Monoidal Categories, Bialgebras, and

Automata

James Worthington
Mathematics Department
Cornell University

Binghamton University
Geometry/Topology Seminar
October 29, 2009

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Automata

Finite automata
@ Model computation with finite memory
@ Compute functions called regular languages
@ Introduced by Kleene in 1951 to model neurons

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Automata

Finite automata
@ Model computation with finite memory
@ Compute functions called regular languages
@ Introduced by Kleene in 1951 to model neurons

Applications
@ Logic, computer science
@ Geometric group theory [Cannon et. al, 92]
@ Number theory [Allouche & Shallit, 03]

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Bialgebras

Bialgebras
@ Capture combination, decomposition
@ Introduced by Hopf in 1930 (algebraic topology)

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Bialgebras

Bialgebras
@ Capture combination, decomposition
@ Introduced by Hopf in 1930 (algebraic topology)

Applications
@ Hopf Algebras
@ Physics (quantum groups) [Drinfel’d, '86]
@ Combinatorics [Joni & Rota, '79]

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Monoidal Categories

Monoidal categories
@ Category with associative operation, unit object
@ Introduced Mac Lane, Bénabou in 1953 (independently)

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Monoidal Categories

Monoidal categories
@ Category with associative operation, unit object
@ Introduced Mac Lane, Bénabou in 1953 (independently)

Applications
@ Categorical logic
@ Quantum protocols [Abramsky & Coecke, '04]
@ Thompson’s group [Brin, ’05]

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Proof Complexity

Proof complexity
@ Proof = “feasibly-verifiable witness to truth”
@ Proof system = proof-verifying function
@ Theorem hard for proof system = all proofs are long

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Proof Complexity

Proof complexity

@ Proof = “feasibly-verifiable witness to truth”

@ Proof system = proof-verifying function

@ Theorem hard for proof system = all proofs are long

@ “Are there always hard theorems?” related to outstanding
conjectures in complexity theory

@ e.g., NP = coNP iff 4 polynomially-bounded system for
propositional tautologies

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Proof Complexity

@ Examining different proof systems = progress in
complexity theory. But. ..

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Proof Complexity

@ Examining different proof systems = progress in
complexity theory. But. ..

@ Proving a theorem hard is hard
@ Finding candidate hard theorems is hard

J. Worthington Monoidal Categories, Bialgebras, and Automata

Background: Proof Complexity

@ Examining different proof systems = progress in
complexity theory. But. ..

@ Proving a theorem hard is hard
@ Finding candidate hard theorems is hard

@ One solution: work with systems in which proofs are
encoded as well-known mathematical objects

@ E.g., Nullstellensatz proof system for tautologies
[Beame et. al, 96]

J. Worthington Monoidal Categories, Bialgebras, and Automata

Overview — why category theory?

Main ideas:

@ Automata, representations of bialgebras:
same definition/constructions, different monoidal
categories

@ Monoidal categories: natural setting to talk about
automata, languages

@ Ongoing work: representation theory of bialgebras =
complexity-theoretic information about automata

J. Worthington Monoidal Categories, Bialgebras, and Automata

(Symmetric) Monoidal Categories

Monoidal category C:
@ Bifunctor® :C xC — C
@ Associator: natural isomorphism

a:Xe(Ye2)2(XY)eZ
@ Unit object E and natural isomorphisms

[:E@ X=X r XeE=X
@ Symmetry: natural isomorphism (involution)

o XYY X

J. Worthington Monoidal Categories, Bialgebras, and Automata

Pentagonal Diagram

Associator satisfies pentagon condition:

WoXe(YR2Z)—>WeX)e(YZ) 2= (WeX)eY)®Z

1®ai Ta@ﬂ

We(X®Y)e2) : We(XeY)eZ

@ Associativity at level of objects
@ inSet: (X xY)xZ#Xx(YxZ2)

(6. ¥),2) # (x,(y,2))

J. Worthington Monoidal Categories, Bialgebras, and Automata

Monoidal Categories: Examples

@ Set (sets and functions), x, x

@ K-Mod (K-semimodules and K-linear maps),®x, K
(K a commutative semiring)

