Math 6520 Homework due Wednesday 19 September 2018

Upper half-space \mathbf{H}^n is the collection of vectors $x = (x_1, x_2, ..., x_n) \in \mathbf{R}^n$ satisfying $x_n \ge 0$. Its boundary $\partial \mathbf{H}^n$ is the collection of vectors $x \in \mathbf{R}^n$ satisfying $x_n = 0$. We identify $\partial \mathbf{H}^n$ with \mathbf{R}^{n-1} via the embedding $x \mapsto (x, 0)$ of \mathbf{R}^{n-1} in \mathbf{R}^n . In the next problem we will mean by a *chart* on a topological space M a pair (U, ϕ) with U open in M and $\phi: U \to \mathbf{H}^n$ a map which is a homeomorphism onto an open subset of \mathbf{H}^n (in the subspace topology). As usual, a pair of such charts (U, ϕ) and (V, ψ) is *compatible* if the transition map $\psi \circ \phi^{-1}: \phi(U \cap V) \to \psi(U \cap V)$ is a diffeomorphism.¹ An *atlas* on M is a collection of compatible charts whose domains cover M, and all of which take values in \mathbf{H}^n for the same value of n. A *maximal* such atlas \mathscr{A} defines on M the structure of an *n*-manifold with boundary. Let us fix an *n*-manifold with boundary (M, \mathscr{A}) . A point $x \in M$ is a boundary point if $\phi(x) \in \partial \mathbf{H}^n$ for some chart $(U, \phi) \in \mathscr{A}$ at x. The set of boundary points is called the *boundary* and denoted by ∂M . The tangent bundle of M is defined as for an ordinary manifold, namely as a quotient $TM = M'/\sim$, where

$$M' = \{ (U, \phi, x, h) \mid (U, \phi) \in \mathscr{A}, x \in U, h \in \mathbb{R}^n \}$$

and $(U, \phi, x, h) \sim (V, \psi, y, k)$ if y = x and $k = D(\psi \circ \phi^{-1})(\phi(x))h$. A tangent vector $[U, \phi, x, h]$ at a boundary point $x \in \partial M$ is *tangent to the boundary* if $h_n = 0$. The tangent vector *points inward* (resp. *outward*) if $h_n \ge 0$ (resp. < 0).

1. Prove the following assertions.

- (a) A point $x \in M$ is a boundary point if and only if $\phi(x) \in \partial \mathbf{H}^n$ for *all* charts $(U, \phi) \in \mathscr{A}$ at x.
- (b) The boundary ∂M is an n 1-manifold.
- (c) Let $x \in \partial M$ and $v = [U, \phi, x, h] \in T_x M$. The notions of "being tangent", "pointing inward", "pointing outward" are well-defined, i.e. independent of the representative (U, ϕ, x, h) of v. The set $T_x M$ is a vector space and $T_x \partial M$ is the subspace consisting of all vectors tangent to the boundary.

Let *M* be a manifold (without boundary) and $f: M \to \mathbf{R}^r$ a smooth map. Recall from class that $df: TM \to \mathbf{R}^r$ is defined as the composition $df = \operatorname{pr}_2 \circ Tf$ of the tangent map $Tf: TM \to T\mathbf{R}^r$ with the projection onto the second factor $\operatorname{pr}_2: T\mathbf{R}^r = \mathbf{R}^r \times \mathbf{R}^r \to \mathbf{R}^r$. Written in coordinates df is just the total derivative of f. That is to say, with respect to a chart (U, ϕ) of $M, df \circ T\phi^{-1}: \phi(U) \times \mathbf{R}^n \to \mathbf{R}^r$ is given by

$$df \circ T\phi^{-1}(x,v) = D(f \circ \phi^{-1})(x)v.$$

For $x \in M$ we write $d_x f$ (or sometimes df_x) for the linear map $\operatorname{pr}_2 \circ T_x f \colon T_x M \to \mathbf{R}^r$. If r = 1, $d_x f$ is a cotangent vector, i.e. an element of the dual vector space $T_x^* M = (T_x M)^*$.

