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CLASSICAL GEOMETRIES

14. The geometry of circles
So far we have been studying lines and conics in the Euclidean plane. What about

circles, one of the basic objects of study in Euclidean geometry? One approach is to use
the complex numbers C. Recall that the projectivities of the projective plane over C,
v.rhich we call Cp2, are given by 3 by 3 matrices, and these projectivities restricted to a
complex projective line, which we call a Cpl , are the Moebius functions, which themselves
correspond to a 2 by 2 matrix. The Moebius functions preserve the cross ratio. This is

where circles come in.

14.1 The cross ratio for the complex field

We look for another geometric interpretation of the cross ratio for the complex field,
or better yet for Cpl = C U { 00 } .Recall the polar decomposition of a complex number
z -rei9, v.,here r = Izi is the magnitude of z, and 8 is the angle that the line through O
and z makes ,vith the real axis. See Figure 14.1.1.

Figure 14.1.1
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the angle 61 can be interpreted as the angle between the vectors %2 -%1 and Z4 -%1 as in

Figure 14.1.2.
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Figure 14.1.2

So we can write the cross ratio r of the 4 points, Zl, Z2, Z3, Z4, as follows:

ZI -Z2

ZI -Z4

%3 -%4

%3 -%2
r= ~Zl -Z2 ~ i81 ~Z3 -Z4 ~ i83 = e e

Zl -Z4 Z3 -Z2

= I Zl -Z211 Z3 -Z41 ei(81+83)

I Zl -z411 Z3 -z21

where 83 is the angle at Z3 in the quadrilateral determined by the 4 points Zl, Z2, Z3, Z4.
See Figure 14.1.3.

Figure 14.1.3

We conclude with a result that connects our complex geometry to circles.

Theorem 14.1.1: The 4 distinct points %1, %2, %3, %4 in the complex projective line have
a real cross ratio if and only if they all lie on a single circle or Euclidean line.

Proof. From the discussion above Zl, Z2, Z3, Z4 have a real cross ratio if and only if 81 + 83
is an integral multiple of n. But a result from Euclidean geometry says that 81 + 83 is an
integral multiple of n if and only if zl, z2, Z3, Z4 all lie on a single circle or Euclidean line.

Corollary 14.1.2: The image ofa circle or Euclidean line under a Moebius function f of
the complex projective line is a circle or Euclidean line.

Proof. Choose your favorite circle or Euclidean line and fix three distinct points Zl, z2,
Z3, on it. A fourth point Z4 lies on that circle or Euclidean line if and only if the cross
ratio of Zl , Z2, Z3, z4 is real. Similarly, the cross ratio of f(Zl)' f(Z2), f(Z3), f(Z4) is real if

"
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and only if f(%4) lies on the circle or Euclidean line determined by f(%l), f(%2), f(%3). By
Lemma 13.5.1 (the invariance of the cross ratio), the cross ratio of %1, %2, %3, %4 and f(%l),
f(%2), f(%3), f(%4) are the same. So %4 lies on the circle or Euclidean line through %1, %2,
%3 if and only if f(%4) lies on the circle or Euclidean line through f(%l), f(%2), f(%3).

14.2 Inversion

Recall from Chapter 13 that any Moebius function can be regarded as the composi-
tion of translations, multiplications by a constant, and taking the multiplicative inverse.
Consider the Moebius function j(z) = l/z. For the sake of tradition and for the sake of
understanding the function more simply, we define a slightly different function. We call
inver.sion the function defined by

.8(z) = l/z.

Since complex conjugation is just a rigid reflection about the real axis, .8 takes circles and
Euclidean lines to circles and Euclidean lines as well.

Note that IzI2.8(x) = zz/z = z. So z and .8(z) are on a ray from the origin. When
rzl = 1, then .8(z) = z. Inversion is like a "reflection" about a circle. Figure 14.2.1 shows
the inversion of some lines and circles.

Figure 14.2.1

The following are some easy properties of inversion. Euclidean lines are thought of as
circles through the single point at infinity.

