a new vector xτ component-
wise by

(xτ)i = xτ(i) (8)

In other words, the ith component of xτ is equal to the (τ(i))th component of x:

xτ = (x0, x1, . . . , xn−1)τ = (xτ(0), xτ(1), . . . , xτ(n−1)). (9)

For example, for n = 3, if τ = (0 2) in cycle notation, then

xτ = (x0, x1, x2)τ = (x2, x1, x0), (10)

because τ(0) = 2, τ(1) = 1, and τ(2) = 0.

Question 4. Prove the following “associative law:” For any vector x and any two permutations
σ, τ ∈ Sn,

(xσ)τ = x(στ), (11)

where στ is the product of σ and τ in the group Sn; recall that this product is the composite σ ◦ τ ,
so that (στ)(i) = σ(τ(i)). [Hint: This problem is easy if you use the definition as given in (8). But
you are likely to get confused, and even think that (11) is wrong, if you try to use (9).]

Define σn on An = {0, 1, . . . , n−1} as the permutation written with cycle notation as σn = (01 . . . n−
1). Hence σn(0) = 1, σn(1) = 2, . . ., σn(n − 1) = 0. For convenience, we write σn = σ. Consider
xσ, where x is any vector of length n:

xσ = (x0, x1, . . . , xn−1)σ (12)
= (xσ(0), xσ(1), . . . , xσ(n−1)) (13)
= (x1, x2, . . . , xn−1, x0) (14)

This shows that xσ is a cyclic shift of x. We can use this notation to restate the definition of a cycle
code:

Definition 5.2.5. A linear code C of length n is cyclic if and only if whenever c ∈ C, so is cσn.

Let C be a binary linear [n, k] code. It follows from Definition 2.4.6 that every permutation of the
n coordinates of the codewords of C sends C onto an equivalent [n, k] code or onto itself.
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Definition 5.2.6. The set of all permutations that send a code C onto itself is called the group of
the code C. It is a group under function composition, and it is denoted G(C).

In other words, G(C) is the group of permutations τ ∈ Sn such that for any codeword c ∈ C, the
vector cτ is also a codeword in C.

Question 5. Prove that the group of a code of length n is a subgroup of Sn.

Example 5.2.7. If C is the whole space V (n, q), then G(C) = Sn. X

Using the group of a code, we can offer another definition of a cyclic code:

Definition 5.2.8. A linear code C of length n is cyclic if G(C) contains the cyclic group of order
n generated by σn = (0 1 . . . n− 1).

For a cyclic code C, G(C) may be, and usually is, larger than the cyclic group of order n generated
by σn = (0 1 . . . n− 1).

Sometimes we need to find alternate generating matrices for a code, and the group of the code can
be used to do this: Any element in G(C) applied to the coordinate positions of any generator matrix
of C yields another generator matrix of C. There are several other reasons that coding theorists
study groups of codes, for example the group of a code is useful in determining the structure of the
code, computing weight distributions, classifying codes, and devising decoding algorithms. We say
more about the latter application below.

What follows is a brief discussion on how the group of a code, if it is big enough, can sometimes
be used as an aid in decoding. This discussion was written by Professor Ken Brown and is adapted
from The Theory of Error-Correcting Codes [3, p.513].

Consider an [n, k, d] linear code C with k × n generator matrix G in standard form, G = (I | A).
For simplicity, let’s assume the code is binary. We then have an (n − k) × n parity check matrix
H = (AT | I). Given a k-bit message u, we encode it as x by setting

x = uG = (u | uA).

Since the first k bits of x contain the message u, we call them the information bits; the last n − k
bits, given by uA, are called check bits.

Assume d ≥ 2t + 1, so that t errors can be corrected. Suppose a codeword x is sent and an error e
with weight w(e) ≤ t occurs. Then r = x+e is received, and we know in principle that it is possible
to decode r and recover the codeword x. We also know that the syndrome S(r) = rHT can help
us do this. The following theorem describes a particularly easy case. Write e = (e′ | e′′), where e′

contains the first k bits of e.

