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CLASSICAL GEOMETRIES

13. The cross ratio
We have studied the collineations of a projective plane, the automorphisms of the un-

derlying field, the linear functions of Affine geometry, etc. We have been led to these ideas
by various problems at hand, but let us step back and take a look at one important point
of view of the big picture. ..r

13.1 Klein's Erlanger program

In 1872, Felix Klein, one of the leading mathematicians and geometers of his day, in the
city of Erlanger took the follo\ving point of vie\v as to what the role of geometry was in
mathematics. This is from his "Recent trends in geometric research."

Let there be given a manifold and in it a group of transformations; it is our
task to investigate those properties of a figure belonging to the manifold
that are not changed by the transformation of the group.

So our purpose is clear. Choose the group of transformations that you are interested in,
and then hunt do\vn the "invariants" that are relevant.

This search for invariants has proved very fruitful and useful since the time of Klein for
many areas of mathematics, not just classical geometry. The invariants have turned out
to be simple pol)"nomials or rational functions, such as the case with the cross ratio, to
other groups themselves, such as homology groups in the case of algebraic topology.

13.2 The projective line

In Chapter 11 ,ve have seen that the collineations of a projective plane come in two
"species," projectivities and field automorphisms. We concentrate on the projectivities.
We recapitulate here the results of a series of exercises in Chapter 11. Recall that a
projectivity is defined as the composition of projections of the projective plane in some
projective 3-space, say. Let n be a projective plane over some field.

Theorem 13.2.1: A function from n to itself is a projectivity if and only if it can be
described by a non-singular 3 by 3 matrix in homogeneous coordinates as in Chapter 11.

So the group that we should use for Klein's program is clear .We should use the
projectivities of the projective plane. The connection with linear algebra is clear and
direct, and we can use the well oiled machinery that is easily available. We look for
invariants of projectivities.

But before we plunge into that problem, let us step back a bit and see if we can simplify
the problem a bit. We have agreed that the group of transformations should be the
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2 CLASSICAL GEOMETRIES

projectivities, but what if we just look at a single line in the projective plane? If we start
over again and look for line preserving functions of a single line, we have not learned our
lesson. There is only one line to preserve, and our geometric group is just all functions
without regard to any of the geometry outside the line. The proper group to take is
the group of functions of the line to itself that extend to a projectivity of the whole
projective plane. Alternatively, we could take our group to be those functions, which we
call projectivities, of the line itself that can be obtained as a composition of projections,
each between two lines in the projective plane. See Figure 13.2.1

Second

projection .;.

Third
projection

Figure 13.2.1

Note that this definition for a projectivity of a line is analogous to the definition for a
projectivity of a projective plane.

13.3 The extended Affine line and Meobius functions

is naturally identified
Regard our projective plane over a field as the extended A~ne plane. Look at one line

in that plane, say the line y = 1. Each pont on that line ~

with a field element x. The associated projective line has only' one additional point, a
point at infinity. Similar to what we did in the case of the whole projective plane, we can
define homogeneous coordinates for this projective line, using equivalence classes in the
2-dimensional Affine plane ( used as a vector space ).

We define a function on this projective line that "comes from" a 2 by 2 matrix A, similar
to the function that we defined using a 3 by 3 matrix for the projective plane itself. Let

x
y

be a vector in the Affine plane. Define a function

f (x ) = A (x ) = (ax + by )y y cx + dy

where

~)A= (;

It is clear that f defines a function on the equivalence classes in the homogeneous coordinate

projection
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model for the projective line. We next project the functional values back into the original
line y = 1. See Figure 13.3.1.

Figure 13.3.1

So in the extended Affine line itself we have the following function:

ax +b
cx +d'f(x)

where ,ve interpret the points that come from and go to the point at infinity in the way
determined as before. Such a function is called a M oebius function.

If we have some other line I besides the line y = 1, let 9 be a projectivity of the extended
plane that takes I onto the line y = 1. Then g-lfg defines a Moebius function on the line
I. In other words a Moebius function is just the function coming from a matrix, but put
in Affine coordinates.