@ K-Mod, @, {0k}

J. Worthington Monoidal Categories, Bialgebras, and Automata

Monoidal Categories: Examples

@ Set (sets and functions), x, x

@ K-Mod (K-semimodules and K-linear maps),®x, K
(K a commutative semiring)

@ K-Mod, @, {0k}

Notes:
@ ® not necessarily categorical product
@ Semiring = “ring without subtraction”

J. Worthington Monoidal Categories, Bialgebras, and Automata

Monoids in Monoidal Categories

Definition

Let C = (C, ®, E) be a monoidal category. A monoid (M, p, n)
in C consists of an object M of C and morphisms
uw:MeM— M, n: E— M satisfying the following diagrams:

Associative multiplication . : Mo M — M

Mo Me M

\/

J. Worthington Monoidal Categories, Bialgebras, and Automata

Monoids in Monoidal Categories

Unit diagram forn : E - M

1y
MMM

Recall:

J. Worthington Monoidal Categories, Bialgebras, and Automata

Monoids in Monoidal Categories: Examples

@ Monoids in (Set, x,x) = “ordinary” monoids
@ Monoids in (Ab, ®7,Z) = rings
@ Monoids in (K-Mod, ®, K) = K-algebras

Note: collections of monoids are themselves categories

J. Worthington Monoidal Categories, Bialgebras, and Automata

Important K-algebra

For remainder of talk:
@ K =two-element idempotent semiring
@ Underlying set of K = {0,1}
e1+1=1

J. Worthington Monoidal Categories, Bialgebras, and Automata

Important K-algebra

For remainder of talk:
@ K =two-element idempotent semiring
@ Underlying set of K = {0,1}
e1+1=1
@ P = polynomials over noncommuting variables x, y
coefficients in K
P = formal sums of words in letters x, y
example element:

XYyxy + yx + X

J. Worthington Monoidal Categories, Bialgebras, and Automata

Comonoids in Monoidal Categories

Definition

A comonoid C in a monoidal category C is a monoid in
(CP, @, E)

J. Worthington Monoidal Categories, Bialgebras, and Automata

Comonoids in Monoidal Categories

Definition

A comonoid C in a monoidal category C is a monoid in
(CP, @, E)

Coassociative comultiplication A : C - C® C

Ce®CrwC

CoC C®C

e A

C

Comultiplication: “splitting up” or “sharing out”
Called “duplicator” in some categorical logics

J. Worthington Monoidal Categories, Bialgebras, and Automata

Comonoids in Monoidal Categories

Counit: map C — E

1c

U

C—-—CeC———>C
c®e

Called “eraser” in some categorical logics

J. Worthington Monoidal Categories, Bialgebras, and Automata

Comonoids in Monoidal Categories: Example

@ Ap: P— P® P (as element of K-Mod)
@ Ap(w) =w ® w for words w, extended K-linearly
@ cc(w) = 1k, extended K-linearly

J. Worthington Monoidal Categories, Bialgebras, and Automata

Comonoids in Monoidal Categories: Example

@ Ap: P— P® P (as element of K-Mod)
@ Ap(w) =w ® w for words w, extended K-linearly
@ cc(w) = 1k, extended K-linearly

Coassociativity of Ap:
(1p@Ap)oAp(w)=(1pRAp)(WR W) =W (W w)

(Ap®@1p)oAp(w) = (Ap@1p)(WR W) =(WR W)@ W

J. Worthington Monoidal Categories, Bialgebras, and Automata

Comonoids — Monoids

LetC be a (locally small) monoidal category, C a comonoid in C,
and M a monoid in C. Then Hom(C, M) is a monoid in Set.

Multiplication: convolution product

frg=pmo(feg)oAc

@ Coassociativity of As needed for associativity of x
@ |dentity for x is ny 0 ec

J. Worthington Monoidal Categories, Bialgebras, and Automata

Formal Languages

Formal Languages

Finite alphabet ©

3 * = set of all finite words over ©

Language = subset of ©*

f: ¥ — K(= {0,1}): formal power series
Bijection between languages, formal power series

J. Worthington Monoidal Categories, Bialgebras, and Automata

Operations on Languages

@ Union

@ Intersection

@ Concatenation
@ Shuffle

J. Worthington Monoidal Categories, Bialgebras, and Automata

Hom(C, M): Formal Languages

How to describe operations on languages?