2. Let *M* be a manifold and let $x \in M$. Let $[f] = [f]_x$ denote the germ at *x* of a smooth function *f* defined in a neighbourhood of *x*. Let $C_{M,x}^{\infty}$ be the algebra of germs at *x*. Define \mathfrak{m}_x to be the set of all germs [f] at *x* with the property that f(x) = 0, i.e. \mathfrak{m}_x is the kernel of the evaluation map $\operatorname{ev}_x : C_{M,x}^{\infty} \to \mathbf{R}$. Prove the following assertions.

(a) The set \mathfrak{m}_x is a maximal ideal of the algebra $C_{M,x}^{\infty}$, and the *residue field*, i.e. the quotient $C_{M,x}^{\infty}/\mathfrak{m}_x$, is isomorphic to **R**.

¹The domain and range of the transition map may not be open subsets of \mathbb{R}^n . If A is any subset of \mathbb{R}^n , a map $f: A \to \mathbb{R}^m$ is *smooth* if for every $x \in A$ there exist an open neighbourhood U and a smooth map $\tilde{f}: U \to \mathbb{R}^m$ such that $\tilde{f}|_{U \cap A} = f|_{U \cap A}$. If B is any subset of \mathbb{R}^m , a map $f: A \to B$ is a *diffeomorphism* if f is smooth viewed as a map $A \to \mathbb{R}^m$, and has a smooth two-sided inverse $f^{-1}: B \to A$.

- (b) The algebra $C_{M,x}^{\infty}$ is *local* in the sense that it has a unique maximal ideal.
- (c) For each germ $[f] \in \mathfrak{m}_x$ define a covector $\mathfrak{d}([f]) \in T_x^*M$ by $\mathfrak{d}([f]) = d_x f$. Then $\mathfrak{d}([f])$ is well-defined and the map $\mathfrak{d} \colon \mathfrak{m}_x \to T_x^*M$ which sends [f] to $\mathfrak{d}([f])$ is surjective.
- (d) The kernel of δ is the *square* \mathfrak{m}_x^2 of the ideal \mathfrak{m}_x , i.e. the ideal generated by all products [f][g] with [f] and [g] in \mathfrak{m}_x . The map δ induces an **R**-linear isomorphism $\mathfrak{m}_x/\mathfrak{m}_x^2 \cong T_x^*M$.

The result of (d) offers yet another route to the tangent space, namely we can first define the cotangent space T_x^*M as the vector space $\mathfrak{m}_x/\mathfrak{m}_x^2$, and then the tangent space T_xM as the dual of T_x^*M ! (This definition is favoured by algebraic geometers because it works better for singular varieties.) The result generalizes as follows: let **F** be a field and *A* a local **F**-algebra with maximal ideal \mathfrak{m} and residue field **F**. Then $\text{Der}_F(A, \mathbf{F}) \cong \text{Hom}_F(\mathfrak{m}/\mathfrak{m}^2, \mathbf{F})$.

Let *V* be a real n + 1-dimensional vector space. Let **P***V* be the projectivization of *V*, i.e. the space of lines (1-dimensional linear subspaces) of *V*. Recall that, as a topological space, **P***V* is the quotient of $V \setminus \{0\}$ by the equivalence relation $u \sim v$ $\iff u = \lambda v$ for some real $\lambda \neq 0$. We write [v] for the line determined by a nonzero vector $v \in V$. Recall also that **P***V* is an *n*-manifold with an atlas consisting of charts (U, ϕ) defined as follows. For each ordered basis $\mathscr{B} = (e_0, e_1, \ldots, e_n)$ of *V*, let $[u_0, u_1, \ldots, u_n]$ be the homogeneous coordinates on **P***V* determined by \mathscr{B} . (I.e. for each nonzero vector $(u_0, u_1, \ldots, u_n) \in \mathbf{R}^{n+1}, [u_0, u_1, \ldots, u_n]$ is the line spanned by the vector $u_0e_0 + u_1e_1 + \cdots + u_ne_n$.) Let $U = U_{\mathscr{B}}$ be the set of lines $[u_0, u_1, \ldots, u_n]$ with $u_0 \neq 0$. Define the coordinate map $\phi = \phi_{\mathscr{B}}: U_{\mathscr{B}} \to \mathbf{R}^n$ by

