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CLASSICAL GEOMETRIES

II. Projections and collineations

11.1 Projections

We have already seen an example of a projection, an artist drawing a picture in the
picture plane of an object plane. A central property of projections is that the projection of
a line is a line. This brings up some questions: Are there any other correspondences that
take lines to lines? Can we describe such correspondences efficiently? What are some basic
properties? Another reason to look at such correspondences is to be able to understand
what it means for two projective planes to be the "same."

Suppose that we have two projective planes nl and n2. Let f be a one-to-one, onto
function from the points of nl to the points of n2. We write this as

f : nl -+ n2

We say that f is a collineation if for any line in ill the image under f is a line in il2.
For example, a projection or a composition of projections, which is called a projectivity, is
a collineation. Figure 11.1.1 shows a projectivity from the picture plane to itself.
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Figure 11.1.1

Suppose that we have a projective plane. We can label that plane differently or create
another copy somewhere else, and it will be essentially the same projective plane. We
need a language to be able to say that two projective planes are "essentially" the same.
We put that as follows: Let nl and n2 be two projective planes. We say that they are
equivalent if there is a collineation from one to the other. For example, the (extended)
picture plane and the (extended) object plane are equivalent projective planes. In fact,
any two ( extended) planes in 3-spa.ce are equivalent.
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11.2 Affine functions and homogneous coordinates
Suppose that we have a collineation of a projective plane to itself. How can we describe

it efficiently? Can v..e find them all? For example take the extended real plane. Trans-
lations, rotations, reflections, dilations, and shears are all examples of functions that can
be extended to a collineation of the extended real plane. In fact, any composition of a
non-singular linear function and a translation, whicl1 is called an Affine linear function
( or an Affinity is an old-fashioned word for this ), can be extended to a collineation of the
extended real plane. We describe such an Affine linear function from the plane to itself as
follows:

a12 ) ( X ) + ( bl ) = (allX+a12Y+bl )a22 Y b2 a21 X + a22Y + b2
f ( x ) = ( all

y a2l

or more compactly as
x

Y,
where Ao is a non-singular 2 by 2 matrix, and Eo is a 1 by 2 column matrix.

Note that for such Affine linear functions, the image of any point in the line at infinity
is again a (possibly different ), point in the line at infinity. In homogeneous coordinates,
we get the following expression for an Affine linear function:

",here v.'e write the 3 b)' 3 matrix for f in terms of smaller blocks.
Affine linear functions are good for the Affine plane, but they leave something to be de-

sired for the projective plane. In particular, there are many collineations that are not Affine
linear functions. We use homogeneous coordinates to describe these other collineations.
Let A be an)' non-singular 3 by 3 matrix. We represent points in a projective plane n by
homogeneous coordinates. Then a collineation f : n -+ n. is given by:

f(~) =A(~)
It is easy to check that this is well-defined and a collineation. AffIne linear funct~ons are
a special case. Figure 11.2.1 graphically shows this more general collineation by showing
the image of the Affine plane z = 1.

11.3 Moving points around
How much extra freedom does this new kind of collineation buy you? It is not hard

to see that any three non-collinear points in the Affine plane can be transformed into any
other three by an Affine linear function. Can we do better in a projective plane? Let n
be any projective plane defined using some field F .
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Figure 11.2.1

Theorem 11.3.1. In the projective plane n let Pl,P2,P3,P4, and ql,q2,q3,q4, be two
(labeled) sets of 4 points, where in each set no three are collin ear. Then there is a
collineation f : n -+ n, given by a matrix as in section 11.2, such that f(Pi) = q)i
for i = 1,2,3,4.

Proof. We use homogeneous coordinates. Let (Pi) and (qi) be non-zero vectors in F3
representing Pi and qi respectively. We must be careful not to confuse the vector (p) with
the equi\-alence class determined by (p ), which can be identified with (p ), a point in the
projective plane. Recall that t(p ), t # 0, t in F, represents the same point as (p) in the
associated projective plane. Choose any three non-zero scalars tl,t2,t3, in F. Then define
the 3 by 3 matrix A by

A(pi) = ti(qi), for i = 1,2,3.

We kno\\' that A exists, since the three points PI, P2 , P3 , do not lie on a line in the projective
plane through the origin in F3, and thus they are linearl)' independent in F3.

Our next task is to choose the ti's so that the fourth projective point has the desired
image. We notice that the three vectors (Pl),(P2),(P3) span F3. Hence there are scalars
ai # 0, in F,i = 1,2,3, such that

al(Pl) + a2(P2) + a3(P3) = (P4).

If one of the scalars ai were 0, then the other three vectors would be dependent, and the
corresponding points in the projective plane would be collinear. Thus ai ~ 0, i = 1,2,3
as claimed. A similar argument shows that there are scalars bi ~ 0, in F, i = 1,2,3, such
that

b1(ql) + b2(q2) + b3(q3) = (q4).

