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CLASSICAL GEOMETRIES

10. Orthogonal Latin squares and finite projective planes

10.1 Latin squares

Suppose that you wish to make a quilt with 9 patches in a 3 by 3 square but there are
only 3 different colors available for each patch. In order to a\-oid monotony, suppose that
you decide that each row and each column have one patch of each color. If the three colors
are A, B, and C, it is clear that the follo\\-ing is "essentially" the only way to construct
the quilt:

A B c

B c A

c BA
Figure 10.1.1

This is called a 3 by 3 Latin square.
Suppose that you wish to make another Latin square so that when they overlap, all

possible pairs of colors occur. We sa)' that the 2 Latin squares are orthogonal in this case.
The follo\\"ing is an example:

AA BB cc

BC CA AB

GB AG BA

Figure 10.1.2

It is clear how to generalize this. An n by n Latin square is a square array ( or matrix )
of n symbols A, B, G,. ..such that no 2 symbols appear twice in any row or column and
each symbol appears once and only once in each row and column. We say that 2 Latin
squares are orthogonal if all n2 possible ordered pairs of symbols occur ( once and only
once). It is clear that there cannot be another Latin square orthogonal to

BA

B A

1
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EuIer conjectured that there was not even one pair of orthogonal 6 by 6 Latin squares.
In 1900 Tarry proved that Euler was right. There are not any pair of orthogonal 6 by 6
Latin squares. However, Euler even went so far as to conjecture that there was no pair
of orthogonal n by n Latin squares for any n = 2 (mod 4), n ~ 6. In other words, in
addition to the case n = 6, Euler conjectured that there were no such orthogonal Latin
squares for n = 10,14,18,22,26, However, in 1959 R. C. Hose and S. S. Shrikhande
as \\Tell as E. T. Parker proved that for any n = 2 (mod 4), n ~ 10, there are always at
least 2 orthogonal Latin squares of order n, disproving Euler's conjecture completely. See
the copy of two orthogonal 10 by 10 Latin squares at the end of this Chapter. See also
Martin Gardner's Chapter, which is a reprint of an earlier column of his in the Scientific
American.

10.2 Experimental design
Suppose that you have three varieties of wheat, A, B, C, and you wish to test the effects

or a fertilizer in three different concentrations. However, there may be some unpredictable
effects due to differences in the soil. You arrange an experiment to grow the wheat in a 3
by 3 grid. In each grid cell you grow one of the varieties of wheat, and treat it with one of
the concentrations of fertilizer. You naturally want to arrange the experiment so that you
see all 9 possible combinations of fertilizer and wheat. But you also want to arrange each
row and column so that all three varieties of wheat and three concentrations of fertilizer
occur, in order to minimize any bias due to variation in the soil. The design in Figure
10.1.2 does the job. The left symbol represents the variety of wheat, and the right symbol
represents the concentration of fertilizer .

Clearly you can do the same sort of thing for any number of varieties that are one of
the possibilities for orthogonal Latin squares. See the books by Cox and Finney.

10.3 Planes and squares

\\That does Section 10.1 got to do \\rith finite projective planes?

Theorem 10.3.1. There are n- 1 mutually orthogonal n by n Latin squares if and only
if there is a finite projective plane of order n.

For instance, since there are finite projective planes of order 2,3,4,5,7 ,8, 9,11,13,16,
17,19,23,25, ...the theorem says that there are at least 2 orthogonal Latin squares of
those orders except for order 2 ( corresponding to the Fano plane ).

Proof of Theorem 10.9.1. We will describe a correspondence from finite projective planes
of order n to a set of n -1 mutually orthogonal n by n Latin squares. Fix any two distinct
points X~ and V~. Let ,~ be the line incident to them. Since each line has n + 1 ppoints
on it let Ql, Q2, ...,Qn-l be the remaining points on l~. The i-th Latin square will
correspond to Qi.

Label the lines, other than ,~, incident to X~ by 1, 2, ...,n. Similarly, label the
lines, other than ,~, incident to V~ by I, 2, ...,n. Each point not on ,~ is incident to
exactly one pair of these lines. We call Pij the point which is incident to the line labeled
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i through X 00 and the line labeled j through V 00. The point Pij will correspond to the

4ij-th position in any of the Latin squares.

Label the n lines, other than 100, that are incident to Qi by the n symbols A, B, Each symbol for these lines corresponds to the same symbol in the Latin square associated

to Qi. In fact, the symbol X goes in the jk position of the i-th Latin square if X is the

label of the line from Pij to Qi. See Figure 10.3.1.

Note that this construction does produce a Latin square for each Qi since the line
labelled X incident to Qi (which is not the line l~) will be incident to each of the lines
from X ~ as well as y ~ at exactly one point. Hence each row and each column will have
one of each symbol.

Similarly, any two such Latin squares are orthogonal, since the line labelled X from Qi
meets the line labelled y from Q k in exactly one point. So all the pajrs XY occur once
and only once.

