Math 6520 Homework due Wednesday 5 September 2018

Let *E* and *F* be finite-dimensional real vector spaces. Choose linear isomorphisms $\phi: E \to \mathbf{R}^n$ and $\psi: F \to \mathbf{R}^m$. Define a subset *U* of *E* to be *open* if $\phi(U)$ is open in \mathbf{R}^n . Let $U \subseteq E$ and $V \subseteq F$ be open and let $f: U \to V$ be a map. Define *f* to be *smooth* if $\psi \circ f \circ \phi^{-1}$ is smooth (C^{∞}). These notions of openness and smoothness do not depend on the choice of ϕ and ψ . (You can check this for yourself. No need to turn in a proof.)

It is useful in practice to have slightly more flexible notions of a chart and an atlas than the ones introduced in class. Let *M* be an arbitrary set. A *chart* on *M* is a triple (U, ϕ, E) , where *U* is a subset of *M*, *E* is a finite-dimensional real vector space, and ϕ is a bijection from *U* onto an open subset of *E*. An *atlas* on *M* is a collection of charts $\mathscr{A} = \{ (U_i, \phi_i, E_i) \mid i \in I \}$ with the following properties: $\bigcup_{i \in I} U_i = M$ and for all $i, j \in I$ the set $\phi_i(U_i \cap U_j)$ is open in E_i , the set $\phi_j(U_i \cap U_j)$ is open in E_j , and the transition map

$$\phi_j \circ \phi_i^{-1} \colon \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j)$$

is smooth.

- 1. Let \mathscr{A} be an atlas on a set *M* in the above sense.
 - (a) Show that there is a unique topology on *M* making each U_i an open subset and each ϕ_i a homeomorphism from U_i onto its image.
 - (b) For each *i* ∈ *I* choose a linear isomorphism λ_i: E_i → ℝ^{n_i}. Let φ'_i = φ_i ∘ λ_i. Prove that 𝒜' = { (U_i, φ'_i) | *i* ∈ *I* } is an atlas on *M* in the usual sense (as defined in class).

If *E* and *F* are finite-dimensional vector spaces, then Hom(E, F) is by definition the set of all linear maps from *E* to *F*. This is a finite-dimensional vector space in its own right.

2. The *Grassmannian of k-planes* in \mathbb{R}^n is the set Gr(n, k) of all *k*-dimensional linear subspaces of \mathbb{R}^n . For $E \in Gr(n, k)$ let E^{\perp} denote the orthocomplement of *E* relative to the standard inner product. Define $U_E = \{F \in Gr(n, k) : F \cap E^{\perp} = \{0\}\}$.

- (a) Show that every $F \in U_E$ is the graph of a unique linear map $T_F \colon E \to E^{\perp}$.
- (b) Define $\phi_E \colon U_E \to \text{Hom}(E, E^{\perp})$ by $\phi_E(F) = T_F$. Show that the collection $\{(U_E, \phi_E, \text{Hom}(E, E^{\perp})) : E \in \text{Gr}(n, k)\}$ constitutes an atlas on Gr(n, k) in the sense of Problem 1. (How to write the transition maps for the Grassmannian? Given two *k*-planes E_1 and E_2 in \mathbb{R}^n , let us denote the corresponding charts on Gr(n, k) by (U_1, ϕ_1) and (U_2, ϕ_2) . The transition map $\phi_{21} = \phi_2 \circ \phi_1^{-1}$ has domain a subset of $\text{Hom}(E_1, E_1^{\perp})$ and target a subset of $\text{Hom}(E_2, E_2^{\perp})$. Let π_2 denote the orthogonal projection $\mathbb{R}^n \to E_2$ and π_2^{\perp} the orthogonal projection $\mathbb{R}^n \to E_2^{\perp}$. Show that for a linear map $T : E_1 \to E_1^{\perp}$ we have

$$\phi_{21}(T) = \pi_2^{\perp} \circ (\mathrm{id}_{E_1} \times T) \circ (\pi_2 \circ (\mathrm{id}_{E_1} \times T))^{-1}.$$

Here $id_{E_1} \times T$ denotes the linear map $E_1 \to \mathbf{R}^n$ which sends x to $(x, T(x)) \in E_1 \times E_1^{\perp} = \mathbf{R}^n$.)

- (c) What is the dimension of Gr(n, k)?
- 3. This is a calculus review problem.

(a) Let $g: [0,1] \rightarrow \mathbf{R}$ be a C^k function. Prove Taylor's formula with integral remainder term:

$$g(1) = \sum_{j=0}^{k-1} \frac{1}{j!} g^{(j)}(0) + \frac{1}{(k-1)!} \int_0^1 (1-t)^{k-1} g^{(k)}(t) \, dt.$$

(Use induction on *k* and integration by parts.)

(b) For the remainder of this problem let *U* be an open subset of \mathbb{R}^n and let $f \in C^k(U)$. Let $x \in U$ and let $h \in \mathbb{R}^n$ be any vector such that $x + th \in U$ for all $t \in [0, 1]$. Prove the multivariable Taylor formula:

$$f(x+h) = \sum_{|\alpha| < k} \partial^{\alpha} f(x) \frac{h^{\alpha}}{\alpha!} + k \sum_{|\alpha| = k} \left(\int_{0}^{1} (1-t)^{k-1} \partial^{\alpha} f(x+th) dt \right) \frac{h^{\alpha}}{\alpha!}.$$

(Put g(t) = f(x + th), apply (a) and use the chain rule. See below for the notation.)

(c) Now suppose *U* is *star-shaped* with respect to the origin, i.e. $0 \in U$ and for all $x \in U$ the closed line segment from 0 to *x* is contained in *U*. Find functions $f_i \in C^{k-1}(U)$ and $f_{ij} \in C^{k-2}(U)$ given by explicit formulas such that

$$f(x) = f(0) + \sum_{i=1}^{n} x_i f_i(x)$$

= $f(0) + \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(0) + \sum_{i,j=1}^{n} x_i x_j f_{ij}(x)$

for all $x \in U$.

Explanation of the notation in Problem 3: a *multi-index* is an *n*-tuple of natural numbers

$$\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \in \mathbf{N}^n$$
.

The order of α is $|\alpha| = \alpha_1 + \alpha_2 + \cdots + \alpha_n$. The *factorial* of α is $\alpha! = \alpha_1!\alpha_2!\cdots\alpha_n!$. The *multinomial coefficient* for α is $\binom{k}{\alpha} = k!/\alpha!$, where $k = |\alpha|$. The multinomial coefficient is equal to the number of ways of labelling *k* things with the numbers 1, 2, ..., *n*, such that the label *i* is repeated α_i times. If *h* is a vector in \mathbf{R}^n , we denote the monomial $h_1^{\alpha_1}h_2^{\alpha_2}\cdots h_n^{\alpha_n}$ by h^{α} . The name "multinomial coefficient" comes from the multinomial theorem $(h_1 + h_2 + \cdots + h_n)^k = \sum_{|\alpha|=k} {k \choose \alpha} h^{\alpha}$. If *f* is a sufficiently differentiable function on an open subset of \mathbf{R}^n , we denote the *k*-fold partial derivative

$$\frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}}\frac{\partial^{\alpha_2}}{\partial x_2^{\alpha_2}}\cdots\frac{\partial^{\alpha_n}}{\partial x_n^{\alpha_n}}f$$

by $\partial^{\alpha} f$.

2