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CLASSICAL GEOMETRIES

15. Hyperbolic geometry
So far we have talked mostly about the incidence structure of points, lines and circles.

But geometry is concerned about the metric, the way things are measured. We also
mentioned in the beginning of the course about Euclid's Fifth Postulate. Can it be proven
from the the other Euclidean axiom's?

This brings up the subject of hyperbolic geometry. In the hyperbolic plane the parallel
postulate is false. If a proof in Euclidean geometry could be found that proved the parallel
postulate from the others, then the same proof could be applied to the hyperbolic plane to
show that the parallel postulate is true, a contradiction. The existence of the hyperbolic
plane shows that the Fifth postulate cannot be proven from the others. Assuming that
Mathematics itself ( or at least Euclidean geometry ) is consistent, then there is no proof of
the parallel postulate in Euclidean geometry. Our purpose in this chapter is to show that
THE HYPERBOLIC PLANE EXISTS.

15.1 A quick history
In the first half of the nineteenth century people began to realize that that a geometry

with the Fifth postulate denied might exist. N. I. Lobachevski and J. Bolyai essentially
devoted their lives to the study of hyperbolic geometry. They wrote books about hyperbolic
geometry, and sho\ved that there there were many strange properties that held. If you
assumed that one of these strange properties did not hold in the geometry, then the Fifth
postulate could be proved from the others. But this just amounted to replacing one axiom
v.'ith another equivalent one. These people simply assumed that there was such a non-
Euclidean h)'perbolic geometry. For all they knew, they could have been talking about
the empty geometry, proving wonderful theorems about beautiful structures that do not
exist. It has happened in other areas of Mathematics. Even the great C. F. Gauss only
explored what might happ~n if this non-Euclidean geometry were really there. However,
Gauss never actually published what he found, possibly out of fear of ridicule.

Nevertheless, by the rniddle of the nineteenth century the existence of the hyperbolic
plane, even with its strange properties, came to be accepted, more or less. I think that is
an example of the "smart people" argument, a variation of proof by intimidation. If many
smart people have tried to find a solution to a problem and they do not succeed, then the
problem must not have a solution. So in 1868, when E. Beltrami actually proved that one
can construct the hyperbolic plane using standard mathematics and Euclidean geometry,
perhaps it came as an anti-climax. From then on though, hyperbolic geometry was less
of a mystery and part of the standard geometric repertoire. The ancient problem from
Greek geometry "Can the Fifth postulate be proved from the others?" had been solved.
The Fifth postulate cannot be proved.
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We will present a construction for the hyperbolic plane that is a bit different in spirit
from Beltrami's, and is in the spirit of Klein's philosophy, concentrating on the group of
the geometry. This uses a seemingly unusual method, due to H. Minkowskii, that uses an
analogue to an inner product that has non-zero vectors with a zero norm. Odd as that
may seem, these ideas were fundamental to Einstein's special theory of relativity.

15.2 A little algebra
We will be working with special conics and quadratic curves and this brings up sym-

metric matrices. We will need some special information about these matrices.
A square matrix S is called "ymmetric if st = S, where ()t denotes the transpose of a

matrix.

Proposition 15.2.1: Suppose tbat S is an n by n symmetric matrix over tbe real field
such tbat for all vectors p in R n, pt Sp = 0. Tben S = 0.

For example, take the case when n = 2. Then

~)s= ~~

and let

p = ~~)

Then

~)(X
pfSp = (:) (~ y) = ax2 + 2bxy + cy2

This is called a quadratic form in 2 variables. As an exercise you can prove that if this
form is 0 on 3 vectors, every pair of which is independent, then the form is 0. In fact, we
v.ril need a slightly stronger version of Proposition 15.2.1 where the form is 0 on some open
subset 0£ vectors in n-space.
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We re~"rite these conditions in terms of matrices as follows:

The Circle The Hyperbola

For every p and q in R 2 define a "bi-
linear form " by

For ever)' p and q in R 2 define a "bi-
linear form " by

(p, q) = pfq, (p, q} = pf Dq,

",here p and q are regarded as column
vectors. So

\\there p and q are regarded as column
vectors and

{p, p) = -1}

where
x
t

/
I'

~"
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There should be no confusion between the two bilinear forms since one is used only in
the context of the circle and the other is used only in the context of the hyperbola. In the
case of the circle, the bilinear form is the usual dot product.

One important difference between the two bilinear forms is that the form in the case of
the hyperbola has vectors p such that {p, p) = 0, but p # 0. These are the vectors ( called
isotropic vectors) that lie along the asymptotes that are the dashed lines in Figure 15.3.1.