It is not hard to see that the correspondence works the other way as well. Namely, n -1
orthogonal n by n Latin squares can be used to create a projective plane of order n.

10.4 Impossible projective planes

Perhaps the moral of the story about orthogonal Latin squares for finite projective
planes is that it is very difficult to construct finite projective planes, at least by using
orthogonal Latin squares. Euler's conjecture, the correct part, eliminates there being any
finite projective plane of order 6. But it seems that no other order for a projective plane
can be eliminated so easily.

So the question arises: Are there any other orders for projective planes that can be
eliminated? This is a very hard question and about the only result known, which we will
not prove, is the following by R. H. Bruck and H. J. Ryser in 1949:
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Theorem 10.4.1 (Bruck-Ryser). Let n = lor 2 (mod 4), and let the square-free part
ofn contain at least oneprimep = 3 (mod 4). Then there does not exist a finite projective
of order n.

Write n as the product of distinct prime powers. Those primes with an odd power are
primes in the statement of the Theorem.

For example, 6 = 2.3 = 2 (mod 4), and the primes in the square-free part are 2 and 3.
We see that 3 = 3 (mod 4), so the Bruck-Ryser Theorem eliminates 6 as a possible order
for a projective plane. Similarly, 14,21,22,30,33, ...are also eliminated as orders.

Until recently, the orders in the Bruck-Ryser Theorem were the only orders that were
known to be eliminated. In the last few years there has been a concerted effort, orchestrated
by R. Graham at Bell Labs, to show that there is no finite projective plane of order 10, the
first unsettled case, and a famous previously unsolved problem in combinatorics. (Recall
that any prime power is the order of a finite projective plane. ) This effort was successful,
but only at the cost of a great deal of computer time. So as of now, 10 and the orders
eliminated by the Bruck-Ryser Theorem are the only known orders eliminated for finite
projective planes. The next unsettled case is order 12.

Despite the difficulty of constructing orthogonal Latin squares, it is possible to construct
finite projective planes other than the ones coming from fields. However, all of these planes
have prime power order. So we have the following basic conjecture, which seems to be one
of the most difficult problems in combinatorial mathematics:
Conjecture 10.4.2. Every finite projective plane has prime power order.

Exercises:

1.

2.

A magic square (of a degenerate sort) is an n by n square array of the numbers
1,2,3, ..., n2, \\There the sum of each row and column is the same. (Usually the
two main diagonals are required to have this "magic sum" as well, but we will not
consider that extra property.) Show that this sum is ~.
Let ( x ij ) and (Yij) be orthogonal n by n Latin squares, where the symbols are the
integers 0, 1,2, ..., n -I, and Xij is the ij-th entry of the matrix ( Xij ), and similarly
for Yij. Show that (nXij + Yij + I) is an n by n square.

For example, we can create a 3 by 3 Latin square this way as follows:

3.1+1+1

3.0+2+1

3.2+0+1

302+2+1 ) ( 1 301+0+1 = 8

300+1+1 6

5
3
7 ~)

( 3. 0 + 0 + 1
3.2+1+1
3.1+2+1

Note that the diagonals do not add up to 15 = 3. (9 + 1)/2, the magic sum.
Does the following 4 by 4 magic square arise from the method of exercise 2?

1 15 14 4
12 6 7 9
8 10 11 5

,13 3 2 16

3.
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4. Use the finite field of order 5 as discussed in the text to write down a pair of 5 by
5 orthogonal Latin squares.

It may be helpful to think in the following terms: The points Qi on loo can
be regarded as slopes in an Affine plane, and the lines incident to Qi as a set of
parallel lines of fixed slope. Build the orthogonal Latin squares using the slopes
112 and 211 say, but in the field Z15, the integers modulo 5. For example, if A is
one of the symbols, in the first Latin square corresponding to 112, at the position
(i,j), then the other A's appear at (i + l,j + 2), (i + 2,j + 4), etc., modulo 5, as
below for the slope 112.

A B
B A

BA
A B

BA

5.
6.

What goes wrong with this method when n = 6?
Construct a pair of 9 by 9 orthogonal Latin squares.
It is a result in number theory that there are infinitely many primes p = 1 (mod 4),
and there are infinitely many primes p = 3 (mod 4). Use this result to show that
there are infinitely many orders for projective planes that are eliminated by the
Bruck-Ryser Theorem.



00 47 18 76 29 93 85 34 61 .52

86 11 57 28 70 39 94 45 02 63

95 80 22 67 38 4971 56 13 04

59 96 81 33 07 48 72 60 24 15

73 69 90 82 17 5844 01 35 26

68 74 09 91 83 55 27 12 46 30

37 08 75 19 92 84 2366 So 41

14 25 36 40 51 62 03 8877 99

21 32 43 54 65 06 10 89 97 78

42 53 0564 16 20 31 98 79 87

FIG. .5
I.. r. 'ar'er'. Graeco-Lal;" -qllare af order r 0, D toll"'er~aomp'e 10 1.11'er'.
cO"iecfIlre.
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