Math 6520 Homework due Wednesday 17 October 2018

1 (derivations versus vector fields). Let M be a manifold. A derivation of the **R**algebra $C^{\infty}(M)$ is called a (*global*) *derivation of* M. The module of derivations of Mis denoted by Der(M). In other words, $\text{Der}(M) = \text{Der}_{\mathbf{R}}(C^{\infty}(M))$, the set of **R**-linear maps $l: C^{\infty}(M) \to C^{\infty}(M)$ satisfying l(fg) = l(f)g + fl(g). For a point a in Mwe have the algebra $C^{\infty}_{M,a}$ of germs at a and the module of (*pointwise*) *derivations at* a defined by $\text{Der}_{a}(M) = \text{Der}_{\mathbf{R}}(C^{\infty}_{M,a}, \mathbf{R})$, i.e. the set of **R**-linear maps $l: C^{\infty}_{M,a} \to \mathbf{R}$ satisfying $l([fg]_{a}) = l([f]_{a})g(a) + f(a)l([g]_{a})$. Let $\mathscr{T}(M)$ be the set of smooth vector fields on M, i.e. smooth sections of the tangent bundle projection $\pi: TM \to M$. In class we defined maps

$$\mathscr{L} = \mathscr{L}_M : \mathscr{T}(M) \longrightarrow \operatorname{Der}(M), \quad \mathscr{L}_a = \mathscr{L}_{M,a} : T_a M \longrightarrow \operatorname{Der}_a(M)$$

by $\mathscr{L}(\xi) = df(\xi)$ and $\mathscr{L}_a(v) = d_a f(v)$, and proved that \mathscr{L}_a is an isomorphism of vector spaces for all *a*. We are going to show that \mathscr{L} is an isomorphism as well by proving the following assertions.

- (a) Let *l* be a global derivation and *f* a smooth function on *M*. If f = 0 on an open subset *U*, then l(f) = 0 on *U*. (Use bump functions.)
- (b) Let *l* be a global derivation and let *U* be an open subset of *M*. There exists a unique derivation $l|_{U} \in \text{Der}(U)$ with the property that $(l|_{U})(f|_{U}) = l(f)|_{U}$ for all $f \in C^{\infty}(M)$. (We call $l|_{U}$ the *restriction* of *l* to *U*.)
- (c) Let *l* be a global derivation and let *a* be a point in *M*. There exists a unique derivation $l_a \in \text{Der}_a(M)$ with the property that $l_a([f]_a) = l(f)(a)$ for all $f \in C^{\infty}(M)$.
- (d) \mathscr{L} is injective.
- (e) Let *l* be a global derivation and define $\xi \colon M \to TM$ by $\xi(a) = \mathscr{L}_a^{-1}(l_a)$. Then ξ is a smooth vector field. Conclude that \mathscr{L} is surjective.

Let M be an n-manifold and a a point in M. We are going to blow up M at a. This is an operation which does not affect the manifold outside a, but replaces a with the collection of all possible tangent directions at a. Let I be an open interval in \mathbf{R} and $c: I \to M$ a smooth path. The *velocity vector* c'(t) at time $t \in I$ is defined by $c'(t) = T_t c(1)$. Here $T_t c$ is the tangent map $T_t \mathbf{R} \to T_{c(t)} M$. As usual we identify $T\mathbf{R}$ with $\mathbf{R} \times \mathbf{R}$ and $T_t \mathbf{R} = \{t\} \times \mathbf{R}$ with \mathbf{R} , so that we can think of the number $1 \in \mathbf{R}$ as a tangent vector to \mathbf{R} at any point. Thus c'(t) is a vector in $T_{c(t)}M$. Now let \overline{M} be the collection of all smooth paths $c: I \to M$ which are defined on an open interval I containing 0 and which have the property that $c'(0) \neq 0$. (The interval I may depend on c.) For two paths c_1 and c_2 in \overline{M} define

$$c_1 \sim c_2 \iff \begin{cases} c_1(0) = c_2(0) & \text{if } c_1(0) \neq a \\ c_1(0) = c_2(0) \text{ and } c'_1(0) \text{ is proportional to } c'_2(0) & \text{if } c_1(0) = a. \end{cases}$$