15.4 The group of transformations
Following the philosophy of Klein we define the group of transformations of the space,

and use that to find the geometric properties. Each of our spaces in question, the circle and
the hyperbola, are subspaces of the plane. We require that the group of transformations
in question are a subgroup of the group of linear transformations. This is certainly the
situation that we want for the circle, and we shall see that it gives us a useful group in the
case of the hyperbola.

The Circle The Hyperbola

p E HI ~ Ap E HI ~ (Ap)tDAp
= ptAtDAp = 1 = ptDp.

p E 81 {:} Ap E 81 {:} (Ap )t Ap
= pt A t Ap = 1 = ptp.

So So
pt(At A -I)p = 0,

where I is the identity matrix. The proof
of Proposition 15.2.1 applies and we get

pt(At DA -D)p = 0,

where D is the matrix in 15.3. The proof
of Proposition 15.2.1 applies and we get

AtA-I=O. A t A -I = 0.

So A t A = I, which is the condition for

being orthogonal.
So At DA = D, which is similar .to the
condition for being orthogonal.
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15.5 The metric: How to measure distances
If we have two pajrs of points in the line, or in any space for that matter, how do we

ten when they have the same distance apart? You might say that you just compute the
distances. But how do you do that? Physically, you might use a ruler, but let us consider
what that means. You must actually move the ruler from one pajr of points to the other.
But this motion must be in our group of "geometric" transformations. In the case of the
circle and the hyperbolic line, we have already decided what that group of transformations
is. The following principle states our point of view describing when two line segments have
the same length.
Principle of Superposition: Two line segments have the same length if and only if they
can be superimposed by an element of the group of geometric transformations.

In Section 15.4 we have described the group of geometric transformations by charac-
terizing their matrices. We wish to make a further reduction. On a line or a circle there
are two ways to superimpose two line segments. H we use directed line segments, say, and
direct them all the same way, we can still require that they have the same length if and
only if they can be superimposed by an element of the group. In fact, the elements of the
groups that are defined in Section 15.4 form a subgroup where the determinate is 1. Call
this restricted group the positive transformations. These are the transformations that can
be regarded as the rotations of the circle or the translations of the hyperbolic line.

These positive transformations also have the property that there is a unique (positive )
transformation that takes one point to another. Indeed we can modify or superposition
principle by bringing all our directed line segments back to a fixed canonical position,
which we call Paris, in order to compare lengths. For a while Paris did keep a fixed
meter length that was used for comparison the world over. So there is a unique positive
geometric transformation that takes a point to Paris. Alternatively, we can think of Paris
being transformed to any given point 8 by a positive transformation As. We present As
explicitly and define Paris.
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The Hyperbola

Let Paris =

cosG
sinG

-sin 6
cos6

cash 8

sinh 8

sinh 8
cash 8

AB = AB =

where the hyperbolic functions are de-
fined by

So As on 81 is identified with

cosB
sinB

-sin 8 \ ( 1 \ = ( C?S 8 \
cos8) 0) sm8 ) coshB = (e8 + e-8)/2

sinhB = (e8 -e-8)/2.

So AB on HI is identified with

sinh 8 \ ( 0 \ = ( sinh 8 \
cosh8) \1) \cosh8)

cosh e
sinh e

We leave it as an easy exercise to show that these matrices AB satisfy the orthogonal
and hyperbolic orthogonal conditions described in Section 15.4. Figure 15.5.1 shows the
"ruler" in circle geometry as well as hyperbolic geometry.

In terms of the ordinary Euclidean distance, multiples of 8 grow exponentially on the
hyperbolic line, whereas on the circle the multiples of 8 appear at fixed intervals around
the circle. Notice also that the isotropic directions

(~) and (-i)

are also independent eigenvectors of AB, with eigenvalues eB /2 and e-B /2 respectively.
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15.6 Computing length from coordinates

.(

In Section 15.5 we saw how to compute distances by moving rulers around, but it would
be helpful if we could assign a real number that was the distance between any pair of
points iIJ6ur space. Philosophically, we want this distance to "look like" the distance along
a line. We describe this as follows:
The Principle of J uxtaposion: The lengtb of two intervals put end-to-end is the sum
of the lengths of the two intervals.

This principle does not strictly hold for the circle, which is one reason that spheri-
cal geometry or elliptic geometry does not even satisfy the first few axioms of Euclid.
Nevertheless, this principle does hold "in the small", namely when the intervals are both
suffici~ly small. In hyperbolic geometry, this principle does hold and it tells us how to
compute distances.

