MATH 6520 HOMEWORK DUE WEDNESDAY 24 OCTOBER 2018

1. Let *A* be a finite-dimensional associative algebra over **R** with unit element 1 and let A^{\times} be its group of invertible elements. Prove the following statements.

- (a) There exists a norm on *A* with the property that $||xy|| \le ||x|| ||y||$ for all *x*, $y \in A$.
- (b) With respect to this norm, if ||x|| < 1, then 1 x is invertible.
- (c) A^{\times} is an open submanifold of *A*, where we give *A* its standard smooth structure as a finite-dimensional real vector space.
- (d) The group law on *A*[×] is compatible with the smooth structure. Therefore *A*[×] is a Lie group.

2. Let *A* be as in Exercise 1. Let $x \mapsto x^*$ be an *involution* of *A*, i.e. an antiautomorphism of *A* (linear map with the property $(xy)^* = y^*x^*$) satisfying $(x^*)^* = x$ for all *x*. An element *x* of *A* is *unitary* if $x^*x = 1$, *selfadjoint* if $x^* = x$, *anti-selfadjoint* if $x^* = -x$. The *unitary group* of *A* with respect to the involution is the set $\mathbf{U}(A)$ consisting of all unitary elements. Prove the following statements.

- (a) The formula $g \cdot x = gxg^*$ defines an action of the Lie group A^{\times} on the manifold *A*.
- (b) The unitary group **U**(*A*) is a Lie subgroup of *A*[×]. Its tangent space at the identity is the set of all anti-selfadjoint elements of *A*.
- (c) If there exists a norm on A with the property that ||x*x|| = ||x||² for all x, then U(A) is compact.

The classical Lie groups come in three families, which are associated with the real numbers, the complex numbers, and the quaternions. *Quaternions* are 2×2 -matrices of the form

$$x = \begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix},$$

where *a* and *b* are in **C**. The collection of quaternions is denoted by **H** in honour of their inventor, Hamilton. Ireland has an annual celebration of the invention of the quaternions on Hamilton Day, 16 October. The (*quaternionic*) conjugate of x is

$$x^* = \bar{x}^T = \begin{pmatrix} \bar{a} & \bar{b} \\ -b & a \end{pmatrix},$$

where \bar{x} denotes the entry-by-entry *complex* conjugate of the matrix x. In this homework we denote the imaginary unit in **C** by $\sqrt{-1}$ instead of *i*. We also define

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad i = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad j = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix}, \quad k = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix},$$

and $\gamma(x) = i\bar{x}i^{-1} = -i\bar{x}i$ for $x \in M(2, \mathbb{C})$. We identify the real numbers with the copy of \mathbb{R} consisting of all real multiples of $1 \in \mathbb{H}$.

- A. **Lemma.** (a) γ is an anti-linear (where "anti" means $\gamma(cx) = \bar{c}\gamma(x)$ for $c \in \mathbf{C}$) algebra homomorphism, and x is a quaternion if and only if $\gamma(x) = x$. Hence **H** is a real subalgebra of $M(2, \mathbf{C})$.
 - (b) We have $i^2 = j^2 = k^2 = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j. The collection $\{1, i, j, k\}$ is a basis of **H** considered as a real vector space. The centre of **H** is **R**.

- (c) Quaternionic conjugation is an anti-automorphism of the **R**-algebra **H** (meaning that it is **R**-linear and satisfies $(xy)^* = y^*x^*$). We have $x^*x \in \mathbf{R}$. If $x \neq 0$, then $x^*x > 0$ and x has an inverse $x^{-1} = (x^*x)^{-1}x^*$. **H** satisfies all the field axioms except for the commutativity of multiplication.
- (d) The set of unit quaternions $\{x \in \mathbf{H} \mid x^*x = 1\}$ is a closed submanifold of \mathbf{H} diffeomorphic to \mathbf{S}^3 and is a Lie group.