The *blow-up* of *M* at *a* is the quotient $Bl_a(M) = \overline{M}/\sim$ under this equivalence relation. The *blow-down map* β : $Bl_a(M) \rightarrow M$ is defined by $\beta([c]) = c(0)$, where [c] denotes the equivalence class of a path *c*. The *blow-up centre* is *a*, and the *central* or *exceptional fibre* is $E = \beta^{-1}(a)$.

2. Prove the following assertions. Of course, feel free to use results from previous homework, especially those on blowing up a vector space.

(a) Let *V* be a finite-dimensional real vector space. There is a bijection $\theta = \theta_V$ from $Bl_0(V)$ to \tilde{V} which satisfies $\tilde{\beta} \circ \theta = \beta$. (Here \tilde{V} is the incidence relation in $\mathbf{P}V \times V$ and $\tilde{\beta} \colon \tilde{V} \to V$ the blow-down map defined in a previous homework problem.)

2

- (b) Let U be an open subset of M. If U does not contain a, then the restriction of β to $\beta^{-1}(U)$ is a bijection $\beta: \beta^{-1}(U) \to U$. If U contains a, then the natural inclusion $\overline{U} \to \overline{M}$ induces a bijection $\operatorname{Bl}_a U \to \beta^{-1}(U)$. (We use this to identify $\operatorname{Bl}_a U$ with $\beta^{-1}(U)$.) There is a natural identification between the exceptional fibre and the projectivization of the tangent space T_aM .
- (c) Let (U, ϕ) be a chart on M centred at a. The map $\phi: U \to \mathbb{R}^n$ lifts to a map $\tilde{\phi}: \operatorname{Bl}_a U \to \tilde{\mathbb{R}}^n$ satisfying $\tilde{\beta} \circ \tilde{\phi} = \phi \circ \beta$. If (V, ψ) is another chart centred at a, then $\tilde{\psi} \circ \tilde{\phi}^{-1}$ is a diffeomorphism from $\tilde{\beta}^{-1}(\phi(U \cap V))$ to $\tilde{\beta}^{-1}(\psi(U \cap V))$.
- (d) There is a unique smooth structure on $\operatorname{Bl}_a(M)$ with the following property: for all charts (U, ϕ) on M which do not contain a, the map $\phi \circ \beta \colon \beta^{-1}(U) \to \phi(U)$ is a diffeomorphism; for all charts (U, ϕ) on M centred at a, the map $\tilde{\phi} \colon \operatorname{Bl}_a U \to \tilde{\beta}^{-1}(\phi(U))$ is a diffeomorphism.
- (e) With respect to this smooth structure, β is smooth and *E* is a submanifold of Bl_a(*M*) of codimension 1 with tangent space $T_yE = \text{ker}(T_y\beta)$ for all $y \in E$.
- (f) The blow-up has the following universal property: let *P* be a manifold and $f: P \to M$ a smooth map which *cleanly intersects a* in the sense that $Q = f^{-1}(a)$ is a submanifold of *P* of codimension 1 with tangent space $T_q Q = \ker(T_q f)$ for all $q \in Q$. Then there exists a unique smooth map $\tilde{f}: P \to Bl_q(M)$ such that $\beta \circ \tilde{f} = f$.
- (g) Let *A* be a closed submanifold of *M* which contains *a*. The *proper* or *strict transform* of *A*, which is defined as the closure of $\beta^{-1}(A \setminus \{a\})$ in $Bl_a(M)$, is a submanifold of $Bl_a(M)$ and is diffeomorphic to $Bl_a(A)$.