Thus

A(P4) = A(al(Pl) + a2(P2) + a3(P3))
= alA(Pl) + a2A(P2) + a3A(P3)
= altl(ql) + a2t2(q2) + a3t3(q3).
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Now it is clear that we should take ti = bi/ai,i = 1,2,3. Then

A(P4) = b1(ql) + b2(q2) + b3(q3) = (q4).

So we define f(p) to be the line through A(p ), for every point p in the projective plane.
This is what was desired and finishes the proof.

11.4 More collineations
Have we found all the collineations of a projective plane? Of course we assume that our

projective plane comes from a field, but even then the answer to our question depends on
which field.

For any field F suppose that we have a one-to-one onto function f : F -+ F defined. We
say that f is a field automorphism if the following two properties hold for all z, w in F:

f(z + w) = f(z) + f(w)

!(zw) = !(z)!(w)

It is easy to check that 1(1) = 1, and !(0) = 0, and the inverse function !-1 is an

automorphism.
For example, take the complex numbers C as our field. (It turns out that the real

numbers are not as well suited. ) In Chapter 8 we saw that the complex numbers had
complex conjugation defined. We define !(z) = z, the complex conjugate of z, and it is
clear that ! is a field automorphism that is not the identity.

If we have collineation that is defined as in Section 11.3 and it fixes 4 points, no three
collinear , then it must be the identity. Let us take homogeneous coordinates to describe
our projective plane. Define a collineation ! : n -+ n as follows:

( X ) ( f(X) )f y = f(y)

z f(z)

It is easy to check that f is a well-defined function on the points of the projective plane.
We first show that f is a collineation. Suppose .that [A, B, C] defines a line in homoge-

neous coordinates as in Chapter 9, Section 9.3. Then if

is any point lieing on that line it satisfies

[A, B, C] ( ~ ) = Ax + By + Cz = 0,
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and we see that

J(x)
J(y)
J(z)

= f(A)f(x) + f(B)f(y) + f(C)f(z)[f(A), f(B), f(C)]

= f(Ax + By + Cz)
=0

Hence we see that the image 0£ the points incident to a line [A, B, 0] are the points incident
to the line [f(A), f(B), f(C)]. So f defines a collineation.

Notice that any point, which has only O or 1 coordinates in homogeneous coordinates,
is fixed by f. Thus the following four points are fixed:

and it is easy to check that no three of these points are colinear .Thus f, as we have just
defined it, does not come from a 3 by 3 matrix we defined it in Section 11.2. We have at
least two different types of collineations of a projective plane.

The following Theorem tells us that there are no more collineations, at least for pro-
jective planes defined over a field. This is sometimes called the Fundamental Theorem of
projective geometry. We will mention more about the proof in later chapters but not right
no\v.
Theorem 11.4.1. Let! be any collineation of a projective plane defined over a field.
Then! is the composition! = !I !2 of two collineations, where !I is defined by a 3
by 3 matrix (as in Section 11.2, and caJled a projectivity), and !2 is defined by a field

automorphism as above.

Exercises:

1.

2.

3

In Figure 11.1.1 a collineation is shown. In the Affine coordinates of the picture
plane what "kind" of collineation is it? Be as specific as possible.
Suppose that a collineation f of a projective plane n to itself is obtained, in a
3-dimensional projective space over a field, as the composition of projections of
various projective planes starting and ending at n. Show that f comes from a 3
by 3 matrix as in Section 11.2.
Show that any collineation coming from a 3 by 3 matrix as in Section 11.2 can be
written as the composition of collineations of the same sort each of whicl1 fix all
the points on some line, a possibly different line for eacl1 collineation. You may use
the proof of Theorem 11.3.1 or what you may know about linear algebra (as long
it is correct ).
Show that any collineation of projective plane to itself, as in Section 11.2, can be
written as the composition of projections as in Exercise 2 above.

4.
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5.

6.

7.

Shov.r that any projectivity of a projective plane over the real field fixes some point
and for some line takes all the points on that line to points on the same line.
Suppose that we have two sets of three labelled distinct points all incident to a single
line in any projective plane. Show that there is a composition of projections that
take the one labelled set onto the other. What is the least number of projections
needed?
Consider the following subset of the real numbers:

F= {a+bh a and b rational } .

8.

We have already shown that F is a field. Find a field automorphism that is not
the identity.
Let f be a field automorphism of the real numbers.

a. Show that if x > 0, then f(x) > 0.
b. Show that if x < y, then f(x) < f(y).
c. Show that if x is rational, then f(x) = x.
d. Show that f is the identity. Hence every collineation of the real projective plane

is a projectivity.


