Math. 420, Fall 2005 Final Examination Distributed December 2, due December 12, at noon

Please remember that NEATNESS COUNTS. A solution that I can't read is automatically WRONG.

Problem 1. Consider the differential equation

$$x' = x^2 - e^{-t}. (1)$$

a) What kinds of fences are the curves of equation

$$x = 0, x = 1, x = -1, x = e^{-t/2}, x = -e^{-t/2}$$
?

- b) Solve the equation $x' = x^2 1$. What relation is there between these solutions and equation (1) in the half-plane $t \ge 0$?
- c) Can there be any solutions v(t) of equation (1), defined for $t \geq t_0$, for some t_0 , such that

$$\lim_{t \to \infty} v(t) = a > 0 ?$$

(Compare $\lim_{t\to\infty} v'(t)$ and $\lim_{t\to\infty} (v(t))^2 - e^{-t}$.)

- d) Show that equation (1) has a unique solution u(t) defined for all $t \in \mathbb{R}$, such that u(t) > 0 for all t.
 - e) Are there other solutions of (1) that are defined for all $t \in \mathbb{R}$.

Problem 2. a) State the fundamental inequality.

(b) Change the differential equation $x'' + ax' + \sin(x) = \cos(t)$ into a system of first-order equations for

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} x \\ x' \end{pmatrix}.$$

Find a global Lipschitz constant for this system of differential equations.

c) Show that for all values of a, all solutions of the differential equation

$$x'' + ax' + \sin(x) = \cos(t)$$

are defined for all $t \in \mathbb{R}$. Be careful to state exactly what results you are using.

d) Let $\binom{u(t)}{v(t)}$ be a solution of the equation in part (b). If a > 0 (positive friction), find C in terms of a such that if $|v(t_0)| < C$ for some t_0 , then |v(t)| < C for all $t \ge t_0$. Hint: consider

$$\frac{d}{dt}(v)^2$$
.

e) Find a step h_0 (depending on $\epsilon > 0$) such that the Euler approximation \mathbf{u}_h to the solution of the differential equation of part (b) with initial condition

$$\begin{pmatrix} x(0) \\ x'(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

has error at most ϵ for $h < h_0$ and |t| < 1.

- **Problem 3.** a) Let A be a square $n \times n$ matrix with real entries. Define e^{tA} and show that $t \mapsto e^{tA} \mathbf{x}_0$ is a solution of $\mathbf{x}' = A\mathbf{x}$.
 - b) Find the general solution of

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

(c) Describe geometrically the solutions of the equation (the word "rotation" should appear somewhere in your description).

Problem 4. Consider the system of differential equations

$$x' = y - x^2 - a$$

 $y' = y - bx + 1.$ (2)

- a) For the values a = -2, b = 0, draw the curves where the vector field is horizontal and vertical.
- b) If your drawing was accurate, it should allow you to find some solutions of the equation explicitly.
- c) Find the zeroes of the vector field, and classify them. Sketch the trajectories of the differential equation.

Now we will vary the parameters in equation (2)

- d) In the (a, b)-plane, draw the curve where the number of zeroes changes.
- e) On the same drawing, draw the curve where the differential equation has a center.
- f) Indicate, in the complements of the curves of parts (d) and (e), how many sinks, sources or saddles the differential equation has.
- **Problem 5.** a) Define the α and the ω -limit set of a bounded solution to a differential equation on \mathbb{R}^n .
 - b) describe the limit sets for all solutions of

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} y \\ -\sin x \end{pmatrix}.$$

- c) State the Poincaré-Bendixon theorem.
- d) Show that the differential equation

$$\begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} -y + .5\sin(x) - .1x \\ x + .5\cos(y) - .1y \end{pmatrix}$$

has a limit cycle, and find a bound for points of this limit cycle.