Math 6520 Homework due Monday 3 December 2018

- **1.** Let *B* be a manifold and $\pi: E \to B$ a real vector bundle.
 - (a) Assume that *E* is a tensor bundle, i.e. $E = \mathscr{F}(TB)$, where \mathscr{F} is a smooth (say, contravariant) functor from the category of finite-dimensional real vector spaces to itself. Then sections *s* of *E* can be pulled back along smooth maps $\phi : B \to B$, namely $\phi^*(s)(b) = \mathscr{F}(T_b\phi) \circ s \circ \phi(b)$ for $b \in B$. The *Lie derivative* $\mathscr{L}_{\xi}(s)$ of a smooth section *s* along a smooth vector field ξ on *B* is defined by $\mathscr{L}_{\xi}(s) = \frac{d}{dt} \theta_t^*(s)|_{t=0}$, where θ is the flow of ξ . Show that $\mathscr{L}_{\xi}(fs) = \mathscr{L}_{\xi}(f)s + f\mathscr{L}_{\xi}(s)$ for every smooth function $f : B \to \mathbf{R}$.
 - (b) Show that for every $b \in B$ and $h \in E_b$ there exists a smooth section $s \in \Gamma(B, E)$ with the property that s(b) = h.
 - (c) Let $\mathbf{k} = C^{\infty}(B)$ be the ring of smooth functions on *B*. Let E^* be the dual bundle to *E* and let $\Gamma(B, E)^* = \text{Hom}_{\mathbf{k}}(\Gamma(B, E), \mathbf{k})$ be the **k**-module dual to $\Gamma(B, E)$. Define a **k**-bilinear pairing

$$P: \Gamma(B, E^*) \times \Gamma(B, E) \longrightarrow \mathbf{k}$$

by $P(\sigma, s)(b) = \sigma(b)(s(b))$ for $b \in B$. Let $P^{\sharp} \colon \Gamma(B, E^*) \to \Gamma(B, E)^*$ be the **k**-linear map defined by $P^{\sharp}(\sigma)(s) = P(\sigma, s)$. Prove that P^{\sharp} is an isomorphism.

2. Let *V* be a finite-dimensional real vector space and let $\alpha \in A^k(V)$. We call α *decomposable* if $\alpha \neq 0$ and $\alpha = v_1 \wedge v_2 \wedge \cdots \wedge v_k$ for some $v_1, v_2, \ldots, v_k \in V$. The *annihilator* of α is the linear subspace $\alpha^{\perp} = \{ v \in V \mid \alpha \wedge v = 0 \}$ of *V*. Prove the following statements.

- (a) Let $\alpha \neq 0$. Then dim $(\alpha^{\perp}) = k$ if and only if α is decomposable.
- (b) Every *k*-dimensional subspace *W* of *V* is of the form $W = \alpha^{\perp}$ for a decomposable element $\alpha \in A^{k}(V)$, which is uniquely determined by *W* up to a multiplicative constant.
- (c) Let $\beta \in A^{l}(V)$. If α and β are decomposable, then $\alpha^{\perp} \subseteq \beta^{\perp}$ if and only if $\beta = \alpha \land \gamma$ for some $\gamma \in A(V)$.
- (d) If α and β are decomposable, then $\alpha^{\perp} \cap \beta^{\perp} = \{0\}$ if and only if $\alpha \land \beta \neq 0$, and in that case $(\alpha \land \beta)^{\perp} = \alpha^{\perp} \oplus \beta^{\perp}$.
- (e) Every nonzero element of $A^{n-1}(V)$ is decomposable, where $n = \dim(V)$.

Let $\xi: I \to TM$ be a time-dependent vector field on a manifold M, where I is an open interval containing 0. Let $\hat{\xi} = \frac{\partial}{\partial t} + \xi$ be the associated time-independent vector field on $I \times M$, and let $\hat{\theta}: \hat{\mathcal{D}} \to I \times M$ be the flow of $\hat{\xi}$, where $\hat{\mathcal{D}} \subseteq \mathbf{R} \times I \times M$ is the flow domain of $\hat{\xi}$. Write points in $\mathbf{R} \times I \times M$ as (s, t, x). Since the first component of $\hat{\xi}$ is $\frac{\partial}{\partial t}$, the flow is of the form $\hat{\theta} = (s + t, \theta(s, t, x))$ for a unique smooth map $\theta: \hat{\mathcal{D}} \to M$. The path $\gamma(s) = \theta(s - t, t, x)$ is the trajectory of ξ passing through xat time s = t.

In particular, $\gamma(s) = \theta(s, 0, x)$ is the trajectory of ξ passing through x at time s = 0. In the sequel we abbreviate $\theta(s, 0, x)$ to $\theta(s, x)$ and refer to θ as the *flow* of ξ . The domain $\mathscr{D} \subseteq \mathbf{R} \times M$ of θ consists of all (s, x) with $(s, 0, x) \in \widehat{\mathscr{D}}$ and is therefore an open subset of $\mathbf{R} \times M$.