Quantify over words:
o Liulr,={w|weLjorwe Ly}
o Linky={w|welLjandw e Ly}
o Lilo={w|w=wiws, wy € Ly, wr € Lo}

J. Worthington Monoidal Categories, Bialgebras, and Automata

Hom(C, M): Formal Languages

How to describe operations on languages?

Quantify over words:
o Liulr,={w|weLjorwe Ly}
o Linky={w|welLjandw e Ly}
o Lilo={w|w=wiws, wy € Ly, wr € Lo}

Operations on Formal Power Series:
@ Union = pointwise addition
@ Intersection = pointwise multiplication
@ Concatenation = series product

J. Worthington Monoidal Categories, Bialgebras, and Automata

Hom(C, M): Formal Languages

P = K-algebra of formal sums of words € {x, y}*

Elements of P* in one-to-one correspondence
with formal languages C {x, y }*
Intersection, shuffle determined
by comultiplication on P (Duchamp et. al [01])

J. Worthington Monoidal Categories, Bialgebras, and Automata

Hom(C, M): Formal Languages

@ P = K-algebra of formal sums of words € {x, y}*

@ Elements of P* in one-to-one correspondence
with formal languages C {x, y }*

@ Intersection, shuffle determined
by comultiplication on P (Duchamp et. al [01])

@ Union, intersection, shuffle, concatenation: convolution
products

@ Same definition with monoid, comonoid as parameters

J. Worthington Monoidal Categories, Bialgebras, and Automata

Hom(C, M): Formal Languages

fxg=pkxo(feg)oAp

Intersection

@ Monoidal Category: (K-Mod, ®x, K)

@ Comonoid: Ap: P — Pk P

o Ap(w) = w ® w extended K-linearly

@ ¢p(w) =1, extended K-linearly

@ Monoid: K as K-algebra

o (fxg)(w)=f(w)g(w)

@ Identity = universal language

J. Worthington Monoidal Categories, Bialgebras, and Automata

How to describe formal languages?
@ Language is an arbitrary subset of *

J. Worthington Monoidal Categories, Bialgebras, and Automata

How to describe formal languages?
@ Language is an arbitrary subset of *

@ m.o. in c.s. — work with finite description of
machine which computes (possibly) infinite object

@ Machines to compute languages: automata
@ Not all languages have finite machine

J. Worthington Monoidal Categories, Bialgebras, and Automata

Nondeterministic Automaton: Example

@ Start state = s

@ Accept state = s»

@ Reads w € {x, y}* letter by letter
@ Each letter causes state transition
@ Read y in state s;: immediately fail

J. Worthington Monoidal Categories, Bialgebras, and Automata

Nondeterministic Automaton: Example

XYy
ey &y

X y X
S1 —> S — §1 — §4

@ Runs on xyx:

X y X
S —> S — 8§ — S

@ Automaton accepts w < there is some w-labelled path
from a start state to an accept state

J. Worthington Monoidal Categories, Bialgebras, and Automata

Nondeterministic Automaton: Example

XYy
ey &y

X y X
S1 —> S — §1 — §4

@ Runs on xyx:

X y X
S —> S — 8§ — S

@ Automaton accepts w < there is some w-labelled path
from a start state to an accept state

How to express in a monoidal category?

J. Worthington Monoidal Categories, Bialgebras, and Automata

Actions of Monoids

Transitions = actions

Definition
Let C be a monoidal category and (M, 11,) @ monoid in C.

A right action of M on X € C is an arrow
XM — X
satisfying:

XoMeM-2XeMeM > xoM<2Yx s E

= l | l

XM ! X X

J. Worthington Monoidal Categories, Bialgebras, and Automata

Actions of Monoids

Transitions = actions

Definition
Let C be a monoidal category and (M, 11,) @ monoid in C.

