MATH 6520 HOMEWORK DUE WEDNESDAY 14 NOVEMBER 2018

1. A smooth map $f: M \to N$ is *transverse* to a submanifold *B* of *N*, notation $f \pitchfork B$, if $T_a f(T_a M) + T_{f(a)}B = T_{f(a)}N$ for all $a \in A$, where $A = f^{-1}(B)$. Show that *A* is a submanifold of *M* of dimension dim(*A*) = dim(*M*) - dim(*N*) + dim(*B*) if *f* is transverse to *B*.

2. Two smooth maps $f: X \to Z$ and $g: Y \to Z$ are *transverse* if $T_x f(T_x X) + T_y g(T_y Y) = T_z Z$ for all $x \in X$, $y \in Y$ and $z \in Z$ such that f(x) = g(y) = z. Notation: $f \pitchfork g$. The *fibred product* of X and Y over Z (with respect to f and g) is the subset of $X \times Y$ defined by

$$X \times_Z Y = \{ (x, y) \in X \times Y \mid f(x) = g(y) \}.$$

Prove the following assertions.

- (a) *f* and *g* are transverse if and only $f \times g: X \times Y \to Z \times Z$ is transverse to the diagonal Δ_Z .
- (b) If *f* and *g* are transverse, then $X \times_Z Y$ is a submanifold of $X \times Y$ of dimension $\dim(X) + \dim(Y) \dim(Z)$. For $(x, y) \in X \times_Z Y$ with f(x) = g(z) = z we have $T_{(x,y)}(X \times_Z Y) = T_x X \times_{T_z Z} T_y Y$.

Let $I \subseteq \mathbf{R}$ be an open interval. A *time-dependent* smooth vector field on a manifold M is a smooth map $\xi : I \times M \to TM$ such that $\xi(t, a)$ is in T_aM for all a in M and t in I. Equivalently, ξ is a smooth vector field on the product $I \times M$ with the property that $\xi(t, a)$ is tangent to $\{t\} \times M$ for all t, i.e. ξ does not involve $\partial/\partial t$. The *ordinary differential equation* for a time-dependent smooth vector field ξ with *starting time* $t_0 \in I$ and *initial value* $a_0 \in M$ is the initial-value problem

$$(IVP_{t_0,a_0}) \qquad \qquad \frac{d}{dt}\gamma(t) = \xi(t,\gamma(t)), \qquad \gamma(t_0) = a_0$$

for smooth curves $\gamma: J \to M$ defined on some open interval *J* which contains t_0 and is contained in *I*. (This is a so-called *non-autonomous* ODE. By contrast, ordinary vector fields are often called *time-independent* and the associated ODE *autonomous*.) Define a time-*in*dependent vector field $\hat{\xi}$ on $I \times M$ by $\hat{\xi}(t, a) = (t, 1, \xi(t, a))$. (Here we identify $T_{t,a}(I \times M)$ with $I \times \mathbf{R} \times T_a M$.) Then we have the (autonomous) initial value problem for $\hat{\xi}$ with initial value $\hat{a}_0 = (t_0, a_0)$:

$$(IVP_{\hat{t}_0,a_0}) \qquad \qquad \frac{d}{dt}\hat{\gamma}(t) = \hat{\xi}(\hat{\gamma}(t)), \qquad \hat{\gamma}(t_0) = (t_0,a_0)$$

(This is a standard trick for reducing non-autonomous ODE to autonomous ODE.) Below you may use the following properties.

- (a) Solutions of (IVP_{t_0,a_0}) are of the form $\hat{\gamma}(t) = (t, \gamma(t))$, where $\gamma(t)$ is a solution of (IVP_{t_0,a_0}) .
- (b) Therefore, by the flow theorem for time-independent vector fields, the problem (IVP_{t_0,a_0}) has a smooth solution $\gamma: J \to M$ defined on an open interval *J* which contains t_0 . The interval *J* is contained in *I*, because $\xi(t, a)$ is not defined for *t* not in *I*. By the uniqueness part of the flow theorem, if $\gamma': J' \to M$ is another solution, then $\gamma = \gamma'$ on $J \cap J'$. It follows that (IVP_{t_0,a_0}) has a solution defined on a maximal open interval, which may depend on t_0 and a_0 .

3. Let *G* be a Lie group, *I* an open interval, and $\delta: I \rightarrow T_1G$ a smooth path in the tangent space T_1G , where 1 is the unit element of *G*.

- (a) For $t \in I$ and $g \in G$ define $\delta_R(t, g) = T_1 R_g(\delta(t))$. Show that δ_R is a smooth time-dependent vector field on *G*.
- (b) Let *J* be a subinterval of *I* and $t_0 \in J$. Let g_0 and *g* be elements of *G*. Let $\zeta: J \to G$ be a solution of the initial value problem for δ_R with initial value $\zeta(t_0) = g_0$. Show that $R_g \circ \zeta: J \to G$ is a solution of the initial value problem with initial value $\zeta(t_0) = g_0 g$.
- (c) Show that for every starting time $t_0 \in I$ and every initial value $g_0 \in G$ the initial value problem for δ_R has a solution $\zeta \colon I \to G$ defined on the entire interval *I*.

4. Let *G* be a Lie group and $\theta: G \times M \to M$ a smooth left action. Let $\delta: I \to T_1G$ be as in Exercise 3.

- (a) For $a \in M$ and $t \in I$ define $\xi(t, a) = T_1 \theta^a(\delta(t))$. Show that ξ is a smooth time-dependent vector field on M.
- (b) Show that for every initial value a₀ ∈ M and starting time t₀ ∈ I the initial value problem for ξ has a solution γ : I → M defined on the entire interval *I*. (Use the paths ζ : I → G found in Exercise 3.)

5. Let *I* be an open interval and $A: I \to M(n, \mathbf{R})$ a smooth path in the vector space of real $n \times n$ -matrices. Show that for every $t_0 \in I$ and $x_0 \in \mathbf{R}^n$ the initial value problem

$$\frac{dx}{dt}(t) = A(t)x(t), \qquad x(t_0) = x_0$$

has a solution $x: I \to \mathbb{R}^n$ defined on the entire interval *I*. Solve this initial value problem explicitly for n = 1. Discuss why your solution may fail for $n \ge 2$.