3 (Connected manifolds are homogeneous under the diffeomorphism group). Let *M* be a manifold. Prove the following assertions.

(a) *M* is connected if and only if it is C^{∞} path-connected (the definition of which is left to your imagination).

(b) Assume *M* to be connected. For all *x* and *y* in *M* there exists a diffeomorphism $f: M \to M$ such that f(x) = y. (Choose a smooth path $c: [0, 1] \to M$ connecting *x* to *y*. Show there exists a compactly supported time-dependent vector field ξ on *M* such that $\xi(t, c(t)) = c'(t)$ for $0 \le t \le 1$, and use the flow $(t, x) \to \theta(t, x)$ of ξ .)

A *time-dependent* differential form on a manifold M is a smooth function $\alpha : I \times M \to A(T^*M)$ such that $\alpha(t, x) \in A(T^*_xM)$ for all $(t, x) \in I \times M$, i.e. a form on $I \times M$ that does not involve dt. Here I is an open interval. For a time-dependent form α we define forms $\alpha_t \in \Omega(M)$ for each $t \in I$ by $\alpha_t(x) = \alpha(t, x)$.

4. Let α be a time-dependent form and $\xi : I \times M \to TM$ a time-dependent vector field. Let $(t, x) \mapsto \theta(t, x) = \theta_t(x)$ be the flow of ξ . Then

$$\frac{d}{dt}\theta_t^*\alpha_t = \theta_t^*(\mathscr{L}(\xi_t)\alpha_t + \dot{\alpha}_t),$$

where the dot denotes differentation with respect to t.

For a module *V* over a commutative ring **k** we let $V^* = \text{Hom}_{\mathbf{k}}(V, \mathbf{k})$ be the dual module and for each $u \in V$ we define a map $\iota(u): A^k(V^*) \to A^{k-1}(V^*)$ by

$$\iota(u)(\phi_1 \wedge \phi_2 \wedge \dots \wedge \phi_k) = \sum_{l=1}^k (-1)^{l+1} \phi_l(u) \phi_1 \wedge \phi_2 \wedge \dots \wedge \widehat{\phi}_l \wedge \dots \wedge \phi_k$$

for $\phi_1, \phi_2, \ldots, \phi_k \in V^*$. Under the canonical isomorphism $A^k(V^*) \cong \text{Alt}^k_k(V)$ we have

$$(\iota(u)\phi)(v_1, v_2, \dots, v_{k-1}) = \phi(u, v_1, v_2, \dots, v_{k-1})$$

for $\phi \in \operatorname{Alt}_{\mathbf{k}}^{k}(V)$. Applying this to the ring of smooth functions $\mathbf{k} = C^{\infty}(M)$ of a manifold M and the module of smooth vector fields $V = \mathscr{T}(M)$ we get an operator $\iota(\xi) \colon \Omega^{k}(M) \to \Omega^{k-1}(M)$ for each vector field ξ . There are various relationships among the operators $\iota(\xi), \mathscr{L}(\xi)$, and d, the most important of which is \acute{E} . *Cartan's magic formula*, which says that $\mathscr{L}(\xi)$ is the graded commutator of d and $\iota(\xi)$,

$$\mathscr{L}(\xi) = [d, \iota(\xi)] = d\iota(\xi) + \iota(\xi)d.$$

5. Let μ be a *volume form* on an *n*-manifold with boundary *M*, that is a nowhere vanishing *n*-form ($\mu(x) \neq 0$ for all $x \in M$). Let ξ be a (time-independent) vector field. Then $\mathscr{L}(\xi)\mu$ is an *n*-form, so there is a unique function div(ξ), called the *divergence* of ξ relative to μ , satisfying $\mathscr{L}(\xi)\mu = \text{div}(\xi)\mu$. Prove the following statements.

- (a) div(ξ) = 0 if and only if $\theta_t^* \mu = \mu$ for all *t*, where θ is the flow of ξ .
- (b) For compact *M* we have the *divergence theorem*,

$$\int_M \operatorname{div}(\xi)\mu = \int_{\partial M} \iota(\xi)\mu.$$

(Here we use the orientation of *M* compatible with μ , i.e. an ordered basis $(v_1, v_2, ..., v_n)$ of $T_x M$ is positively oriented if $\mu(v_1 \land v_2 \land \cdots \land v_n) > 0$.) (Use Cartan's formula.)

(c) Now let ξ be a time-dependent vector field on M. Assume ξ is complete with flow θ . Let f be a time-dependent smooth function on M (i.e. a smooth

function $f: I \times M \rightarrow \mathbf{R}$) and *A* a relatively compact open subset. Then we have the *transport equation*,

$$\frac{d}{dt}\int_{\theta_t(A)}f_t\mu=\int_{\theta_t(A)}(\dot{f}_t+\mathscr{L}(\xi_t)f_t+f_t\operatorname{div}(\xi_t))\mu.$$