$$\phi([u_0, u_1, \dots, u_n]) = \frac{1}{u_0}(u_1, u_2, \dots, u_n).$$

The *incidence relation* \tilde{V} is the set of all pairs (l, v) in $\mathbf{P}V \times V$ such that v is contained in l. Define $\beta \colon \tilde{V} \to V$ by $\beta(l, v) = v$. The *exceptional fibre* of β is $E = \beta^{-1}(0)$.

3. Prove the following assertions.

2

- (a) \tilde{V} is a closed submanifold of $\mathbf{P}V \times V$ of codimension *n*. (This can be done in several ways. For instance, note that it is enough to show $\tilde{V} \cap (U \times V)$ is a codimension *n*-submanifold for every open *U* as above. Using coordinates $(u_1, u_2, \ldots, u_n, v_0, v_1, \ldots, v_n)$ on the open subset $U \times V \cong \mathbf{R}^n \times \mathbf{R}^{n+1}$, show that \tilde{V} is given by a system of equations $v_1 = v_0 u_1, v_2 = v_0 u_2, \ldots$)
- (b) β is a smooth map and, for every nonzero $v \in V$, $\beta^{-1}(v)$ consists of a single point.
- (c) The restriction of β to $\tilde{V} \setminus E$ is a diffeomorphism onto its image $V \setminus \{0\}$.
- (d) *E* is a submanifold of \tilde{V} of codimension 1, which is diffeomorphic to **P***V*, and its tangent space at $([v], 0) \in E$ is $T_{([v], 0)}E = \text{ker}(T_{([v], 0)}\beta)$.
- (e) Let *M* be a k + 1-manifold and $f: M \to V$ a smooth map with the property that $A = f^{-1}(0)$ is a submanifold of *M* of codimension 1 with tangent space $T_a A = \ker(T_a f)$ for all $a \in A$. Then there exists a unique continuous map $\tilde{f}: M \to \tilde{V}$ such that $\beta \circ \tilde{f} = f$. This map \tilde{f} is smooth, and its value at $a \in A$ is $\tilde{f}(a) = ([T_a f(\xi)], 0)$, where $\xi \in T_a M$ is any tangent vector *not* in $T_a A$. (After choosing a suitable chart at *a*, we may assume that *M* is an

open subset of \mathbf{R}^{k+1} with coordinates x_0, x_1, \ldots, x_k , that a is the origin a = 0, that A is given by $x_0 = 0$, and that $\xi = (1, 0, 0, \ldots, 0)$. Now choose a basis $\mathscr{B} = (e_0, e_1, \ldots, e_n)$ of V with $e_0 = T_a f(\xi)$ and work in the corresponding coordinates (u_1, u_2, \ldots, u_n) on $U = U_{\mathscr{B}}$, and (v_0, v_1, \ldots, v_n) on V. Writing f in components, $f(x) = (f_0(x), f_1(x), \ldots, f_n(x))$, we have $v_i = f_i(x)$, so $u_i = f_i(x)/f_0(x)$, etc. Now apply the version of l'Hôpital's rule from the last homework.)

The manifold \tilde{V} is also called the *(real)* blow-up of V at the origin and β the blow-down map. The blow-up of \mathbf{R}^2 at the origin is an infinitely wide Möbius strip. The exceptional fibre is the central circle of the Möbius strip. The blow-down map collapses the central circle to a point. More about blowing up later.