Theorem 5.2.9. Suppose the syndrome S(r) = s has weight ≤ t. Then e′ = 0 (so the k information
bits of r are correct) and e′′ = s. We therefore have

x = r− (0 | s).

Proof. We will prove the equivalent statement that if e′ 6= 0 then w(s) > t. Using H = (AT | I)
and remembering that xHT = 0, one computes

s = rHT = eHT = e′A + e′′. (15)

Consequently,
w(s) ≥ w(e′A)− w(e′′). (16)

On the other hand, the vector e′G = (e′ | e′A) is a nonzero codeword, so it has weight ≥ 2t + 1.
Thus w(e′) + w(e′A) ≥ 2t + 1, or

w(e′A) ≥ 2t + 1− w(e′). (17)

62



Combining inequalities (16) and (17), we obtain

w(s) ≥ 2t + 1− w(e′)− w(e′′) = 2t + 1− w(e) ≥ t + 1,

as required.

The converse is also true (and easier): If e′ = 0, so that there is no error in the information bits, then
the syndrome satisfies w(s) ≤ t. To see this, observe that s = e′′ by (15), and w(e′′) ≤ w(e) ≤ t.

To summarize the discussion so far, decoding is easy if we’re lucky enough that the errors don’t
affect the information bits; moreover, we can tell whether we were lucky by looking at the weight of
the syndrome. What if we’re unlucky? This is where the group G(C) can help.

Suppose that for every vector e of weight ≤ t there is a permutation σ ∈ G(C) such that the
vector eσ obtained by permuting the coordinates according to σ has all 0’s in its first k bits. Then
we have the following decoding algorithm, always assuming that there are at most t errors: If y
(which equals x + e) is received, find σ ∈ G(C) such that yσ (which equals xσ + eσ) has syndrome
of weight ≤ t. Such a σ exists by our hypothesis and by the discussion above; however, we may
have to use trial and error to find it since we don’t know e. Then we can decode yσ as explained
in the theorem, giving us xσ, and then we can recover x by “unpermuting” the coordinates, i.e., by
applying σ−1.

In practice, one tries to find a small subset P ⊆ G(C) such that the permutation σ above can always
be found in P ; this cuts down the search time. For example, consider the [7, 4, 3] Hamming code,
with t = 1. Let’s take a version of the Hamming code that is cyclic, as we know is possible. Then
G(C) contains at least the cyclic group of order 7 generated by the cyclic shift. In this case one
can take P ⊆ G(C) to consist of 3 of the elements of the cyclic group. In other words, one can
specify 3 “rotations” that suffice to move the one nonzero bit of any vector e of weight 1 out of the
4 information positions.
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6 Solutions to Selected Problems

• Sol. 1.4 Here are the elements of C:

000 100 200 300 400
011 111 211 311 411
022 122 222 322 422
033 133 233 333 433
044 144 244 344 444

The minimum distance of C is one.

• Sol. 1.6 Notice that to do this and correct a single error, the strings of length five must all
differ in at least three places. Suppose we could write down eight strings of length five that
all differed in at least three places. Then, they could have at most two places the same. Now,
there must be at least four strings that have the same first digit (since you only have 0 and 1
to choose from and there are a total of 8 strings). Of those four, there must be at least two
that have the same second digit (for the same reason as above). So, we have two strings that
are the same in the first two places (let’s just suppose for simplicity that they both start with
00). It follows that they must be different in the last three positions. Now, consider one of
the other strings (remember, there were at least 4) that starts with 0. It must differ from the
two strings starting with 00 in at least three places. So, of the last 4 positions, it must differ
from each of the 00 strings in at least three positions. But since the 00 strings differ in the
last three positions, this is impossible.

