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Background: Automata

Finite automata
@ Model computation with finite memory
@ Compute functions called regular languages
@ Introduced by Kleene in 1951 to model neurons
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Background: Automata

Finite automata
@ Model computation with finite memory
@ Compute functions called regular languages
@ Introduced by Kleene in 1951 to model neurons

Applications
@ Logic, computer science
@ Geometric group theory [Cannon et. al, 92]
@ Number theory [Allouche & Shallit, 03]
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Background: Bialgebras

Bialgebras
@ Capture combination, decomposition
@ Introduced by Hopf in 1930 (algebraic topology)
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Background: Bialgebras

Bialgebras
@ Capture combination, decomposition
@ Introduced by Hopf in 1930 (algebraic topology)

Applications
@ Hopf Algebras
@ Physics (quantum groups) [Drinfel’d, '86]
@ Combinatorics [Joni & Rota, '79]
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Background: Monoidal Categories

Monoidal categories
@ Category with associative operation, unit object
@ Introduced Mac Lane, Bénabou in 1953 (independently)
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Background: Monoidal Categories

Monoidal categories
@ Category with associative operation, unit object
@ Introduced Mac Lane, Bénabou in 1953 (independently)

Applications
@ Categorical logic
@ Quantum protocols [Abramsky & Coecke, '04]
@ Thompson’s group [Brin, ’05]
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Background: Proof Complexity

Proof complexity
@ Proof = “feasibly-verifiable witness to truth”
@ Proof system = proof-verifying function
@ Theorem hard for proof system = all proofs are long
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Background: Proof Complexity

Proof complexity

@ Proof = “feasibly-verifiable witness to truth”

@ Proof system = proof-verifying function

@ Theorem hard for proof system = all proofs are long

@ “Are there always hard theorems?” related to outstanding
conjectures in complexity theory

@ e.g., NP = coNP iff 4 polynomially-bounded system for
propositional tautologies
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Background: Proof Complexity

@ Examining different proof systems = progress in
complexity theory. But. ..
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Background: Proof Complexity

@ Examining different proof systems = progress in
complexity theory. But. ..

@ Proving a theorem hard is hard
@ Finding candidate hard theorems is hard
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Background: Proof Complexity

@ Examining different proof systems = progress in
complexity theory. But. ..

@ Proving a theorem hard is hard
@ Finding candidate hard theorems is hard

@ One solution: work with systems in which proofs are
encoded as well-known mathematical objects

@ E.g., Nullstellensatz proof system for tautologies
[Beame et. al, 96]
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Overview — why category theory?

Main ideas:

@ Automata, representations of bialgebras:
same definition/constructions, different monoidal
categories

@ Monoidal categories: natural setting to talk about
automata, languages

@ Ongoing work: representation theory of bialgebras =
complexity-theoretic information about automata
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(Symmetric) Monoidal Categories

Monoidal category C:
@ Bifunctor® :C xC — C
@ Associator: natural isomorphism

a:Xe(Ye2)2(XY)eZ
@ Unit object E and natural isomorphisms

[:E@ X=X r XeE=X
@ Symmetry: natural isomorphism (involution)

o XYY X
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Pentagonal Diagram

Associator satisfies pentagon condition:

WoXe(YR2Z)—>WeX)e(YZ) 2= (WeX)eY)®Z

1®ai Ta@ﬂ

We(X®Y)e2) : We(XeY)eZ

@ Associativity at level of objects
@ inSet: (X xY)xZ#Xx(YxZ2)

(6. ¥),2) # (x,(y,2))
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Monoidal Categories: Examples

@ Set (sets and functions), x, x

@ K-Mod (K-semimodules and K-linear maps),®x, K
(K a commutative semiring)

@ K-Mod, @, {0k}
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Monoidal Categories: Examples

@ Set (sets and functions), x, x

@ K-Mod (K-semimodules and K-linear maps),®x, K
(K a commutative semiring)

@ K-Mod, @, {0k}

Notes:
@ ® not necessarily categorical product
@ Semiring = “ring without subtraction”
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Monoids in Monoidal Categories

Definition

Let C = (C, ®, E) be a monoidal category. A monoid (M, p, n)
in C consists of an object M of C and morphisms
uw:MeM— M, n: E— M satisfying the following diagrams:

Associative multiplication . : Mo M — M

Mo Me M

\/
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Monoids in Monoidal Categories

Unit diagram forn : E - M

1y
MMM

Recall:
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Monoids in Monoidal Categories: Examples

@ Monoids in (Set, x,x) = “ordinary” monoids
@ Monoids in (Ab, ®7,Z) = rings
@ Monoids in (K-Mod, ®, K) = K-algebras

Note: collections of monoids are themselves categories
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Important K-algebra

For remainder of talk:
@ K =two-element idempotent semiring
@ Underlying set of K = {0,1}
e1+1=1
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Important K-algebra

For remainder of talk:
@ K =two-element idempotent semiring
@ Underlying set of K = {0,1}
e1+1=1
@ P = polynomials over noncommuting variables x, y
coefficients in K
P = formal sums of words in letters x, y
example element:

XYyxy + yx + X
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Comonoids in Monoidal Categories

Definition

A comonoid C in a monoidal category C is a monoid in
(CP, @, E)
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Comonoids in Monoidal Categories

Definition

A comonoid C in a monoidal category C is a monoid in
(CP, @, E)

Coassociative comultiplication A : C - C® C

Ce®CrwC

CoC C®C

e A

C

Comultiplication: “splitting up” or “sharing out”
Called “duplicator” in some categorical logics

J. Worthington Monoidal Categories, Bialgebras, and Automata



Comonoids in Monoidal Categories

Counit: map C — E

1c

U

C—-—CeC———>C
c®e

Called “eraser” in some categorical logics
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Comonoids in Monoidal Categories: Example

@ Ap: P— P® P (as element of K-Mod)
@ Ap(w) =w ® w for words w, extended K-linearly
@ cc(w) = 1k, extended K-linearly
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Comonoids in Monoidal Categories: Example

@ Ap: P— P® P (as element of K-Mod)
@ Ap(w) =w ® w for words w, extended K-linearly
@ cc(w) = 1k, extended K-linearly

Coassociativity of Ap:
(1p@Ap)oAp(w)=(1pRAp)(WR W) =W (W w)

(Ap®@1p)oAp(w) = (Ap@1p)(WR W) =(WR W)@ W
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Comonoids — Monoids

LetC be a (locally small) monoidal category, C a comonoid in C,
and M a monoid in C. Then Hom(C, M) is a monoid in Set.

Multiplication: convolution product

frg=pmo(feg)oAc

@ Coassociativity of As needed for associativity of x
@ |dentity for x is ny 0 ec
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Formal Languages

Formal Languages

Finite alphabet ©

3 * = set of all finite words over ©

Language = subset of ©*

f: ¥ — K(= {0,1}): formal power series
Bijection between languages, formal power series
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Operations on Languages

@ Union

@ Intersection

@ Concatenation
@ Shuffle
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Hom(C, M): Formal Languages

How to describe operations on languages?

Quantify over words:
o Liulr,={w|weLjorwe Ly}
o Linky={w|welLjandw e Ly}
o Lilo={w|w=wiws, wy € Ly, wr € Lo}
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Hom(C, M): Formal Languages

How to describe operations on languages?

Quantify over words:
o Liulr,={w|weLjorwe Ly}
o Linky={w|welLjandw e Ly}
o Lilo={w|w=wiws, wy € Ly, wr € Lo}

Operations on Formal Power Series:
@ Union = pointwise addition
@ Intersection = pointwise multiplication
@ Concatenation = series product
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Hom(C, M): Formal Languages

P = K-algebra of formal sums of words € {x, y}*

Elements of P* in one-to-one correspondence
with formal languages C {x, y }*
Intersection, shuffle determined
by comultiplication on P (Duchamp et. al [01])
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Hom(C, M): Formal Languages

@ P = K-algebra of formal sums of words € {x, y}*

@ Elements of P* in one-to-one correspondence
with formal languages C {x, y }*

@ Intersection, shuffle determined
by comultiplication on P (Duchamp et. al [01])

@ Union, intersection, shuffle, concatenation: convolution
products

@ Same definition with monoid, comonoid as parameters
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Hom(C, M): Formal Languages

fxg=pkxo(feg)oAp

Intersection

@ Monoidal Category: (K-Mod, ®x, K)