1- For all z in the complex projective line, .8(.8( z ) ) = z, and {3( z ) = z if and only if z
is on the unit circle.

2. Rays and Euclidean lines though the origin are inverted into themselves.
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3.

4.

5.

Circles through the origin are inverted into Euclidean lines not through the origin,
and vise-versa. For example, the circles 3 and 4 are inverted to the Euclidean lines
3' and 4', respectively, in Figure 14.2.1.
If two circles are tangent, or a circle and a Euclidean line are tangent, so are their
inverted images. For example, in the Figure, Circle 1 is tangent to the unit circle
and two rays through the origin. So its image, Circle 1', is also tangent to the same
two rays and the unit circle since they are inverted to themselves.
A circle is inverted into itself if and only if it is either the unit circle or orthogonal
to the unit circle. (Two circles are orthogonal if the tangent lines to one circle at
the points of intersection go through the center of the other circle. ) For example,
in the Figure, Circle 2 is orthogonal to the unit circle and is inverted into itself.
The points of intersection on the unit circle go into themselves as well as the two
tangent rays, and this determines the circle uniquely.

14.3 Linkages

The first steam engines were used in England from 1712, and although they were in-
efficient, they rapidly came to be used widely. In 1765, James Watt, a mathematical
instrument maker at the University of Glascow, invented a separate condenser improving
the efficienc)' of the steam engine. But he needed a way of converting the back-and-forth
reciprocal motion of the piston to the more convenient rotational motion of a flywheel.

He did not find an exact solution, but he did find the following mechanism that was a
solution good enough for the problem at hand.



THE GEOMETRY OF CIRCLES 5

The point that was to be attached to the piston described a flattened figure eight path
that \\'as "almost" a straight line.

Mathematically the problem was to find a configuration of points in the plane, \\,ith some
of the points fixed and some pairs of the points constrained to say a constant distance apart
(they have rigid bars between them), such that some point follows a straight line path.
Some well-known mathematicians, for example P. Tschebyscheff, worked on the problem
for some time with no success. It was even suggested that the problem had no solution!

In 1864 a young Captain in the French Corps of Engineers by the name of Peaucellier
announced that he had found a solution to the problem. A fe\v years later a young
Lithuanian, L. Lipkin, found essentially the same solution, which we describe below.

Figure 14.3.3

The idea is to find a mechanism that does inversion. In Figure 14.3.3 the black point is
regarded as the center of the inversion, the origin in our description above. The indicated
sides are equal. The points PI, P2, P3 are collinear because of the symmetry in teh lengths
of the bars a and b. By the Theorem of Pythagoras applied to two right triangles,

a2 = (lp2 + x )2 + y2 = Ip2 -PI f + 2x Ip2
= Ip2 -PII2 + 2xlp2

P1I P1I + X2 + y2

P1I + b2

Hence
a2 -b2 = Ip2 -Pl f + 2x Ip2 Pli.

We calculate the product

Ip2 PIllp3 -PI = Ip2 -PliClp2 -Pli + 2x)

= Ip2 -Pll2 + 2x Ip2 -Pli = a2 + b2

Thus if we arrange our units so that a2 -b2 = I, then P2 and P3 will be inverted into each
other with PI 85 the center of inversion. (This is O in our description above.)

To finish the mechanism, we fix PI and force P2 to lie on a circle that goes through PI.
Thus P3 will lie on the inversion of the circle, which is a straight line. This is what W85
desired. Figure 14.3.4 shows the whole mechanism.
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Figure 14.3.4

14.4 Stereographic projection

So far \\'e have been working in the Euclidean plane, even though we have thought of
it as a projective line. The principles of inversion still work in three-space, however, and
we can take advantage of this to understand more of the geometry of both dimensions two
and three.

Without regard to the complex structure inversion, in the Euclidean plane is just

!3(p) = p/lpf

In other v.'ords inversion simply takes a point along the ray from the center of inversion
to a point whose distance from the center is the reciprocal of the distance of the original
point from the center. We extend this definition to any Euclidean space.