• Sol. 1.15 We first claim that either all the codewords in C begin with zero or exactly half of
them begin with zero. Let ~c1, ~c2, . . . , ~ck be the rows of a generator matrix for C. If k = 1,
then C = {~0, ~c1}, so our claim holds. If k = 2, then C = {~0, ~c1, ~c2, ~c1 + ~c2}. Checking all the
possibilities, you can see that either all elements of C begin with a zero or exactly two elements
in C begin with a one, so the claim holds. Now we inductively show that our claim is true.
Suppose the claim holds for k = l. Here’s how you can show the claim is true for k = l + 1. If
all the ~ci’s begin with a zero, then all elements in C begin with a zero, so the claim holds. On
the other hand, suppose one of the ~ci’s begins with a one, say ~cl+1. Now,

C = {α1 ~c1 + α2 ~c2 + · · ·+ αl~cl + αl+1~cl+1|αi ∈ Z2}
By assumption, the elements in the set

Z = {α1 ~c1 + α2 ~c2 + · · ·+ αl~cl|αi ∈ Z2}
either all begin with a zero or exactly half do. If all begin with a zero, then half of the elements
in C begin with a zero. If exactly half of the elements of Z begin with a zero, then again we
have half of the elements of C begin with zero, so the claim holds.

Now, in the same way, we can show that in the ith position either all elements of C have a
zero, or exactly half have a zero. The sum of the weights of all the elements in C is just the
total number of ones in all the codewords. By our claim, in the ith position, there is at most
2k

2 = 2k−1 ones. (Note that C has 2k elements.) Since there are n positions, the sum of the
weights of all the elements in C is less than or equal to n2k−1.

• Sol. 2.1

1. (101111), (000001), (110111) ∈ Z6
2.

Sol. Suppose
c1(101111) + c2(000001) + c3(110111) = (000000).

Then, c1 + c3 = 0 from the first coordinate. c3 = 0 from the second coordinate. c1 = 0
from the third coordinate. c1 + c3 = 0 from the fourth coordinate. c1 + c3 = 0 from the
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fifth coordinate. And c1 + c2 + c3 = 0 from the sixth coordinate. So, c1 = c2 = c3 = 0 is
the only solution to the above equation. It follows that (101111), (000001) and (110111)
are linearly independent.

2. (000), (101) ∈ Z3
2.

Sol. Note that 1(000)+0(101) = (000), so (000) and (101) are not linearly independent.

3. (10000), (01001), (00111) ∈ Z5
2.

Sol. Let
c1(10000) + c2(01001) + c3(00111) = (00000).

Then, c1 = 0 from the first coordinate. c2 = 0 from the second coordinate. And c3 = 0
from the third coordinate. So, c1 = c2 = c3 = 0 is the only solution to the above equation.
It follows that (10000), (01001) and (00111) are linearly independent.

4. (0212), (0010), (2212) ∈ Z4
3.

Sol. Let
c1(0212) + c2(0010) + c3(2212) = (0000).

Then, 2c3 = 0 from the first coordinate 2c1 + 2c3 = 0 from the second coordinate, and
c1 +c2 +c3 = 0 from the third coordinate. So, c3 = 0 from the first equation. That implies
that c3 = 0 from the second equation. And, finally, that implies that c2 = 0 from the third
equation. It follows that the vectors are linearly independent.

• Sol. 2.10 Let (x1, x2, x3, x4, x5, x6), (y1, y2, y3, y4, y5, y6) ∈ Z6
2. Then,

P ((x1, x2, x3, x4, x5, x6)⊕ (y1, y2, y3, y4, y5, y6))

= (x3 ⊕ y3, x4 ⊕ y4, x1 ⊕ y1, x5 ⊕ y5, x2 ⊕ y2, x6 ⊕ y6)
= (x3, x4, x1, x5, x2, x6)⊕ (y3, y4, y1, y5, y2, y6)
= P ((x1, x2, x3, x4, x5, x6))⊕ P ((y1, y2, y3, y4, y5, y6))

Also, if c ∈ Z6
2, then

P (c(x1, x2, x3, x4, x5, x6)) = P ((cx1, cx2, cx3, cx4, cx5, cx6)
= (cx3, cx4, cx1, cx5, cx2, cx6)
= c(x3, x4, x1, x5, x2, x6)
= cP ((x1, x2, x3, x4, x5, x6))

And it follows that P is linear.