A right action of M on X € C is an arrow
XM — X
satisfying:

XoMeoM-Z>XoMoM X xoM<2xgE

= l | l

XM ! X X

Also called a representation of M

J. Worthington Monoidal Categories, Bialgebras, and Automata

K-linear Automata

K-linear automaton
@ Pointed, observable representation of K-algebra P
@ Input: P
@ States: K-semimodule N

J. Worthington Monoidal Categories, Bialgebras, and Automata

K-linear Automata

K-linear automaton
@ Pointed, observable representation of K-algebra P
@ Input: P
@ States: K-semimodule N
@ Transitions — action<: N@ P -+ N
@ Pointing: distinguished start state s ¢ N
@ Observation — K-linearmap Q: N —» K

J. Worthington Monoidal Categories, Bialgebras, and Automata

Automata and K-algebras

Automaton = pointed, observable representation of P:

(Y
EReyEho

J. Worthington Monoidal Categories, Bialgebras, and Automata

Automata and K-algebras

Automaton = pointed, observable representation of P:
NEN"’
—()=

[k ke ax=] k kg][

- O o —

OO O =
[E—

[ki ke Jay=] ki kz]{

extend algebraically to right action [k1 k2 | <P

J. Worthington Monoidal Categories, Bialgebras, and Automata

Automata and K-algebras

Automaton = pointed, observable representation of P:
NEN"’
—()=

[k ke ax=] k kg][

- O o —

OO O =
[E—

[ki ke Jay=] ki kz]{

extend algebraically to right action [k1 k2 | <P
Start vector: [1 0 |

J. Worthington Monoidal Categories, Bialgebras, and Automata

Automata and K-algebras

Automaton = pointed, observable representation of P:
NEN"’
—()=

[k ke ax=] k kg][

- O o —

OO O =
[E—

[ki ke Jay=] ki kz]{

extend algebraically to right action [k1 k2 | <P
Start vector: [1 0 |

b ke)=k k]|]]

J. Worthington Monoidal Categories, Bialgebras, and Automata

Automata and K-algebras

XYy
ey &y

Run of K-linear automaton on xyx

1ollo o7 0007

J. Worthington Monoidal Categories, Bialgebras, and Automata

Language Accepted

Definition
Let D = (N, P, s,<,Q) be a K-linear automaton. The language
accepted by D is the function

pp: P— K

po(P) = (s <p)

Note: pp € P*

J. Worthington Monoidal Categories, Bialgebras, and Automata

Automata in Categories

@ Definition can be formulated categorically
@ K-Mod =- nondeterministic automata

@ Deterministic automata as representation in Vecg
[Grossman & Larson, '04]

J. Worthington Monoidal Categories, Bialgebras, and Automata

Putting it all together. ..

So far. ..
@ Representations of K-algebra compute languages
@ K-coalgebra defines language multiplication

J. Worthington Monoidal Categories, Bialgebras, and Automata

Putting it all together. ..

So far. ..
@ Representations of K-algebra compute languages
@ K-coalgebra defines language multiplication

Next up. ..
@ K-algebra and K-coalgebra play nice: K-bialgebra
@ Can multiply representations of K-bialgebra
@ Corresponds to running automata in parallel

J. Worthington Monoidal Categories, Bialgebras, and Automata

Bialgebras, Bimonoids

Definition

A bimonoid B is a monoid in a category of comonoids, or
equivalently, a comonoid in a category of monoids.

Definition
A K-bialgebra is a bimonoid “in” K-Mod.

J. Worthington Monoidal Categories, Bialgebras, and Automata

Bialgebras, Bimonoids

Definition

A bimonoid B is a monoid in a category of comonoids, or
equivalently, a comonoid in a category of monoids.

Definition
A K-bialgebra is a bimonoid “in” K-Mod.

Fact: Category of monoids of symmetric monoidal category is
itself monoidal

14Q0p a®15 HAQLB

ARB®A®B ARAR B B————A®B

J. Worthington Monoidal Categories, Bialgebras, and Automata

Bialgebras, Bimonoids

Diagram relating A and . in K-bialgebra B:

BoB—" B—=2 -BwB

A®Ai Tu@u
1 B®U®1 B

BoBBeB—B®B®B®B

J. Worthington Monoidal Categories, Bialgebras, and Automata

Multiplying Representations of K-Bialgebras

Have:
@ Action qy, : Ny ® B — Nj
@ Action ap, : No @ B — Nb

Want action<: Ny @ No @ B — Ny @ N»