@ Comonoid: Ap: P — Pk P

o Ap(w) = w ® w extended K-linearly

@ ¢p(w) =1, extended K-linearly

@ Monoid: K as K-algebra

o (fxg)(w)=f(w)g(w)

@ Identity = universal language
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How to describe formal languages?
@ Language is an arbitrary subset of *
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How to describe formal languages?
@ Language is an arbitrary subset of *

@ m.o. in c.s. — work with finite description of
machine which computes (possibly) infinite object

@ Machines to compute languages: automata
@ Not all languages have finite machine
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Nondeterministic Automaton: Example

@ Start state = s

@ Accept state = s»

@ Reads w € {x, y}* letter by letter
@ Each letter causes state transition
@ Read y in state s;: immediately fail
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Nondeterministic Automaton: Example

XYy
ey &y

X y X
S1 —> S — §1 — §4

@ Runs on xyx:

X y X
S —> S — 8§ — S

@ Automaton accepts w < there is some w-labelled path
from a start state to an accept state
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Nondeterministic Automaton: Example

XYy
ey &y

X y X
S1 —> S — §1 — §4

@ Runs on xyx:

X y X
S —> S — 8§ — S

@ Automaton accepts w < there is some w-labelled path
from a start state to an accept state

How to express in a monoidal category?
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Actions of Monoids

Transitions = actions

Definition
Let C be a monoidal category and (M, 11, ) @ monoid in C.

A right action of M on X € C is an arrow
XM — X
satisfying:

XoMeM-2XeMeM > xoM<2Yx s E

= l | l

XM ! X X
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Actions of Monoids

Transitions = actions

Definition
Let C be a monoidal category and (M, 11, ) @ monoid in C.

A right action of M on X € C is an arrow
XM — X
satisfying:

XoMeoM-Z>XoMoM X xoM<2xgE

= l | l

XM ! X X

Also called a representation of M
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K-linear Automata

K-linear automaton
@ Pointed, observable representation of K-algebra P
@ Input: P
@ States: K-semimodule N
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K-linear Automata

K-linear automaton
@ Pointed, observable representation of K-algebra P
@ Input: P
@ States: K-semimodule N
@ Transitions — action<: N@ P -+ N
@ Pointing: distinguished start state s ¢ N
@ Observation — K-linearmap Q: N —» K
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Automata and K-algebras

Automaton = pointed, observable representation of P:

(Y
EReyEho
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Automata and K-algebras

Automaton = pointed, observable representation of P:
NEN"’
—()=

[k ke ax=] k kg][

- O o —

OO O =
[E—

[ ki ke Jay=] ki kz]{

extend algebraically to right action [ k1 k2 | <P
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Automata and K-algebras

Automaton = pointed, observable representation of P:
NEN"’
—()=

[k ke ax=] k kg][

- O o —

OO O =
[E—

[ ki ke Jay=] ki kz]{

extend algebraically to right action [ k1 k2 | <P
Start vector: [ 1 0 |
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Automata and K-algebras

Automaton = pointed, observable representation of P:
NEN"’
—()=

[k ke ax=] k kg][

- O o —

OO O =
[E—

[ ki ke Jay=] ki kz]{

extend algebraically to right action [ k1 k2 | <P
Start vector: [ 1 0 |

b ke )=k k]| ]]
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Automata and K-algebras

XYy
ey &y

Run of K-linear automaton on xyx

1ollo o7 0007
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Language Accepted

Definition
Let D = (N, P, s,<,Q) be a K-linear automaton. The language
accepted by D is the function

pp: P— K

po(P) = (s <p)

Note: pp € P*
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Automata in Categories

@ Definition can be formulated categorically
@ K-Mod =- nondeterministic automata

@ Deterministic automata as representation in Vecg
[Grossman & Larson, '04]
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Putting it all together. ..

So far. ..
@ Representations of K-algebra compute languages
@ K-coalgebra defines language multiplication
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Putting it all together. ..

So far. ..
@ Representations of K-algebra compute languages
@ K-coalgebra defines language multiplication

Next up. ..
@ K-algebra and K-coalgebra play nice: K-bialgebra
@ Can multiply representations of K-bialgebra
@ Corresponds to running automata in parallel
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Bialgebras, Bimonoids

Definition

A bimonoid B is a monoid in a category of comonoids, or
equivalently, a comonoid in a category of monoids.