In either case, suppose that 81 and 82 are two points, both in 81 or both in HI. We
can regard 81 and 82 as points on a line, but we must figure out how to add their lengths
from Paris, say. One way is to arrange it so that 81 + 82 is that point where

A61 +62 = A61 + A62

It is easy to check that this equation is satisfied by the circular functions, sine and cosine,
on the one hand, and the hyperbolic sine and hyperbolic cosine, on the other hand. So the
distanre between 81 and 82 is just 181 -821 with the given parametrizations.

Suppose p and q are two points that we know by their Cartesian coordinates as we have
described above. What is their distance? In order to make the calculation easier we will
bring the interval between them back to Paris, and we will center it so that the midpoint
is exactly at Paris. So then 8 corresponds to p and -8 corresponds to q. Let d(p, q) = 28
denote the distance between p and q. Looking at the coordinates as below allows us to
calculate d(p, q).

The Circle
(cos e\

p= \ sin e J

y

\Paris
x

) (cos
q=t-sin e

=A-e~~
Figure 15.6.1
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So the difference of p and q is So the difference of p and q is

2 sinh 6
O

O
2 sin Bp-q= p-q=

Thus

(p- q, p -q} = 4 sin2 8.
d(p, q) = 28

(p -q,p -q) = 4sinh2 9.
d(p, q) = 29

= 2sinh-1 ~~~~ .
~~~.

= 2 sin-l

Notice that we have v.'ritten the distance in terms of the bilinear form (, }. If we replace
p and q by Ap and Aq respectively, where A is an orthogonal or hyperbolic orthogonal
matrix, then we compute that the bilinear form is invariant.

Circle Case Hyperbolic Case

(p- q,p -q} (p -q,p -q}
= (p -q)t(p -q)
= (p -q)t A t A(p -q)

= [A(p -q)1t[A(p -q)]

= (Ap- Aq,Ap -Aq).

= (p -q)tD(p -q)

= (p -q)t At DA(p -q)

= [A(p -q)]t D[A(p -q)]

= (Ap -Aq,Ap -Aq).

Thus the formula (*) in terms of the bilinear form is valid for any p and q. This is an
explicit function of the coordinates.

,
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15.7 An extra dimension
,\re are finally ready for the hyperfolic plane itself. The proper analogy is the 2-sphere.

We define both the sphere and the hyperbolic plane to show their similarities.

The Hyperbolic PlaneThe Sphere

DefineDefine

H2=

.; (~

S2 = { (~) I X2 + y2 + Z2 = 11.

= {p E R3 {p,p) = 1},

= {p E R3 {p,p) = -1},
where

(p, q) = ptq.
where

{p, q) = pt Dq,The orthogonal matrices are those matri-
ces A such that and

o
0

-1 :)
At A = I.

The hyperbolic orthogonal matrices are
those matrices A such that

~~~.

-Id(p, q) = 2 sin
AtDA = D

The distance betv.'een p and q is

~v(p -q,p -q}
d(p, q) = 2 sinh -1
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This gives the metric for the hyperbolic plane as well as for the two-sphere. It is also
easy to see v.,hat the lines in these geometries are. Recall that for the two-sphere, a line
was defined to be the intersection of a plane through the origin with the two-sphere. In the
case of the hyperbolic plane practically the same definition works. Namely, a line is the
intersection of a plane through the origin with H2, defined as the hyperbolist of revolution
as defined above.

In both of these cases it is easy to see that any line can be transformed by an element
of the group of geometric transformations to the circle or line that we defined previously
in earlier sections. In the case of S2, rotations about each of the x-axis, y-axis, and z-axis
generate the group of positive transformations. In the case of H2 the following matrices
generate the hyperbolic transformations:

cash 8

O

sinh 8

sinh 8
cash 8

O

O
1
0

Sinh8
) ( 1

O , O

cash 8 O

O
cosh 8
sinh 8

O
sinh 8
cosh 8

cosh 8
sinh 8

O ~)
,

In fact '..'e no'v have the complete definition of the hyperbolic plane that is the notorious
competitor of the Euclidean plane for satisfying the axioms of Euclidean geometry, except
for the Fifth postulate. We have defined distances, but it follows ( and is straightforward
to do) that angles can also be defined for the hyperbolic plane. Bring everything to Paris,
and measure it there.

15.8 The Klein-Beltrami model

An important feature of the hyperbolic plane is the property that it does not satisfy
Euclid's Fifth postulate. Hov.' do we see this? simply look at H2. A good vantage point is
the origin. Project H2 from the origin into the plane t = 1. Define this central projection
7r : H2 -+ R2 by

7r (~) = (={:)

It is easy to see that 7!" is a one-to-one function and that the image of H2 is the interior of
the unit disk in the plane t.= 1. See Figure 15.8.1.
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Since a line in H2 is the intersection of a plane through the origin with H2 itself, the
projection of a line is an open line segment in the unit disk in the plane t = 1. It is easy
to see that given any point p and a line L not containing that point, then there are many
lines through p not intersecting L. See Figure 15.8.2.