One useful technique is to intersect the objects in three-space we are studying with
appropriately chosen planes. This allows us to extend results from the plane to three-
space. For example, what do we get when invert a sphere S through the origin, tangent
to the unit sphere in three-space? See Figure 14.4.1.
Intersect S with a plane n through ° and the point of tangency with the unit sphere, which
we have called the South Pole in the figure. The South Pole is fixed WIder the inversion
.8, and n n s is a circle through the origin 0. By the properties of inversion in a plane this
circle is inverted into a line tangent to n n s in n. So the line is tangent to S as well.
These lines fill out a plane tangent to S at the South Pole. Thus /3( S) is the plane tangent
to S at the South Pole.

In fact, this idea works for any sphere S in three-space. The line through the center of
S intersects S st the endpoints p and q of a diameter of S. Any plane n through this line
intersects S in a circle, and all such circles have the same diameters p and q. Again since
.8 restricted to n has the properties we listed in Section 14.2, .8(n n S) is a circle with .8(p )
and .8( q) as diameter, or a line perpendicular to the line through p and q if S contains 0.
By rotating the plane n around the line through p and q we see that /3(S) is a sphere, or
a plane if S contains 0. See Figure 14.4.2.
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~(1:)

Figure 14.4.2

Now it is easy to see that the image under inversion of any circle, not just the one whose
planes contain the center of inversion, is a circle or a line. This because the intersection of
two spheres is a circle, and the the inversion of the intersection is the intersection of the
inversion of each sphere, which is a sphere or plane. So the inversion of a circle is a circle
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or line as it is in the plane.
This is especially useful when the inversion is restricted to a sphere that contains the

center of inversion. Suppose that a sphere S is tangent to a plane at a point we call the
South Pole. Call the point antipodal to the South Pole, the North Pole. Inversion about
the North Pole, with the unit length equal to the diameter of S, takes S into the tangent
plane. This is called stereographic projection. Note that each point on S is projected onto
a point in the tangent plane along a line through the North Pole. This is our usual notion
of projection, but the domain is not a plane but a sphere. See Figure 14.4.1. We record
the basic property of stereographic projection.
Theorem 14.4.1: The image of a circle on the sphere under stereographic projection is
either a circle in the plane or a line in the plane if the circle goes through the North Pole.

This will be used as a further manifestation of our attitude that three dimensions helps
greatly in understanding two dimensions.

Exercises:

1.

2.

3.

Is there any circle C in the (Euclidean ) plane such that the center of C is inverted
into the center of the image of C? Why?
Which circles have their orientation reversed by inversion in the (Euclidean) plane?
For example, circle 1 in Figure 14.2.1 has its orientation reversed as it is mapped
into Circle l' .Think of the orientation of a circle as the direction a bug goes, either
clock\vise or counterclockwise, as it goes around the circle.
Let r : S-+ S denote reflection about the equator on the sphere S used for
stereographic projection. Show that {3r{3-l is inversion about the image of the
equator, where {3 is stereographic projection. Find a similar description for the
function that takes the multiplicative inverse of a complex number .
Consider the following configuration of four points Zl, Z2, z3, z4 in the complex
projective line, where the white point is the center of the larger circle, and the lines
through Zl and Z2 are tangent to the smaller circle.

4.
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8.. What is the cross ratio of %1 , %2, %3, %4 ?
b. Show that the Figure 8.bove can be extended in the following way where %1 and

%3 are collinear with the lower white point, and the lines from the lower white
point to %2 and %4 are tangent to the smaller circle.

Suppose that the point p is inverted into the point q :rf p with respect to the circle
C.

5.

a. Show that any circle through p and q is orthogonal to C. See property 5 in
Section 14.2 for a definition of orthogonal.

b. Let p and q be two distinct points in the (Euclidean ) plane. Consider the family
of all circles and line through p and q. Show that there is another family of
circles and line such that each element of the second family is orthogonal to
each element of the first family, and every point in the plane, except p and q,
is in one and o~y one element of the second family. See Figure 14.E.3. This is
called a coaxal system in the old literature.

~
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Figure 14.E.3


