MATH 6520 Homework due Wednesday 7 November 2018

1. Let *G* be a Lie group and *M* a manifold. Let θ be a *G*-action on *M*, let *a* be a point in *M*, and let *G*_{*a*} denote its stabilizer. As usual we write $\theta(g, a) = ga = \theta_g(a) = \theta^a(g)$. Prove the following statements.

- (a) The map $\bar{\theta}^a$: $G/G_a \to M$ which sends the coset $gG_a \in G/G_a$ to $\theta^a(g) \in M$ is well-defined and smooth (where G/G_a is given the smooth structure defined in Exercise 4 on the 2 Nov homework).
- (b) θ^a is an injective immersion and therefore the orbit Ga is an immersed submanifold of M.
- (c) Prove that the following conditions are equivalent:
 - (i) θ^a is a surjective submersion for some $a \in M$.
 - (ii) θ^a is a surjective submersion for all $a \in M$.
 - (iii) $\bar{\theta}^a \colon G/G_a \to M$ is a diffeomorphism.

Under any of the equivalent conditions in (c) we call M a homogeneous space or homogeneous G-space. We can reformulate the result of (c) as follows: if X is any set equipped with a transitive G-action such that the stabilizer G_x of any point $x \in X$ is closed, then there is a unique smooth structure on X which makes X a homogeneous G-space.

2. Let $\mathbf{F} = \mathbf{R}$, \mathbf{C} , or \mathbf{H} . We equip \mathbf{F}^n with the *standard Hermitian inner product* $\langle u, v \rangle = u^*v = \sum_{j=1}^k u_j^*v_j$. This is a biadditive map $\langle \cdot, \cdot \rangle \colon \mathbf{F}^n \times \mathbf{F}^n \to \mathbf{F}$ with the following properties: for all $u, v \in \mathbf{F}^n$ and for all $\lambda, \mu \in \mathbf{F}$,

- (i) $\langle u\lambda, v\mu \rangle = \lambda^* \langle u, v \rangle \mu$,
- (ii) $\langle v, u \rangle = \langle u, v \rangle^*$,
- (iii) $\langle u, u \rangle \ge 0$ with equality only for u = 0.

(Here $\lambda \mapsto \lambda^*$ denotes conjugation in the skew field **F**. We have $\lambda = \lambda^*$ if and only if λ is real, so the quantity $\langle u, u \rangle$ is real for all u.)

A *k*-frame in \mathbf{F}^n is an ordered *k*-tuple of linearly independent vectors in \mathbf{F}^n . We denote the set of *k*-frames in \mathbf{F}^n by $\operatorname{Fr}_k(\mathbf{F}^n)$. A *k*-frame *x* is called *orthonormal* if $\langle x_i, x_j \rangle = \delta_{i,j}$ for *i*, *j* = 1, 2, ..., *k*. The set of orthonormal *k*-frames in \mathbf{F}^n is called a *Stiefel manifold* and denoted by $V_k(\mathbf{F}^n)$. The main purpose of this exercise is to show that the Stiefel manifold is a manifold.

- (a) Identifying a *k*-frame $(x_1, x_2, ..., x_k)$ with the matrix $x \in M_{n \times k}(\mathbf{F})$ whose columns are $x_1, x_2, ..., x_k$, show that $\operatorname{Fr}_k(\mathbf{F}^n)$ is open in $M_{n \times k}(\mathbf{F})$.
- (b) Show that a *k*-frame *x* is orthonormal if and only if $x^*x = 1_k$, the $k \times k$ -identity matrix.
- (c) Show that the Stiefel manifold $V_k(\mathbf{F}^n)$ is a compact submanifold of $\operatorname{Fr}_k(\mathbf{F}^n)$. (Define a suitable action of the unitary group $\mathbf{U}(n, \mathbf{F})$ on $\operatorname{Fr}_k E$ one of whose orbits is the Stiefel manifold.)
- (d) Show that the Stiefel manifold $V_k(\mathbf{F}^n)$ is diffeomorphic to $\mathbf{U}(n, \mathbf{F})/K$, where *K* is a closed subgroup of $\mathbf{U}(n, \mathbf{F})$ isomorphic to $\mathbf{U}(n k, \mathbf{F})$.

3. Let $\pi: E \to B$ be a smooth real vector bundle. Let $\sigma \in \Gamma(E)$ be a smooth section satisfying $\sigma(b_0) = 0$ for a certain b_0 in B. Show that σ can be written as $\sigma = \sum_{i=1}^{p} f_i \sigma_i$ with $\sigma_i \in \Gamma(E)$ and coefficients $f_i \in C^{\infty}(B)$ satisfying $f_i(b_0) = 0$. (Here p is not necessarily equal to the rank of E.)