Math 6520 Homework due Friday 28 September 2018

1. We often call a right inverse of a map a *section* and a left inverse a *retraction*. Let $f: M \rightarrow N$ be a smooth map. Prove the following assertions.

- (a) f is an immersion at $a \in M$ if and only if there exist open neighbourhoods U of a and V of f(a) with the property that f(U) is contained in V and $f: U \to V$ has a smooth retraction $r: V \to U$.
- (b) Immersions are locally injective.
- (c) f is a submersion at $a \in M$ if and only if there exist an open neighbourhood U of a with the property that f(U) is open and a smooth section $s: f(U) \rightarrow U$ of f which maps f(a) to a.
- (d) Submersions are open maps.

2. Let *I* be the open interval $(-1, \infty)$ and let $f: I \to \mathbb{R}^2$ be the map $f(t) = (3at/(1 + t^3, 3at^2/(1 + t^3)))$. Prove the following assertions.

- (a) f is an injective immersion.
- (b) f is not an embedding and f(I) (with the subspace topology inherited from \mathbf{R}^2) is not a topological (let alone a smooth) manifold. (Draw a picture!)
- (c) However, an injective immersion $f: M \rightarrow N$ of a compact manifold M into a Hausdorff manifold N is an embedding.

A continuous map π from a topological space Y to a topological space X is called a *local homeomorphism* if every point in Y has an open neighbourhood U with the property that $\pi(U)$ is open and $\pi: U \to \pi(U)$ is a homeomorphism. (A special case of a local homeomorphism is that of a *covering map* $\pi: Y \to X$, which is defined by the following property: every point in X has an open neighbourhood V such that the preimage $\pi^{-1}(V)$ is a union of disjoint open subsets of Y, each of which is mapped by π homeomorphically onto V.)

3. Let M be a manifold, \tilde{M} a topological space, and $\pi \colon \tilde{M} \to M$ a local homeomorphism. Prove that \tilde{M} has a unique smooth structure with the property that π is a submersion. Show that with respect to this smooth structure the map π is in fact étale (i.e. a local diffeomorphism). If π is surjective and if $f \colon \tilde{M} \to \tilde{M}$ and $g \colon M \to M$ are two continuous maps with the property that $g(\pi(y)) = \pi(f(y))$ for all y in \tilde{M} , show that f is smooth if and only g is smooth.

4. Let *M* be a submanifold of \mathbb{R}^n . Suppose that *M* contains the origin and let *E* be the tangent space to *M* at the origin. Choose a linear subspace *F* of \mathbb{R}^n which is complementary to *E* and identify $E \times F$ with \mathbb{R}^n via the linear isomorphism $(x, y) \mapsto x + y$. Prove the following statements.

- (a) There exist open sets *U* in *E* and *V* in *F* and a smooth map $g: U \to V$ which satisfy the following conditions: $0 \in U, 0 \in V$, and $M \cap (U \times V) = \text{graph}(g)$.
- (b) The germ of g at the origin is uniquely determined in the following sense: if $g_1: U_1 \rightarrow V_1$ and $g_2: U_2 \rightarrow V_2$ are two maps satisfying the condition in (a), then $g_1 = g_2$ on a neighbourhood of the origin contained in $U_1 \cap U_2$.
- (c) The map g in (a) satisfies g(0) = 0 and Dg(0) = 0.