Definition
A K-bialgebra is a bimonoid “in” K-Mod.
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Bialgebras, Bimonoids

Definition

A bimonoid B is a monoid in a category of comonoids, or
equivalently, a comonoid in a category of monoids.

Definition
A K-bialgebra is a bimonoid “in” K-Mod.

Fact: Category of monoids of symmetric monoidal category is
itself monoidal

14Q0p a®15 HAQLB

ARB®A®B ARAR B B————A®B
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Bialgebras, Bimonoids

Diagram relating A and . in K-bialgebra B:

BoB—" B—=2 -BwB

A®Ai Tu@u
1 B®U®1 B

BoBBeB—B®B®B®B
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Multiplying Representations of K-Bialgebras

Have:
@ Action qy, : Ny ® B — Nj
@ Action ap, : No @ B — Nb

Want action<: Ny @ No @ B — Ny @ N»
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Multiplying Representations of K-Bialgebras

Have:
@ Action qy, : Ny ® B — Nj
@ Action ap, : No @ B — Nb

Want action<: Ny @ No @ B — Ny @ N»

Definition (<: Ny @ No @ B — Ny @ N»)

N1®N2®B*>N1®N2®B®B N1®B®N2®B*>N1®N2

@ Representations form monoidal category
@ Unit object = unit representation
@ Instance of theorem about bimonoids
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Multiplying Automata

Let D and E be K-linear automata. Then D ® E is a K-linear
automaton with:

@ Transitions: multiply actions
@ SpgE = Sp ® SE
(*] QD@E = QD ® QE

@ “Run automata in parallel”
@ A as parameter (intersection, shuffle)
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Multiplying Automata

Let D and E be K-linear automata. Then D ® E is a K-linear
automaton with:

@ Transitions: multiply actions
@ SpgE = Sp ® SE
(*] QD@E = QD ® QE

@ “Run automata in parallel”
@ A as parameter (intersection, shuffle)

Theorem (W. ’09)
PD * PE = PDRE
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Morphisms of Actions

What about morphisms of actions?
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Morphisms of Actions

What about morphisms of actions?

Definition

Let M be a monoid in C and let X, X’ be objects of C. Let < and
< be right actions of M on X, X’, respectively.

A morphism of right actions is an arrow f : X — X’ in C such

that
XoMZM x1 oM
Q\L \Lq’
X— = x
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Morphisms of Automata

Let D and E be K-linear automata. A K-linearmap ¢: D — E
is a morphism of K-linear automata if it satisfies:

K%D DLD DiK
Aifb @ l(ﬁ ® AZ
E ET,:-)E E

@ ap, ag: pointings
@ Qp, Qfe: observations
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Morphisms as Proofs: Soundness

Definition
Automata D and E are equivalent: pp = pe.
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Morphisms as Proofs: Soundness

Definition
Automata D and E are equivalent: pp = pe.

Let D and E be K-linear automata. If there is a morphism of
K-linear automata ¢ : D — E, then pp = pE.

Forany p € P,
Qp(ap(1) <p p) = Qe(é(ap(1) <p p))
= Qe(o(ap(1)) <e p)
= Qe(ae(1) <e p)

J. Worthington Monoidal Categories, Bialgebras, and Automata



Morphisms as Proofs: Completeness

Theorem (W. ’09)
Let D and E be two equivalent K -linear automata. Then:

@ There is a sequence of K-linear automata and morphisms
of K-linear automata which witnesses the equivalence.

@ If D, E correspond to finite nfa, sequence can be
constructed in PSPACE

Proof uses:

@ Adjunction between K-linear automata, “deterministic”
automata

@ Unigueness of minimal deterministic automaton
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Ongoing Work: Bialgebras = Automata

@ Equivalence of K-linear automata is PSPACE-complete

@ Hard equivalences for proof system (unless
NP = PSPACE)

@ Find them, along with “useful” easy equivalences

@ Use representation theory: understand how automata are
put together to understand how proofs are put together
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Ongoing Work: Bialgebras = Automata

A: nfa with n® states
@ Deterministic algorithm to decide whether A accepts every
word requires n* many worktape cells of TM
@ If A= B® C and B, C each have n states, only need n?
cells (comultiplication for intersection)

@ Can multiply proofs in certain instances
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Thank You!