J. Worthington Monoidal Categories, Bialgebras, and Automata

Multiplying Representations of K-Bialgebras

Have:
@ Action qy, : Ny ® B — Nj
@ Action ap, : No @ B — Nb

Want action<: Ny @ No @ B — Ny @ N»

Definition (<: Ny @ No @ B — Ny @ N»)

N1®N2®B*>N1®N2®B®B N1®B®N2®B*>N1®N2

@ Representations form monoidal category
@ Unit object = unit representation
@ Instance of theorem about bimonoids

J. Worthington Monoidal Categories, Bialgebras, and Automata

Multiplying Automata

Let D and E be K-linear automata. Then D ® E is a K-linear
automaton with:

@ Transitions: multiply actions
@ SpgE = Sp ® SE
(*] QD@E = QD ® QE

@ “Run automata in parallel”
@ A as parameter (intersection, shuffle)

J. Worthington Monoidal Categories, Bialgebras, and Automata

Multiplying Automata

Let D and E be K-linear automata. Then D ® E is a K-linear
automaton with:

@ Transitions: multiply actions
@ SpgE = Sp ® SE
(*] QD@E = QD ® QE

@ “Run automata in parallel”
@ A as parameter (intersection, shuffle)

Theorem (W. ’09)
PD * PE = PDRE

J. Worthington Monoidal Categories, Bialgebras, and Automata

Morphisms of Actions

What about morphisms of actions?

J. Worthington Monoidal Categories, Bialgebras, and Automata

Morphisms of Actions

What about morphisms of actions?

Definition

Let M be a monoid in C and let X, X’ be objects of C. Let < and
< be right actions of M on X, X’, respectively.

A morphism of right actions is an arrow f : X — X’ in C such

that
XoMZM x1 oM
Q\L \Lq’
X— = x

J. Worthington Monoidal Categories, Bialgebras, and Automata

Morphisms of Automata

Let D and E be K-linear automata. A K-linearmap ¢: D — E
is a morphism of K-linear automata if it satisfies:

K%D DLD DiK
Aifb @ l(ﬁ ® AZ
E ET,:-)E E

@ ap, ag: pointings
@ Qp, Qfe: observations

J. Worthington Monoidal Categories, Bialgebras, and Automata

Morphisms as Proofs: Soundness

Definition
Automata D and E are equivalent: pp = pe.

J. Worthington Monoidal Categories, Bialgebras, and Automata

Morphisms as Proofs: Soundness

Definition
Automata D and E are equivalent: pp = pe.

Let D and E be K-linear automata. If there is a morphism of
K-linear automata ¢ : D — E, then pp = pE.

Forany p € P,
Qp(ap(1) <p p) = Qe(é(ap(1) <p p))
= Qe(o(ap(1)) <e p)
= Qe(ae(1) <e p)

J. Worthington Monoidal Categories, Bialgebras, and Automata

Morphisms as Proofs: Completeness

Theorem (W. ’09)
Let D and E be two equivalent K -linear automata. Then:

@ There is a sequence of K-linear automata and morphisms
of K-linear automata which witnesses the equivalence.

@ If D, E correspond to finite nfa, sequence can be
constructed in PSPACE

Proof uses:

@ Adjunction between K-linear automata, “deterministic”
automata

@ Unigueness of minimal deterministic automaton

J. Worthington Monoidal Categories, Bialgebras, and Automata

Ongoing Work: Bialgebras = Automata

@ Equivalence of K-linear automata is PSPACE-complete

@ Hard equivalences for proof system (unless
NP = PSPACE)

@ Find them, along with “useful” easy equivalences

@ Use representation theory: understand how automata are
put together to understand how proofs are put together

J. Worthington Monoidal Categories, Bialgebras, and Automata

Ongoing Work: Bialgebras = Automata

A: nfa with n® states
@ Deterministic algorithm to decide whether A accepts every
word requires n* many worktape cells of TM
@ If A= B® C and B, C each have n states, only need n?
cells (comultiplication for intersection)

@ Can multiply proofs in certain instances

J. Worthington Monoidal Categories, Bialgebras, and Automata

Thank You!