Recall the exercises in Chapter 11. There it was shown that a projectivity on the plane
or line was equivalent to the function coming from a matrix in homogeneous coordinates.
This allo,vs us to pass back and forth between the geometric projectivities and the more
analytic Moebius functions. We summarize things in the following Theorem.

Theorem 13.3.1: Let f be a one-to-one onto function from the points of a line 1 to itself
in a projective plane over a field. Then the following are equivalent:

(i) The function f is a projectivity of 1 to itself.
(ii) The function f extends to a projectivity of n to itself.

(iii) The function f is-a Moebius function on 1 in the sense above.

Note that condition (ii) says that any function 9 can be used to decide whether the
function on 1 is a Moebius function. If 9-1 f9 is a Moebius function for one projectivity 9
then it is a Moebius function for all projectivities 9.

13.4 Three point homogeneity

Recall the proof in Section 11.3 that any 4 points, no 3 collinear, can be brought onto
any other 4 points, no 3 collinear, by a projectivity of the plane. The proof works in any
projective space of any dimension over any field. In dimension d, it is d + 2 points. In
particular it works for d = 1, which we state as follows:
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Theorem 13.4.1: Given any two sets of tbree labeled distinct points in a line 1 in a
projective plane, tbere is a projectivity of 1 tbat takes tbe one labeled set onto tbe otber.

This is essentially Exercise 5 in Chapter 11. Note that, for v.--hat it is worth, the
projective plane does not have to come from a field, then the proof of Theorem 11.3.1
applies. We call the property of Theorem 13.4.1 three point homogeneity and of course the
property of Theorem 11.3.1 four point homogeneity.

13.5 The cross ratio

Finally we look for invariants associated to the group of projectivities of a line I in a
projective plane n over a field F. Ideally we want our first invariants to be as simple as
possible, involving as few points as possible. However, we know by three point homogeneity
on the line that if the invariant involves three or fewer points, then it does not depend on
which three points, and the invariant will be trivially a constant. So we look for invariants
of four points on a line.

In order to calculate the invariant, we need to have a field structure on I. The invariant
will be an element of F U { 00 }. In other words, the invariant might be "infinite," but
otherwise is in the field F. Let 9 be any projectivity of n that takes I to the line y = 1,
say. So a point p on I is associated with g(p) now regarded as an element of F U { 00 }.
With this in mind we consider our four distinct labeled points PI, P2, P3, P4 on I. We
define the cross ratio of these points as

PI P2 P3 -P4
P3 -P2

r

We adopt the same conventions for r as we did for the Moebius functions about points
that go to and come from infinity. There is never any ambiguity when the four points are
distinct or even when exactly one pair is the same. We make a few observations about r .

1. Each Pi appears once in the numerator and once in the denominator, each time
\vith the same sign. In fact, multiplying each Pi by the same constant does not
change the value of r .

2. The cross ratio is ~ function of the differences of pairs of points. Thus adding the
same constant to each Pi does not change the value fo r .

3. Replacing each Pi by I/Pi does not change the value of r .
4. Regard PI, P2, P3, as constants. Then r is a Moebius function of P4.

In the classical case of the real projective plane a slightly different point of view is
taken. Instead of taking any projectivity 9 from the line I to the standard line with
the field structure, usually I is considered as '~riented" and the algebraic differences in
the definition of r are taken as oriented distances between the appropriate points. The
only ambiguity in the definition of r is which orientation to choose for I, and clearly this
does not change the value of r. This is clearly equivalent to choosing 9 to be some rigid
congruence that takes I to the standard line with its field structure. However, a metric
distance approach seems out of place here since it is not the metric geometry that we are
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studying now. Also for fields other than the real field, we may not have any convenient
metric to measure distances anyway, if that is the way we insist on defining r .

13.6 The invariance of the cross ratio
We need to show that the cross ratio is invariant when the four points defining it are

mapped to four others by a Moebius function.

Lemma 13.6.1: Let PI, P2, Pa, P4 be four distinct points in FU { 00 }. Let f be a Moebius
function on F U { 00 }, and let qi = f(pi), i = 1,2,3,4. Then the cross ratio for PI, P2, Pa,
P4 is the same as for qI, q2, qa, q4.