We call **H** a *skew field* or a *unital associative real division algebra*. The quantity $|x| = \sqrt{x^*x}$ is the *norm* of $x \in \mathbf{H}$. It is a theorem of Frobenius that every finitedimensional unital associative real division algebra is isomorphic to **R**, **C**, or **H**. (If we weaken "associative" to "alternative" there is one more item on the list, namely the 8-dimensional algebra of *octonions* **O** found by Graves and Cayley. The octonions are associated with the *exceptional* Lie groups.) Before coming up with the quaternions Hamilton wasted considerable effort trying to construct a skew field that is three-dimensional over **R**. From a later letter to his son Archibald:

"Every morning in the early part of the above-cited month, on my coming down to breakfast, your (then) little brother William Edwin, and yourself, used to ask me, 'Well, Papa, can you multiply triplets?' Whereto I was always obliged to reply, with a sad shake of the head: 'No, I can only add and subtract them.'"

There is actually a very simple linear algebra argument showing that an odddimensional division algebra **A** over **R** must be isomorphic to **R**. Namely, for each $a \in \mathbf{A}$ the left translation map $L_a: \mathbf{A} \to \mathbf{A}$ defined by $L_a(b) = ab$ is **R**-linear, so has a real eigenvector v with real eigenvalue λ . Then $av = \lambda v$, so $a = \lambda$!

We can speak of column *n*-vectors with quaternionic coefficients and we denote the set of all such by \mathbf{H}^n . Similarly, we have the set of $m \times n$ -matrices $M(m \times n, \mathbf{H})$ with quaternionic coefficients. We can multiply a quaternionic $m \times n$ -matrix Aby a quaternionic $n \times p$ -matrix B to get a quaternionic $m \times p$ -matrix C = AB. By expanding each quaternionic entry to a little 2×2-matrix we can view a quaternionic $m \times n$ -matrix as a complex $2m \times 2n$ -matrix. In this way $M(m \times n, \mathbf{H})$ is a real subspace of $M(2m \times 2n, \mathbf{C})$, and the algebra of square quaternionic matrices $M(n, \mathbf{H})$ is a real subalgebra of $M(2n, \mathbf{C})$. For $X \in M(2n, \mathbf{C})$ define

$$\gamma(X) = \begin{pmatrix} i & & \\ & \ddots & \\ & & i \end{pmatrix} \overline{X} \begin{pmatrix} i & & \\ & \ddots & \\ & & i \end{pmatrix}^{-1} = - \begin{pmatrix} i & & \\ & \ddots & \\ & & i \end{pmatrix} \overline{X} \begin{pmatrix} i & & \\ & \ddots & \\ & & i \end{pmatrix}$$

B. **Lemma.** (a) $X \in M(2n, \mathbb{C})$ is quaternionic if and only if $\gamma(X) = X$.

(b) If $X \in M(n, \mathbf{H})$, then the determinant of X (viewed as a complex $2n \times 2n$ -matrix) is real.

(c) A matrix $X \in M(n, \mathbf{H})$ has an inverse in $M(n, \mathbf{H})$ if and only if det X is nonzero.

3. Prove Lemma A.

2

4. Prove Lemma B.

5. Let $\mathbf{F} = \mathbf{R}$, \mathbf{C} , or \mathbf{H} . The *adjoint* of a matrix $X = (x_{ij}) \in M(n, \mathbf{F})$ is the conjugate transpose matrix $X^* = (\bar{x}_{ji})$, where $x \mapsto \bar{x}$ is the conjugation map in the algebra \mathbf{F} . The *unitary group in n dimensions* over \mathbf{F} is the set $\mathbf{U}(n, \mathbf{F})$ consisting of all matrices X that satisfy $X^*X = I$. Show that $\mathbf{U}(n, \mathbf{F})$ is a compact Lie subgroup of $\mathbf{GL}(n, \mathbf{F})$ and compute its dimension.