• Sol. 2.11 We claim that C has pk elements. Let |C| denote the number of elements in C.
Now, let ~c1, ~c2, . . . , ~ck be the rows for a generator matrix for C. Then

C = {α1 ~c1 + · · ·+ αk ~ck|αi ∈ Zp}

It follows that |C| ≤ pk. Now, suppose |C| < pk. Then we have that

α1 ~c1 + · · ·+ αk ~ck = β1 ~c1 + · · ·+ βk ~ck
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where the α’s aren’t all equal to the β’s. But then

(α1 − β1)~c1 + · · ·+ (αk − βk)~ck = ~0.

Since the ~ci’s are linearly independent, it follows that αi = βi for every i. But that is a
contradiction. It follows that |C| = pk.

• Sol. 2.16 Suppose e, e′ ∈ G such that ae = ea = a and ae′ = e′a = a for every a ∈ G. Then,
letting a = e′, we have e = ee′ = e′.

• Sol. 2.17 Let b, c ∈ G such that ba = ab = e and ca = ac = e. Then, b = be = b(ac) = (ba)c =
ec = c.

• Sol. 2.22

1. Does there exist a code C ⊆ A8 where C has exactly four codewords and such that C
corrects 2 errors? If so, find such a C. If not, prove it.

Sol. Here is such a C:

C = {00000000, 11111000, 00011111, 11100111}

2. Does there exist a code C ⊆ A8 where C has exactly five codewords and such that C
corrects 2 errors? If so, find such a C. If not, prove it.

Sol. This is not possible. I’ll show this by contradiction. Suppose there were such a C.
Then C = {~a,~b,~c, ~d,~e}. Now, consider the first postion of each of the elements of C.
There are only two choices, a zero or a one. Since C has five elements, there must be a
subset of C of three elements whose elements all agree in the first position. Without loss
of generality, assume that ~a,~b, and ~c all agree in the first position. Since C corrects two
errors, the minimum distance must be at least five. So, of the remaining seven positions,
~a and ~b can have at most two where they agree. Likewise, ~a and ~c have at most two
positions where they agree, and ~b and ~c have at most two positions where they agree. But
that is a total of at most six positions. Hence, there is at least one position where ~a and
~b are different, ~a and ~c are different and ~b and ~c are different. But, this is impossible.
Hence, no such code exists.

• Sol. 2.23

1. Bob’s first block of seven bits is 1110110. Alice sends him the syndrome 111. What does
Bob’s first block become after error correction?

Sol. Bob computes his syndrome:

~sB =




1 1 1 0 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1







1
1
1
0
1
1
0




=




0
1
0




Now he finds the difference between his syndrome and Alice’s:

~s = ~sB − ~sA =




0
1
0


−




1
1
1


 =




1
0
1



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The minimum weight vector that gives this syndrome is (0010000), so Bob takes this to
be the error vector. He thus corrects his string to

(1110110)− (0010000) = (1100110).

2. Bob’s second block is 0000111. Alice sends him the syndrome 111. What does Bob’s
second block become after error correction?

Sol. Now Bob’s syndrome is

~sB =




1 1 1 0 1 0 0
1 1 0 1 0 1 0
0 1 1 1 0 0 1







0
0
0
0
1
1
1




=




1
1
1




This is the same as the syndrome that Alice sends. The difference between these syndromes
is the zero vector, so Bob concludes that there is no error in his string and he leaves it
unchanged.
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