Speaker: Son Nguyen, MIT
Title: Shuffle tableaux
Time: 2:30 PM, Monday, December 8, 2025
Place: Malott 206
Abstract:Elements of Lusztig's dual canonical bases are Schur-positive when evaluated on (generalized) Jacobi-Trudi matrices. This deep property was proved by Rhoades and Skandera, relying on a result of Haiman, and ultimately on the (proof of) Kazhdan-Lusztig conjecture. For a particularly tractable part of the dual canonical basis - called Temperley-Lieb immanants - we give a generalization of Littlewood-Richardson rule using shuffle tableaux. We then use our new rule to prove a special case of a Schur log-concavity conjecture by Lam-Postnikov-Pylyavskyy.
Back to main seminar page.