Math 6520 Homework due Friday 5 October 2018

1. Let *M* be an *n*-dimensional manifold. We say that *M* is *parallelizable* if there exist *n* smooth vector fields $\xi_1, \xi_2, \ldots, \xi_n$ on *M* with the property that for all $a \in M$ the tangent vectors $\xi_{1,a}, \xi_{2,a}, \ldots, \xi_{n,a}$ span the tangent space to *M* at *a*. Prove that *M* is parallelizable if and only if there exists a diffeomorphism $f: TM \to M \times \mathbb{R}^n$ with the following properties: $p_1 \circ f = \pi_M$, i.e. the following diagram commutes:

$$TM \xrightarrow{f} M \times \mathbf{R}^n$$

$$\xrightarrow{\pi_M} f_{m_1} \longrightarrow f_{m_1}$$

and for each $a \in M$ the restriction of f to the fibre T_aM is a linear map from T_aM to $\{a\} \times \mathbf{R}^n$.

2. A *finite-dimensional real division algebra* is a pair (A, \cdot) , where A is a finitedimensional real vector space and $\cdot: A \times A \rightarrow A$ is an **R**-bilinear map called "multiplication", which is required to have no zero divisors $(x \cdot y = 0 \text{ implies } x = 0 \text{ or } y = 0)$. (The multiplication is *not* required to be associative or commutative or to have a unit.) Prove that if **R**^{*n*} has the structure of a division algebra, then the sphere **S**^{*n*-1} is parallelizable.

3. Prove the following assertions.

(a) The tangent bundle TS^{n-1} of the sphere is diffeomorphic to

$$\{ (x, y) \in \mathbf{R}^{2n} \mid x \in \mathbf{S}^{n-1}, y \perp x \},\$$

where \perp means "orthogonal with respect to the standard inner product". (b) $T\mathbf{S}^{n-1} \times \mathbf{R}$ is diffeomorphic to $\mathbf{S}^{n-1} \times \mathbf{R}^n$ for all $n \ge 0$.

4. Let ξ be the vector field on the real line **R** given by $\xi(x) = 1 + x^2$. Solve the initial value problem for ξ , i.e. solve the differential equation $x'(t) = 1 + x(t)^2$ with initial value $x(0) = x_0$. Here the unknown function $x: J \to \mathbf{R}$ is defined on an open interval *J* containing 0, which depends on the initial value x_0 . Determine the maximal existence interval *J* for each x_0 . Find the flow domain \mathscr{D} and the flow $\theta: \mathscr{D} \to \mathbf{R}$ of ξ . Include a picture of some solutions x(t) and of the domain \mathscr{D} .