Figure 15.8.2

In this model we see that the hyperbolic distance between two points p and q is

d(p,q) = 2sinh-1 ~~..;(7r-lp -7r-lq, 7r-lp -7r-lq} ~ .

We could use the above formula to define distances in this Klein model directly if we
wished. Beltrami used a different approach that is common in differential geometry. He
defined a real valued function at each point in the unit disk, and then the distance along a
curve is obtained by integrating that function along the curve. The distance between two
points is the shortest hyperbolic length of a curve between the two points.
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15.9 The Poincare model
The Klein model of the hyperbolic plane has the property that hyperbolic lines are

"straight", but one might wish for other properties. We describe here a model, due to H.
Poincare, that is yet another equivalent description of the hyperbolic plane, but it has the
pleasing property that hyperbolic circles are Euclidean circles.

For the Klein-Beltrami model we used central projection of H2 into the plane t = 1.
Recall that for the sphere 82 stereographic projection took circles to circles. We can apply
the same idea for H2 in our Minkowskii geometry. A natural place to choose the projection

O
O

-1
= s. See Figure 15.9.1.point is the antipode of Paris, namely

t

p " /
/ y

x

~
~ ~

Figure 15.9.1

We define 11" 8 : H2 -+ R 2 by projection from 5 into the plane t = 0. The image of
H2 under 11" 8 is the unit disk again, but in the plane t = 0. But what is the image of a
hyperbolic line? It turns out that they are circles in the unit disk that are orthogonal to
the boundary of the unit disk or they are diameters in the unit disk. So Figure 15.8.2 then
is transformed into Figure 15.9.2.

An important property of the Poincare model is that the angle between the circles that
are the image of two lines is the same as the angle between the lines in the hyperbolic plane
H2 itself. We say that the model is conformal. (It is also true that stereographic projection
from the sphere 52 into the plane is conformal. The whole plane is the conformal image
of the sphere 52 minus one point. )

We show some tilings M. C. Escher based on this conformal property at the end of the
Chapter .
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Figure 15.9.2

Exercises:

1. Show that if a real bilinear form in two variables is O on three independent vectors,
then is is the O form.

2. In any dimension, show that if a real bilinear form is O on an open set of vectors,
then it is the O form.

3. Show that the circular functions, sine and cosine, satisfy the matrix product rule
in Section 15.5. Do the same for the h)'perbolic functions.

4. Suppose that two lines in H2 are given by

Cl ) D ( ~ ) = al X + b1 y -Cl t = 0b1

c2)D (~) =a2x+b2y-C2t=O.b2

Find the angle between them.
5. In Section 15.8 find an explicit representation of the inverse projection map 7r-l

that takes the unit disk onto H2.
6. Consider the unit sphere tangent to a plane at its South Pole as in Figure 15.E.1.
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North Pole

Figure 15.E.l

Projection parallel to the North-South axis of the sphere takes the unit disk
centered at the South Pole to the Southern Hemisphere. Stereographic projection
from the North Pole then takes the Southern Hemisphere onto the disk of radius 2
centered at the South Pole, back in the plane. Show that the composition of these
two projections takes the Klein-Beltrami model of the hyperbolic plane onto the
Poincare model of the hyperbolic plane.

Sho,v that the above composition of projections is also the same as the com-
position of projections using central projection to H2 and then the hyperbolic
stereographic projection back to the plane followed by simple multiplication by 2
from the South Pole.

7. Sho\\' that the circumference of the disk in H2 of radius 8 is 271" sinh 8. This cir-
cumference is the set of points of distance 8 from a fixed point. (Hint: Choose
the center point to be Paris, and think about what kind of circle you have in H2.)
\\'fhat is the circumference of the disk of radius 8 in 82?

8. Use Problem 7 to show that the area of the disk of radius 8 in H2 is 271"( cosh 8 -1 ).
You may use calculus. Think of a geometric way of finding the circumference of a
disk by taking a derivative. What is the area of a disk of radius 8 in 82?

9. Use Problem 8 to calculate the area in H2 of the annular region between the circle
of radius 8 and the circle of radius 8 + 1. What is the limit as 8 goes to infinity of
the ratio of this annular area and the total area of the disk of radius 8 + 1 ? Where
is most of the area in a hyperbolic disk?