Proof 1: .Any Moebius function can be written as a composition of three types of func-
tions, those that add a constant, those that multiply a constant, and those that take the
multiplicative inverse. Explicitly,

which is seen to be a composition involving two multiplications, t'vo additions and one
inverse. By observations 1, 2, 3 in Section 13.5, we see that each of the three types of
functions preserve the cross ratio, so any Moebius function does.

Proof 2: Here \ve regard the function f as coming from a linear function in homogeneous
coordinates and use basic properties of the determinate. Regard the four points PI, P2,
P3, P4 as being on the line y = 1. Then each qi is the projection of Api onto the line
y = I, where

~)A= (~

Let

for i = 1,2,3,4. So then
Xi

yi
!(Pi) qi

regarded as an element of F. Then

1--.:-. det (x i

yiyj -yi
Xi

)Yi
det(Api, Apj ),qi

1

YiYj

where 'det' represents the determinate function. So the cross ratio of the qi's is
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But a basic property of determinants implies

det(Api,Apj) = detAdet(pi,pj)

Thus the factors det A # O cancel, and r is the same for both the p j 's and the qj's.

We can now observe by Theorem 13.3.1 that not only is the cross ratio r invariant under
Moebius functions and projectivities of projective lines and projectivities of the projective
plane, but its definition is clearly independent of the choice of the projectivity 9 used to
define the field structure in Section 13.5. We finally know that r is well-defined.

13.7 Harmonic points
Consider the special case when P2 = 0, P3 = 1, P4 = 00. Then r = Pl. So these

canonical choices of the points help us to understand the role that the cross ratio plays
\vith respect to the four points used to define it. By three point homogeneity, we can
al\vays reposition three of our four points to be in the special position we choose above.

When our four labeled points have cross ratio -1, we say that they are harmonic points.
Consider the configuration in Figure 13.7.1.

~

Figure 13.7.1

Clearly if our four points have cross ratio -1, then such a configuration as in Figure
13.7.1 exists. Use a projectivity 9 to take three of the four points to 0, 1, 00, and then
the fourth is forced to go to -1, since their cross ratio is -1. Then map the configuration
back by the inverse of 9 .

On the other hand, it is clear from the configuration of Figure 13.7.1 that if PI, P3,
P4 are at -1, 1, and 00, respectively, then P2 is 0. So by a similar argument, if such a
configuration exists, then the points have cross ratio -1. An example is shown in Figure
13.7.2, where the construction is done twice, onc:e on each side of the line.

It is clear that if one construction says that the points are harmonic, then the other must
also. Note that anyone of the white points in the construction can be chosen arbitrarily
not on the line of the points.

Note also the similarities of the picture below and the constructions of grids in earlier
chapters.
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Exercises:

1

2

3

There are 24 permutations of 4 distinct points.
a. For 4 distinct points on a line, how many distinct values are there for the cross

ratio of all permutations of the points?
b. If one of the cross ratios is i, find the others as a function of i.
c. If the four points are harmonic, how many distinct cross ratios are there, and

\V hat are they?
Suppose that points P2, P3, P4 are given on a line. Find a construction as in
Section 13.7 for finding PI such that the cross ratio is 3.
Consider the Homogeneous Coordinate Model 2 for the projective plane over a
field.
a. Make a proper definition of what is meant by the cross ratio of 4 labeled lines

that are incident to a single point .
b. Show that the cross ratio that you defined in part a. is the same as the cross

ratio of the 4 points on a line as in Figure 13.E.1.

c. Find an expression for the cross ratio of the 4 lines above in terms of the 3
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4.
angles (J12, (J23, (J34.

Suppose that we have 4 lines all incident to a point p on a circle C as in Figure
13.E.2.

'3

Figure 13.E.2

5.

6.

Show that as p varies along C with the white points fixed, then the cross ratio of
the 4 labeled lines is constant .
Find the function that plays the role of the Moebius function when the underlying
field is not commutative. Is such a Moebius function determined uniquely by its
values on 3 distinct points?
In the real projective plane show that the cross ratio of 4 points PI, P2, P3, P4 is
negative if and only if PI and P3 are separated by P2 and P4.


