Math 6520 Homework due Wednesday 31 October 2018

In this homework, "manifold" means "manifold in the weak sense", i.e. a set equipped with a smooth structure.

1. Let *M* be a closed submanifold of a paracompact manifold *N* and $f: M \to \mathbf{R}$ a smooth function. We proved in class that there exists a smooth function $\bar{f}: N \to \mathbf{R}$ such that $\bar{f}|_M = f$. Give a counterexample to this statement for a nonclosed submanifold *M*.

Let *M* be a manifold and *R* an equivalence relation on *M*. We say that the equivalence relation *R* is *regular* if there exists a smooth structure on the quotient set M/R with the property that the quotient map $p: M \to M/R$ is a submersion. We identify the relation *R* with its graph, i.e. the set of pairs $(a, b) \in M \times M$ with the property that *a* and *b* are congruent modulo *R*. We denote by $\pi_1: R \to M$ and $\pi_2: R \to M$ the projections of *R* onto the respective factors.

2. Suppose that *R* is a regular equivalence relation on a manifold *M*. Prove the following statements.

- (a) There is a *unique* smooth structure on M/R such that $p: M \to M/R$ is a submersion.
- (b) *R* is a submanifold of $M \times M$ and π_1 is a submersion. (Apply the regular value theorem.)
- (c) The equivalence classes of *R* are closed submanifolds of *M*.
- (d) M/R is Hausdorff if and only if *R* is a closed subset of $M \times M$ (whether *M* is Hausdorff or not).

It is a theorem of Godement that the condition of Problem 2 is sufficient for regularity; i.e. if *R* is a submanifold of $M \times M$ and π_1 is a submersion, then *R* is regular. For a proof of Godement's theorem see Part II, §III.12 of J.-P. Serre, *Lie algebras and Lie groups*, second ed., Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 2006, corrected fifth printing. In the next problem you may use this theorem without proof.

3. Let *G* be a Lie group, *M* a manifold, and $\theta: G \times M \to M$ a smooth left action. The *orbit relation R* on *M* is defined by declaring $a \in M$ to be equivalent to ga for all $g \in G$. The quotient set M/R is called the *orbit space* of the action and denoted by M/G. The action is *free* if for all $a \in M$ the stabilizer subgroup $G_a = \{g \in G \mid ga = a\}$ is the trivial subgroup $\{1\}$. The action is *proper* if the map $\Theta: G \times M \to M \times M$ defined by $\Theta(g, a) = (a, ga)$ is closed, i.e. maps closed sets to closed sets. Prove the following assertions.

- (a) If *G* is compact and *M* is Hausdorff and second countable, the action is proper.
- (b) If the action is free, then Θ is an immersion.
- (c) If the action is proper and free, then Θ is an embedding and for each $a \in M$ the orbit $Ga = \{ ga \mid g \in G \}$ is a submanifold of M.
- (d) If the action is proper and free, then the orbit relation is regular. It follows that the orbit space M/G has a smooth structure with the property that the quotient map $M \rightarrow M/G$ is a submersion. Moreover, M/G is Hausdorff.

4. Let *G* be a Lie group and *H* a Lie subgroup. Prove that the set of cosets *G*/*H* has a smooth structure with the property that the quotient map $G \rightarrow G/H$ is a submersion.